1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-09-21 12:26:34 -04:00
sdrangel/wdsp/fircore.cpp

238 lines
8.2 KiB
C++
Raw Normal View History

/* firmin.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2016 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "fir.hpp"
#include "fircore.hpp"
namespace WDSP {
/********************************************************************************************************
* *
* Partitioned Overlap-Save Filter Kernel *
* *
********************************************************************************************************/
void FIRCORE::plan_fircore (FIRCORE *a)
{
// must call for change in 'nc', 'size', 'out'
int i;
a->nfor = a->nc / a->size;
a->cset = 0;
a->buffidx = 0;
a->idxmask = a->nfor - 1;
a->fftin = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex));
a->fftout = new float*[a->nfor]; // (float **) malloc0 (a->nfor * sizeof (float *));
a->fmask = new float**[2]; // (float ***) malloc0 (2 * sizeof (float **));
a->fmask[0] = new float*[a->nfor]; // (float **) malloc0 (a->nfor * sizeof (float *));
a->fmask[1] = new float*[a->nfor]; // (float **) malloc0 (a->nfor * sizeof (float *));
a->maskgen = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex));
a->pcfor = new fftwf_plan[a->nfor]; // (fftwf_plan *) malloc0 (a->nfor * sizeof (fftwf_plan));
a->maskplan = new fftwf_plan*[2]; // (fftwf_plan **) malloc0 (2 * sizeof (fftwf_plan *));
a->maskplan[0] = new fftwf_plan[a->nfor]; // (fftwf_plan *) malloc0 (a->nfor * sizeof (fftwf_plan));
a->maskplan[1] = new fftwf_plan[a->nfor]; // (fftwf_plan *) malloc0 (a->nfor * sizeof (fftwf_plan));
for (i = 0; i < a->nfor; i++)
{
a->fftout[i] = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex));
a->fmask[0][i] = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex));
a->fmask[1][i] = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex));
a->pcfor[i] = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->fftin, (fftwf_complex *)a->fftout[i], FFTW_FORWARD, FFTW_PATIENT);
a->maskplan[0][i] = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->maskgen, (fftwf_complex *)a->fmask[0][i], FFTW_FORWARD, FFTW_PATIENT);
a->maskplan[1][i] = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->maskgen, (fftwf_complex *)a->fmask[1][i], FFTW_FORWARD, FFTW_PATIENT);
}
a->accum = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex));
a->crev = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->accum, (fftwf_complex *)a->out, FFTW_BACKWARD, FFTW_PATIENT);
a->masks_ready = 0;
}
void FIRCORE::calc_fircore (FIRCORE *a, int flip)
{
// call for change in frequency, rate, wintype, gain
// must also call after a call to plan_firopt()
int i;
2024-07-13 17:59:46 -04:00
if (a->mp)
FIR::mp_imp (a->nc, a->impulse, a->imp, 16, 0);
else
2024-07-16 17:15:13 -04:00
std::copy(a->impulse, a->impulse + a->nc * 2, a->imp);
2024-07-13 17:59:46 -04:00
for (i = 0; i < a->nfor; i++)
{
// I right-justified the impulse response => take output from left side of output buff, discard right side
// Be careful about flipping an asymmetrical impulse response.
2024-07-16 17:15:13 -04:00
std::copy(&(a->imp[2 * a->size * i]), &(a->imp[2 * a->size * i]) + a->size * 2, &(a->maskgen[2 * a->size]));
fftwf_execute (a->maskplan[1 - a->cset][i]);
}
2024-07-13 17:59:46 -04:00
a->masks_ready = 1;
2024-07-13 17:59:46 -04:00
if (flip)
{
a->cset = 1 - a->cset;
a->masks_ready = 0;
}
}
FIRCORE* FIRCORE::create_fircore (int size, float* in, float* out, int nc, int mp, float* impulse)
{
FIRCORE *a = new FIRCORE;
a->size = size;
a->in = in;
a->out = out;
a->nc = nc;
a->mp = mp;
// InitializeCriticalSectionAndSpinCount (&a->update, 2500);
plan_fircore (a);
a->impulse = new float[a->nc * 2]; // (float *) malloc0 (a->nc * sizeof (complex));
a->imp = new float[a->nc * 2]; // (float *) malloc0 (a->nc * sizeof (complex));
2024-07-16 17:15:13 -04:00
std::copy(impulse, impulse + a->nc * 2, a->impulse);
calc_fircore (a, 1);
return a;
}
void FIRCORE::deplan_fircore (FIRCORE *a)
{
int i;
fftwf_destroy_plan (a->crev);
delete[] (a->accum);
for (i = 0; i < a->nfor; i++)
{
delete[] (a->fftout[i]);
delete[] (a->fmask[0][i]);
delete[] (a->fmask[1][i]);
fftwf_destroy_plan (a->pcfor[i]);
fftwf_destroy_plan (a->maskplan[0][i]);
fftwf_destroy_plan (a->maskplan[1][i]);
}
delete[] (a->maskplan[0]);
delete[] (a->maskplan[1]);
delete[] (a->maskplan);
delete[] (a->pcfor);
delete[] (a->maskgen);
delete[] (a->fmask[0]);
delete[] (a->fmask[1]);
delete[] (a->fmask);
delete[] (a->fftout);
delete[] (a->fftin);
}
void FIRCORE::destroy_fircore (FIRCORE *a)
{
deplan_fircore (a);
delete[] (a->imp);
delete[] (a->impulse);
delete (a);
}
void FIRCORE::flush_fircore (FIRCORE *a)
{
int i;
2024-07-16 17:15:13 -04:00
std::fill(a->fftin, a->fftin + 2 * a->size * 2, 0);
for (i = 0; i < a->nfor; i++)
2024-07-16 17:15:13 -04:00
std::fill(a->fftout[i], a->fftout[i] + 2 * a->size * 2, 0);
a->buffidx = 0;
}
void FIRCORE::xfircore (FIRCORE *a)
{
int i, j, k;
2024-07-16 17:15:13 -04:00
std::copy(a->in, a->in + a->size * 2, &(a->fftin[2 * a->size]));
fftwf_execute (a->pcfor[a->buffidx]);
k = a->buffidx;
2024-07-16 17:15:13 -04:00
std::fill(a->accum, a->accum + 2 * a->size * 2, 0);
2024-07-13 17:59:46 -04:00
for (j = 0; j < a->nfor; j++)
{
for (i = 0; i < 2 * a->size; i++)
{
a->accum[2 * i + 0] += a->fftout[k][2 * i + 0] * a->fmask[a->cset][j][2 * i + 0] - a->fftout[k][2 * i + 1] * a->fmask[a->cset][j][2 * i + 1];
a->accum[2 * i + 1] += a->fftout[k][2 * i + 0] * a->fmask[a->cset][j][2 * i + 1] + a->fftout[k][2 * i + 1] * a->fmask[a->cset][j][2 * i + 0];
}
2024-07-13 17:59:46 -04:00
k = (k + a->idxmask) & a->idxmask;
}
2024-07-13 17:59:46 -04:00
a->buffidx = (a->buffidx + 1) & a->idxmask;
fftwf_execute (a->crev);
2024-07-16 17:15:13 -04:00
std::copy(&(a->fftin[2 * a->size]), &(a->fftin[2 * a->size]) + a->size * 2, a->fftin);
}
void FIRCORE::setBuffers_fircore (FIRCORE *a, float* in, float* out)
{
a->in = in;
a->out = out;
deplan_fircore (a);
plan_fircore (a);
calc_fircore (a, 1);
}
void FIRCORE::setSize_fircore (FIRCORE *a, int size)
{
a->size = size;
deplan_fircore (a);
plan_fircore (a);
calc_fircore (a, 1);
}
void FIRCORE::setImpulse_fircore (FIRCORE *a, float* impulse, int update)
{
2024-07-16 17:15:13 -04:00
std::copy(impulse, impulse + a->nc * 2, a->impulse);
calc_fircore (a, update);
}
void FIRCORE::setNc_fircore (FIRCORE *a, int nc, float* impulse)
{
// because of FFT planning, this will probably cause a glitch in audio if done during dataflow
deplan_fircore (a);
delete[] (a->impulse);
delete[] (a->imp);
a->nc = nc;
plan_fircore (a);
a->imp = new float[a->nc * 2]; // (float *) malloc0 (a->nc * sizeof (complex));
a->impulse = new float[a->nc * 2]; // (float *) malloc0 (a->nc * sizeof (complex));
2024-07-16 17:15:13 -04:00
std::copy(impulse, impulse + a->nc * 2, a->impulse);
calc_fircore (a, 1);
}
void FIRCORE::setMp_fircore (FIRCORE *a, int mp)
{
a->mp = mp;
calc_fircore (a, 1);
}
void FIRCORE::setUpdate_fircore (FIRCORE *a)
{
if (a->masks_ready)
{
a->cset = 1 - a->cset;
a->masks_ready = 0;
}
}
} // namespace WDSP