Although it keeps the same look and feel as its parent application **SDRangelove** it is a major redesign from it hitting more than half the lines of the code. Therefore the code base cannot be kept in sync anymore with its parent. It also contains enhancements and major differences. So it should now fly with its own wings and with its own name: **SDRangel**
- legacy: the modified code from the parent application [hexameron rtl-sdrangelove](https://github.com/hexameron/rtl-sdrangelove) before a major redeisign of the code was carried out and sync was lost.
The Gnuradio plugin source needs extra packages, including `liblog4cpp-dev libboost-system-dev gnuradio-dev libosmosdr-dev`
If you use your own location for Gnuradio install directory you need to specify library and include locations. Example with `/opt/install/gnuradio-3.7.5.1` with the following defines on `cmake` command line:
If you use your own location for gr.osmocom install directory you need to specify library and include locations. Example with `/opt/install/gr-osmosdr` with the following defines on `cmake` command line:
Use `cmake ../ -DV4L-RTL=ON` to build the Linux kernel driver for RTL-SDR (Experimental). Needs a recent kernel and libv4l2. Will need extra work to support SDRPlay. Needs `cp KERNEL_SOURCE/include/linux/compiler.h /usr/include/linux/` and `cp KERNEL_SOURCE/include/uapi/linux/videodev2.h /usr/include/uapi/linux/` and package `libv4l-dev`.
Airspy is supported through the libairspy library that should be installed in your system for proper build of the software and operation support. Add `libairspy-dev` to the list of dependencies to install.
If you use your own location for libairspy install directory you need to specify library and include locations. Example with `/opt/install/libairspy` with the following defines on `cmake` command line:
Please note that if you are using a recent version of libairspy (>= 1.0.6) the dynamic retrieval of sample rates is supported. To benefit from it you should modify the `plugins/samplesource/airspy/CMakeLists.txt` and change line `add_definitions(${QT_DEFINITIONS})` by `add_definitions("${QT_DEFINITIONS} -DLIBAIRSPY_DYN_RATES")`. In fact both lines are present with the last one commented out.
Be also aware that the lower rates (2.5 MS/s or 5 MS/s with modified firmware) are affected by a noise artifact so 10 MS/s is preferable for weak signal work or instrumentation. A decimation by 64 was implemented to facilitate narrow band work at 10 MS/s input rate.
BladeRF is supported through the libbladerf library that should be installed in your system for proper build of the software and operation support. Add `libbladerf-dev` to the list of dependencies to install.
If you use your own location for libbladeRF install directory you need to specify library and include locations. Example with `/opt/install/libbladerf` with the following defines on `cmake` command line:
Both Pro and Pro+ are supported with the plugins in fcdpro and fcdproplus respectively. For the Pro+ the band filter selection is not effective as it is handled by the firmware using the center frequency.
The control interface is based on qthid and has been built in the software in the fcdhid library. You don't need anything else than libusb support. Library fcdlib is used to store the constants for each dongle type.
The Pro+ has trouble starting. The sound card interface is not recognized when you just plug it in and start SDRAngel. The workaround is to start qthid then a recording program like Audacity and start recording in Audacity. Then just quit Audacity without saving and quit qthid. After this operation the Pro+ should be recognized by SDRAngel until you unplug it.
HackRF is supported through the libhackrf library that should be installed in your system for proper build of the software and operation support. Add `libhackrf-dev` to the list of dependencies to install. Please note that you will need a recent version (2015.07.2 or 2015.07.1 at least) of libhackrf that supports the sequential listing of devices so you might need to build and install the Github version: `https://github.com/mossmann/hackrf.git`. Note also that the firmware must be updated to match the library version as per instructions found in the HackRF wiki.
If you use your own location for libhackrf install directory you need to specify library and include locations. Example with `/opt/install/libhackrf` with the following defines on `cmake` command line:
HackRF is better used with a sampling rate of 4.8 MS/s and above. The 2.4 and 3.2 MS/s rates are considered experimental and are way out of specs of the ADC. You may or may not achieve acceptable results depending on the unit. A too low sampling rate will typically create ghost signals (images) and/or raise the noise floor.
RTL-SDR based dongles are supported through the librtlsdr library that should be installed in your system for proper build of the software and operation support. Add `librtlsdr-dev` to the list of dependencies to install.
If you use your own location for librtlsdr install directory you need to specify library and include locations. Example with `/opt/install/librtlsdr` with the following defines on `cmake` command line:
The file input plugin allows the playback of a recorded IQ file. Such a file is obtained using the recording feature. Press F7 to start recording and F8 to stop. The file has a fixed name `test.sdriq` created in the current directory.
Note that this plugin does not require any of the hardware support libraries nor the libusb library. It is alwasys available in the list of devices as `FileSource[0]` even if no physical device is connected.
<h2>SDRdaemon input</h2>
This is the client side of the SDRdaemon server. See the [SDRdaemon](https://github.com/f4exb/sdrdaemon) project in this Github repository. You must specify the address and UDP port to which the server connects and samples will flow into the SDRangel application (default is `127.0.0.1`port `9090`). It uses the meta data to retrieve the sample flow characteristics such as sample rate and receiveng center frequency.
There is an automated skew rate compensation in place. During rate readjustemnt streaming can be suspended or signal glitches can occur for about one second.
Note that this plugin does not require any of the hardware support libraries nor the libusb library. It is alwasys available in the list of devices as `SDRdaemon[0]` even if no physical device is connected.
- Note1 for udev rules: installed udev rules for BladeRF and HackRF are targetted at Debian or Ubuntu systems that have a plugdev group for USB hotplug devices. This is not the case in openSUSE. To make the udev rules file compatible just remove the `GROUP` parameter on all lines and change `MODE` parameter to `666`.
- Note2: A package has been created (thanks Martin!), see: [sdrangel](http://software.opensuse.org/download.html?project=home%3Amnhauke%3Asdr&package=sdrangel). It is based on the 1.0.1 release.
Tested with the 15.09 version with LXDE desktop (community supported). The exact desktop environment should not matter anyway. Since Manjaro is Arch Linux based prerequisites should be similar for Arch and all derivatives.
- Note1 for udev rules: the same as for openSUSE and Fedora applies.
- Note2: A package has been created in the AUR (thanks Mikos!), see: [sdrangel-git](https://aur.archlinux.org/packages/sdrangel-git). It is based on the `205fee6` commit of 8th December 2015.
This is new in version 1.1.3 and also experimental. Use at your own risk! This may or may not work on your machine and version of Windows. It was tested more or less successfully in native Windows 7, 8 and 10 however it does not work in a Virtualbox guest supposedly because it uses OpenGL ES 2.0 instead of the OpenGL desktop version (OpenGL 4.3) when it is running native and I think the OpenGL code in SDRangel is still not quite right to be compatible with the ES version (use of QtGLWidget instead of QtOpenGLWidget).
You should take note that the Windows scheduler is just a piece of crap and not suitable for near real time applications like SDRs. In any case you should make sure that the sdrangel.exe process does not take more than 35% of the global CPU (check this with Task Manager). Unload channel plugins if necessary. Promoting sdrangel.exe process to real time via Task Manager may or may not help but usually not. If you encounter any problem just grab a Linux installation CD or .iso file and get yourself a decent OS first. You have been warned!
There are no plugins for both flavours of Funcubes since it uses Alsa interface which is Linux exclusively. Changing for the Qt audio portable interface instead could be a solution that will be investigated in the future.
The SDRdaemon plug-in does not work mainly due to the fact that it needs an OS with a decent scheduler and Windows is definitely not this sort of OS (see my previous warning). It is kept there only to demonstrate how a crippled OS is Windows. If you want to use this plugin get yourself a decent OS first i.e. Linux.
You will have to use QtCreator and its environment for that purpose. Build was done with the `Desktop_Qt_5_5_1_MinGW_32bit` tool-chain. Some other flavors might work. Please refer to Qt documentation for Qt Creator details.
You will need to add `CONFIG+=MINGW32` to the `qmake` options. In QtCreator open the `Projects` menu (the file icon on the left bar) and in the `Build steps` section open the `qmake` details collapsed section (click on the caret icon). Choose the build configuration for which you run the build (`debug` or `release`) and add `CONFIG+=MINGW32` to the `Additional arguments` line.
<h3>Dependencies</h3>
<h4>Boost</h4>
You only really need the Boost headers so there is no need to compile Boost itself. Just download an archive from the Boost website and unpack it somewhere. In our example it will be installed in `D:\boost_1_58_0`.
You then need to update the .pro files that depend on Boost. They are:
-`sdrbase\sdrbase.pro`
-`plugins\channel\chanalyzer\chanalyzer.pro`
Just update the following line with the location of your Boost installation:
You have to download an archive of libusb that supports MinGW32 from the following [location](https://sourceforge.net/projects/libusb/files/libusb-1.0/). You will have the choice among various versions and various archive formats in each version folder. It works with version `1.0.19` and is untested with later version(s). In our example it will be installed in `D:\libusb-1.0.19`.
You then need to update the .pro files that depend on libusb. They are:
Download the source code or clone the git repository somewhere. It our example it will be installed in `D:\softs\libairspy`. Copy the header files (`*.h`) from `D:\softs\libairspy\libairspy\src` to the directory above (`D:\softs\libairspy\libairspy`).
You then need to update the .pro files that depend on libairspy. They are:
-`libairspy\libairspy.pro`. Update the following line with the location of your libiarspy installation:
Download the source code or clone the git repository somewhere. It our example it will be installed in `D:\softs\hackrf`. Copy the header files (`*.h`) from `D:\softs\hackrf\host\libhackrf\src` to the directory above (`D:\softs\hackrf\host\libhackrf`).
You then need to update the .pro files that depend on libhackrf. They are:
-`libhackrf\libhackrf.pro`. Update the following line with the location of your libhackrf installation:
You need to download the 1.5.1 version specifically that is found [here](https://github.com/Nuand/bladeRF/archive/libbladeRF_v1.5.1.zip). Unzip it somewhere say in `D:\softs` So it will be installed in `D:\softs\bladeRF-libbladeRF_v1.5.1`. If you installation directory is different you need to update the dependent .pro files:
-`libbladerf\libbladerf.pro`, update the following lines with the location of your bladeRF installation:
Basically you open the project in QtCreator by selecting the `sdrangel.windows.pro` file in the source root directory and run the `build` command from the menu. This will eventually produce the `sdrangel.exe` executable and dependent library and plug-in DLLs in various parts of the build directory. See the Installation paragraph next for details on installing all files in a single place.
Then comes the tedious part of packaging everything in a single place so that you will just have to click on `sdrangel.exe` in the file explorer to start. Please follow the next steps for this purpose.
- Make yourself an installation directory say `D:\Programs\sdrangel`
- Assume the build directory is `D:\development\build-sdrangel.windows-Desktop_Qt_5_5_1_MinGW_32bit-Release` (assuming you compiled SDRangel for release)
- Assume the source directory is `D:\development\sdrangel`
- From the Qt group in the Windows start menu select the `Qt 5.5 for Desktop (Mingw...` console box
- In this console type: `bin\windeployqt.exe --dir D:\Programs\sdrangel D:\development\build-sdrangel.windows-Desktop_Qt_5_5_1_MinGW_32bit-Release\app\release\sdrangel.exe D:\development\build-sdrangel.windows-Desktop_Qt_5_5_1_MinGW_32bit-Release\sdrbase\release\sdrbase.dll`
- This copies all dependencies for Qt but alas nothing from our software so you will have to do this yourself. In the same console cd to the root of the build directory and type:
You will need to install Zadig to get USB support for hardware devices. Please refer to [Zadig website](http://zadig.akeo.ie/) for details. Basically if you get things working for SDR# or HDSDR then it will work with SDRangel.
Despite several attempts and the presence of Android related stuff still present in the .pro files there is NO and will NEVER be any support for Android. An APK can be built but Qt fails miserably at porting applications other than its ridiculously simple examples. When multi-threading is involved a lot like in SDRangel this simply crashes at the very beginning of the application when starting the event loop.
Simply do `make install` or `sudo make install` depending on you user rights on the target installation directory. On most systems the default installation directory is `/usr/local` a custom installation directory can be specified with the `-DCMAKE_INSTALL_PREFIX=...` option on the `cmake` command line as usual with cmake.
You can uninstall the software with `make uninstall` or `sudo make uninstall` from the build directory (it needs the `install_manifest.txt` file in the same directory and is automatically created by the `make install`command). Note that this will not remove the possible empty directories.
- The message queuing model supports a n:1 connection to an object (on its input queue) and a 1:1 connection from an object (on its output queue). Assuming a different model can cause insidious disruptions.
- As the objects input and output queues can be publicly accessed there is no strict control of which objects post messages on these queues. The correct assumption is that messages can be popped from the input queue only by its holder and that messages can be pushed on the output queue only by its holder.
- Objects managing more than one message queue (input + output for example) do not work well under stress conditions. Output queue removed from sample sources but this model has to be revised throughout the application.
- Tabbed panels showing "X0" refer to the only one selected device it is meant to be populated by more tabs when it will support more than one device possibly Rx + Tx.
- Allow the handling of more than one device at the same time. For Rx/Tx devices like the BladeRF Rx and Tx appear as two logical devices with two plugin instances and a common handler for the physical device services both plugins. This effectively opens Tx support.
- Possibility to connect channels for example Rx to Tx or single Rx channel to dual Rx channel supporting MI(MO) features like 360 degree polarization detection.
You can add `-Wno-dev` on the `cmake` command line to avoid warnings.
<h2>Code organization</h2>
At the first subdirectory level `indclude` and `sdrbase` contain the common core components include and source files respectively. They are further broken down in subdirectories corresponding to a specific area:
The `plugins` subdirectory contains the associated plugins used to manage devices and channel components. Naming convention of various items depend on the usage and Rx (reception side) or Tx (transmission side) affinity. Transmission side is yet to be created.