1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2025-11-12 09:10:34 -05:00
sdrangel/plugins/channelmimo/interferometer/interferometercorr.cpp

240 lines
7.1 KiB
C++
Raw Normal View History

2019-08-19 02:08:41 +02:00
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <algorithm>
#include "dsp/fftengine.h"
#include "interferometercorr.h"
2019-09-02 00:41:41 +02:00
Sample sAdd(const Sample& a, const Sample& b) { //!< Sample addition
return Sample{a.real() + b.real(), a.imag() + b.imag()};
2019-08-19 02:08:41 +02:00
}
2019-09-02 00:41:41 +02:00
Sample sMulConj(const Sample& a, const Sample& b) { //!< Sample multiply with conjugate
2019-09-12 18:20:25 +02:00
Sample s;
s.setReal((a.real()*b.real() + a.imag()*b.imag()) / (1<<(SDR_RX_SAMP_SZ - 16 + 1)));
s.setImag((a.imag()*b.real() - a.real()*b.imag()) / (1<<(SDR_RX_SAMP_SZ - 16 + 1)));
return s;
2019-08-19 02:08:41 +02:00
}
2019-09-02 00:41:41 +02:00
Sample cf2s(const std::complex<float>& a) { //!< Complex float to Sample
Sample s;
s.setReal(a.real()*SDR_RX_SCALEF);
s.setImag(a.imag()*SDR_RX_SCALEF);
return s;
2019-08-19 02:08:41 +02:00
}
2019-09-12 18:20:25 +02:00
Sample invfft2s(const std::complex<float>& a) { //!< Complex float to Sample
Sample s;
s.setReal(a.real());
s.setImag(a.imag());
return s;
}
2019-08-19 02:08:41 +02:00
InterferometerCorrelator::InterferometerCorrelator(int fftSize) :
m_corrType(InterferometerSettings::CorrelationAdd),
m_fftSize(fftSize)
{
for (int i = 0; i < 2; i++)
{
m_fft[i] = FFTEngine::create();
m_fft[i]->configure(2*fftSize, false); // internally twice the data FFT size
}
m_invFFT = FFTEngine::create();
m_invFFT->configure(2*fftSize, true);
m_dataj = new std::complex<float>[2*fftSize]; // receives actual FFT result hence twice the data FFT size
2019-09-02 00:41:41 +02:00
m_scorr.resize(2*fftSize);
m_tcorr.resize(2*fftSize);
2019-08-19 02:08:41 +02:00
}
InterferometerCorrelator::~InterferometerCorrelator()
{
delete[] m_dataj;
2019-09-12 18:20:25 +02:00
delete m_invFFT;
for (int i = 0; i < 2; i++) {
delete m_fft[i];
}
2019-08-19 02:08:41 +02:00
}
2019-09-12 18:20:25 +02:00
bool InterferometerCorrelator::performCorr(
const SampleVector& data0,
int size0,
const SampleVector& data1,
int size1
)
2019-08-19 02:08:41 +02:00
{
2019-09-12 18:20:25 +02:00
bool results = false;
2019-08-19 02:08:41 +02:00
switch (m_corrType)
{
case InterferometerSettings::CorrelationAdd:
2019-09-12 18:20:25 +02:00
results = performOpCorr(data0, size0, data1, size1, sAdd);
2019-08-19 02:08:41 +02:00
break;
case InterferometerSettings::CorrelationMultiply:
2019-09-12 18:20:25 +02:00
results = performOpCorr(data0, size0, data1, size1, sMulConj);
2019-08-19 02:08:41 +02:00
break;
2019-09-12 18:20:25 +02:00
case InterferometerSettings::CorrelationFFT:
results = performFFTCorr(data0, size0, data1, size1);
2019-08-19 02:08:41 +02:00
break;
default:
break;
}
2019-09-12 18:20:25 +02:00
return results;
2019-08-19 02:08:41 +02:00
}
2019-09-12 18:20:25 +02:00
bool InterferometerCorrelator::performOpCorr(
const SampleVector& data0,
int size0,
const SampleVector& data1,
int size1,
Sample sampleOp(const Sample& a, const Sample& b)
)
2019-08-19 02:08:41 +02:00
{
2019-09-12 18:20:25 +02:00
unsigned int size = std::min(size0, size1);
2019-09-24 02:46:14 +02:00
// if (size0 != size1) {
// qDebug("InterferometerCorrelator::performOpCorr: size0: %d, size1: %d", size0, size1);
// }
2019-09-02 00:41:41 +02:00
adjustTCorrSize(size);
std::transform(
data0.begin(),
data0.begin() + size,
data1.begin(),
m_tcorr.begin(),
sampleOp
);
m_processed = size;
2019-09-12 18:20:25 +02:00
m_remaining[0] = size0 - size;
m_remaining[1] = size1 - size;
return true;
2019-09-02 00:41:41 +02:00
}
2019-08-19 02:08:41 +02:00
2019-09-12 18:20:25 +02:00
bool InterferometerCorrelator::performFFTCorr(
const SampleVector& data0,
int size0,
const SampleVector& data1,
int size1
)
2019-09-02 00:41:41 +02:00
{
2019-09-12 18:20:25 +02:00
unsigned int size = std::min(size0, size1);
int nfft = 0;
2019-09-02 00:41:41 +02:00
SampleVector::const_iterator begin0 = data0.begin();
SampleVector::const_iterator begin1 = data1.begin();
adjustSCorrSize(size);
adjustTCorrSize(size);
2019-08-19 02:08:41 +02:00
2019-09-02 00:41:41 +02:00
while (size > m_fftSize)
2019-08-19 02:08:41 +02:00
{
2019-09-02 00:41:41 +02:00
// FFT[0]
2019-08-19 02:08:41 +02:00
std::transform(
2019-09-02 00:41:41 +02:00
begin0,
begin0 + m_fftSize,
m_fft[0]->in(),
[](const Sample& s) -> std::complex<float> {
return std::complex<float>{s.real() / SDR_RX_SCALEF, s.imag() / SDR_RX_SCALEF};
}
2019-08-19 02:08:41 +02:00
);
2019-09-02 00:41:41 +02:00
std::fill(m_fft[0]->in() + m_fftSize, m_fft[0]->in() + 2*m_fftSize, std::complex<float>{0, 0});
m_fft[0]->transform();
2019-08-19 02:08:41 +02:00
2019-09-02 00:41:41 +02:00
// FFT[1]
std::transform(
begin1,
begin1 + m_fftSize,
m_fft[1]->in(),
[](const Sample& s) -> std::complex<float> {
return std::complex<float>{s.real() / SDR_RX_SCALEF, s.imag() / SDR_RX_SCALEF};
}
);
std::fill(m_fft[1]->in() + m_fftSize, m_fft[1]->in() + 2*m_fftSize, std::complex<float>{0, 0});
m_fft[1]->transform();
2019-08-19 02:08:41 +02:00
2019-09-02 00:41:41 +02:00
// conjugate FFT[1]
std::transform(
m_fft[1]->out(),
m_fft[1]->out()+2*m_fftSize,
m_dataj,
[](const std::complex<float>& c) -> std::complex<float> {
return std::conj(c);
}
);
2019-08-19 02:08:41 +02:00
2019-09-02 00:41:41 +02:00
// product of FFT[1]* with FFT[0] and store in inverse FFT input
std::transform(
m_fft[0]->out(),
m_fft[0]->out()+2*m_fftSize,
m_dataj,
m_invFFT->in(),
[](std::complex<float>& a, const std::complex<float>& b) -> std::complex<float> {
return a*b;
}
);
2019-08-19 02:08:41 +02:00
2019-09-02 00:41:41 +02:00
// copy product to correlation spectrum
std::transform(
m_invFFT->in(),
m_invFFT->in() + 2*m_fftSize,
m_scorr.begin(),
cf2s
);
2019-08-19 02:08:41 +02:00
2019-09-02 00:41:41 +02:00
// do the inverse FFT to get time correlation
m_invFFT->transform();
std::transform(
m_invFFT->out(),
m_invFFT->out() + 2*m_fftSize,
m_tcorr.begin(),
2019-09-12 18:20:25 +02:00
invfft2s
2019-09-02 00:41:41 +02:00
);
size -= m_fftSize;
begin0 += m_fftSize;
begin1 += m_fftSize;
2019-09-12 18:20:25 +02:00
nfft++;
2019-08-19 02:08:41 +02:00
}
2019-09-02 00:41:41 +02:00
// update the samples counters
2019-09-12 18:20:25 +02:00
m_processed = nfft*m_fftSize;
m_remaining[0] = size0 - nfft*m_fftSize;
m_remaining[1] = size1 - nfft*m_fftSize;
return nfft > 0;
2019-08-19 02:08:41 +02:00
}
2019-09-02 00:41:41 +02:00
void InterferometerCorrelator::adjustSCorrSize(int size)
2019-08-19 02:08:41 +02:00
{
2019-09-02 00:41:41 +02:00
if (size > m_scorrSize)
2019-08-19 02:08:41 +02:00
{
2019-09-02 00:41:41 +02:00
m_scorr.resize(size);
m_scorrSize = size;
2019-08-19 02:08:41 +02:00
}
2019-09-02 00:41:41 +02:00
}
2019-08-19 02:08:41 +02:00
2019-09-02 00:41:41 +02:00
void InterferometerCorrelator::adjustTCorrSize(int size)
{
if (size > m_tcorrSize)
{
m_tcorr.resize(size);
m_tcorrSize = size;
2019-08-19 02:08:41 +02:00
}
2019-09-02 00:41:41 +02:00
}