1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-15 21:01:45 -05:00
sdrangel/plugins/channelrx/freqtracker/freqtrackersink.cpp

377 lines
12 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QTime>
#include <QTimer>
#include <QDebug>
#include "dsp/dspengine.h"
#include "dsp/dspcommands.h"
#include "dsp/fftfilt.h"
#include "util/db.h"
#include "util/stepfunctions.h"
#include "util/messagequeue.h"
#include "freqtrackerreport.h"
#include "freqtrackersink.h"
FreqTrackerSink::FreqTrackerSink() :
m_channelSampleRate(48000),
m_inputFrequencyOffset(0),
m_sinkSampleRate(48000),
m_squelchOpen(false),
m_squelchGate(0),
m_magsqSum(0.0f),
m_magsqPeak(0.0f),
m_magsqCount(0),
m_timerConnected(false),
m_tickCount(0),
m_lastCorrAbs(0),
m_avgDeltaFreq(0.0),
m_messageQueueToInput(nullptr)
{
#ifdef USE_INTERNAL_TIMER
#warning "Uses internal timer"
m_timer = new QTimer();
m_timer->start(50);
#else
m_timer = &DSPEngine::instance()->getMasterTimer();
#endif
m_magsq = 0.0;
m_rrcFilter = new fftfilt(m_settings.m_rfBandwidth / m_sinkSampleRate, 2*1024);
m_pll.computeCoefficients(0.002f, 0.5f, 10.0f); // bandwidth, damping factor, loop gain
applyChannelSettings(m_channelSampleRate, m_inputFrequencyOffset, true);
}
FreqTrackerSink::~FreqTrackerSink()
{
disconnectTimer();
#ifdef USE_INTERNAL_TIMER
m_timer->stop();
delete m_timer;
#endif
delete m_rrcFilter;
}
void FreqTrackerSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
Complex ci;
for (SampleVector::const_iterator it = begin; it != end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if (m_interpolatorDistance < 1.0f) // interpolate
{
processOneSample(ci);
while (m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci)) {
processOneSample(ci);
}
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
else // decimate
{
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
}
}
void FreqTrackerSink::processOneSample(Complex &ci)
{
fftfilt::cmplx *sideband;
int n_out;
if (m_settings.m_rrc)
{
n_out = m_rrcFilter->runFilt(ci, &sideband);
}
else
{
n_out = 1;
sideband = &ci;
}
for (int i = 0; i < n_out; i++)
{
Real re = sideband[i].real() / SDR_RX_SCALEF;
Real im = sideband[i].imag() / SDR_RX_SCALEF;
Real magsq = re*re + im*im;
m_movingAverage(magsq);
m_magsq = m_movingAverage.asDouble();
m_magsqSum += magsq;
if (magsq > m_magsqPeak)
{
m_magsqPeak = magsq;
}
m_magsqCount++;
if (m_magsq < m_squelchLevel)
{
if (m_squelchGate > 0)
{
if (m_squelchCount > 0) {
m_squelchCount--;
}
m_squelchOpen = m_squelchCount >= m_squelchGate;
}
else
{
m_squelchOpen = false;
}
}
else
{
if (m_squelchGate > 0)
{
if (m_squelchCount < 2*m_squelchGate) {
m_squelchCount++;
}
m_squelchOpen = m_squelchCount >= m_squelchGate;
}
else
{
m_squelchOpen = true;
}
}
if (m_squelchOpen)
{
if (m_settings.m_trackerType == FreqTrackerSettings::TrackerFLL) {
m_fll.feed(re, im);
} else if (m_settings.m_trackerType == FreqTrackerSettings::TrackerPLL) {
m_pll.feed(re, im);
}
}
}
}
Real FreqTrackerSink::getFrequency() const
{
if (m_settings.m_trackerType == FreqTrackerSettings::TrackerPLL) {
return (m_pll.getFreq() * m_sinkSampleRate) / (2.0 * M_PI);
} else if (m_settings.m_trackerType == FreqTrackerSettings::TrackerFLL) {
return (m_fll.getFreq() * m_sinkSampleRate) / (2.0 * M_PI);
} else {
return 0;
}
}
void FreqTrackerSink::applyChannelSettings(int sinkSampleRate, int channelSampleRate, int inputFrequencyOffset, bool force)
{
if (!m_settings.m_tracking)
{
qDebug() << "FreqTracker::applyChannelSettings:"
<< " sinkSampleRate: " << sinkSampleRate
<< " channelSampleRate: " << channelSampleRate
<< " inputFrequencyOffset: " << inputFrequencyOffset;
}
bool useInterpolator = false;
if ((m_inputFrequencyOffset != inputFrequencyOffset) ||
(m_channelSampleRate != channelSampleRate) || force)
{
m_nco.setFreq(-inputFrequencyOffset, channelSampleRate);
}
if ((m_channelSampleRate != channelSampleRate)
|| (m_sinkSampleRate != sinkSampleRate) || force)
{
m_pll.setSampleRate(sinkSampleRate);
m_fll.setSampleRate(sinkSampleRate);
useInterpolator = true;
}
m_sinkSampleRate = sinkSampleRate;
m_channelSampleRate = channelSampleRate;
m_inputFrequencyOffset = inputFrequencyOffset;
if (useInterpolator) {
setInterpolator();
}
}
void FreqTrackerSink::applySettings(const FreqTrackerSettings& settings, bool force)
{
if (!settings.m_tracking)
{
qDebug() << "FreqTrackerSink::applySettings:"
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
<< " m_rfBandwidth: " << settings.m_rfBandwidth
<< " m_log2Decim: " << settings.m_log2Decim
<< " m_squelch: " << settings.m_squelch
<< " m_rgbColor: " << settings.m_rgbColor
<< " m_title: " << settings.m_title
<< " m_alphaEMA: " << settings.m_alphaEMA
<< " m_tracking: " << settings.m_tracking
<< " m_trackerType: " << settings.m_trackerType
<< " m_pllPskOrder: " << settings.m_pllPskOrder
<< " m_rrc: " << settings.m_rrc
<< " m_rrcRolloff: " << settings.m_rrcRolloff
<< " m_streamIndex: " << settings.m_streamIndex
<< " m_useReverseAPI: " << settings.m_useReverseAPI
<< " m_reverseAPIAddress: " << settings.m_reverseAPIAddress
<< " m_reverseAPIPort: " << settings.m_reverseAPIPort
<< " m_reverseAPIDeviceIndex: " << settings.m_reverseAPIDeviceIndex
<< " m_reverseAPIChannelIndex: " << settings.m_reverseAPIChannelIndex
<< " force: " << force;
}
if ((m_settings.m_squelch != settings.m_squelch) || force) {
m_squelchLevel = CalcDb::powerFromdB(settings.m_squelch);
}
if ((m_settings.m_tracking != settings.m_tracking) || force)
{
m_avgDeltaFreq = 0.0;
m_lastCorrAbs = 0;
if (settings.m_tracking)
{
m_pll.reset();
m_fll.reset();
}
}
if ((m_settings.m_trackerType != settings.m_trackerType) || force)
{
m_lastCorrAbs = 0;
m_avgDeltaFreq = 0.0;
if (settings.m_trackerType == FreqTrackerSettings::TrackerFLL) {
m_fll.reset();
} else if (settings.m_trackerType == FreqTrackerSettings::TrackerPLL) {
m_pll.reset();
}
if (settings.m_trackerType == FreqTrackerSettings::TrackerNone) {
disconnectTimer();
} else {
connectTimer();
}
}
if ((m_settings.m_pllPskOrder != settings.m_pllPskOrder) || force)
{
if (settings.m_pllPskOrder < 32) {
m_pll.setPskOrder(settings.m_pllPskOrder);
}
}
bool useInterpolator = false;
if ((m_settings.m_rrcRolloff != settings.m_rrcRolloff)
|| (m_settings.m_rfBandwidth != settings.m_rfBandwidth)
|| (m_settings.m_squelchGate != settings.m_squelchGate) || force) {
useInterpolator = true;
}
m_settings = settings;
if (useInterpolator) {
setInterpolator();
}
}
void FreqTrackerSink::setInterpolator()
{
qDebug("FreqTrackerSink::setInterpolator: m_sinkSampleRate: %u m_channelSampleRate: %d",
m_sinkSampleRate, m_channelSampleRate);
m_interpolator.create(16, m_channelSampleRate, m_settings.m_rfBandwidth / 2.2f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) m_sinkSampleRate;
m_rrcFilter->create_rrc_filter(m_settings.m_rfBandwidth / m_sinkSampleRate, m_settings.m_rrcRolloff / 100.0);
m_squelchGate = (m_sinkSampleRate / 100) * m_settings.m_squelchGate; // gate is given in 10s of ms at channel sample rate
}
void FreqTrackerSink::connectTimer()
{
if (!m_timerConnected)
{
m_tickCount = 0;
connect(m_timer, SIGNAL(timeout()), this, SLOT(tick()));
m_timerConnected = true;
}
}
void FreqTrackerSink::disconnectTimer()
{
if (m_timerConnected)
{
disconnect(m_timer, SIGNAL(timeout()), this, SLOT(tick()));
m_timerConnected = false;
}
}
void FreqTrackerSink::tick()
{
if (getSquelchOpen()) {
m_avgDeltaFreq = m_settings.m_alphaEMA*getFrequency() + (1.0 - m_settings.m_alphaEMA)*m_avgDeltaFreq;
}
if (m_tickCount < 9)
{
m_tickCount++;
}
else
{
if ((m_settings.m_tracking) && getSquelchOpen())
{
uint32_t decayDivider = 200.0 * m_settings.m_alphaEMA;
int decayAmount = m_sinkSampleRate < decayDivider ? 1 : m_sinkSampleRate / decayDivider;
int trim = m_sinkSampleRate / 1000;
if (m_lastCorrAbs < decayAmount)
{
m_lastCorrAbs = m_avgDeltaFreq < 0 ? -m_avgDeltaFreq : m_avgDeltaFreq;
if (m_lastCorrAbs > trim)
{
FreqTrackerSettings settings = m_settings;
settings.m_inputFrequencyOffset += m_avgDeltaFreq;
if (getMessageQueueToInput())
{
FreqTrackerReport::MsgSinkFrequencyOffsetNotification *msg
= FreqTrackerReport::MsgSinkFrequencyOffsetNotification::create(settings.m_inputFrequencyOffset);
getMessageQueueToInput()->push(msg);
}
}
}
else
{
m_lastCorrAbs -= decayAmount;
}
}
m_tickCount = 0;
}
}