1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-04 16:01:14 -05:00
sdrangel/plugins/samplemimo/testmosync/testmosyncworker.cpp

360 lines
12 KiB
C++
Raw Normal View History

2020-11-10 14:32:57 -05:00
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QTimer>
#include <QDebug>
#include "dsp/samplemofifo.h"
#include "dsp/basebandsamplesink.h"
#include "testmosyncsettings.h"
#include "testmosyncworker.h"
TestMOSyncWorker::TestMOSyncWorker(QObject* parent) :
QObject(parent),
m_running(false),
m_buf(nullptr),
m_log2Interp(0),
m_throttlems(TestMOSyncSettings::m_msThrottle),
m_throttleToggle(false),
m_samplesRemainder(0),
m_samplerate(0),
m_feedSpectrumIndex(0),
m_spectrumSink(nullptr)
{
qDebug("TestMOSyncWorker::TestMOSyncWorker");
setSamplerate(48000);
}
TestMOSyncWorker::~TestMOSyncWorker()
{
qDebug("TestMOSyncWorker::~TestMOSyncWorker");
if (m_running) {
stopWork();
}
delete[] m_buf;
}
void TestMOSyncWorker::startWork()
{
qDebug("TestMOSyncWorker::startWork");
m_elapsedTimer.start();
m_running = true;
}
void TestMOSyncWorker::stopWork()
{
qDebug("TestMOSyncWorker::stopWork");
m_running = false;
}
void TestMOSyncWorker::connectTimer(const QTimer& timer)
{
qDebug() << "TestMOSyncWorker::connectTimer";
connect(&timer, SIGNAL(timeout()), this, SLOT(tick()));
}
void TestMOSyncWorker::setSamplerate(int samplerate)
{
if (samplerate != m_samplerate)
{
qDebug() << "TestMOSyncWorker::setSamplerate:"
<< " new:" << samplerate
<< " old:" << m_samplerate;
bool wasRunning = false;
if (m_running)
{
stopWork();
wasRunning = true;
}
m_samplerate = samplerate;
m_samplesChunkSize = (m_samplerate * m_throttlems) / 1000;
m_blockSize = (m_samplerate * 50) / 1000;
if (m_buf) {
delete[] m_buf;
}
m_buf = new qint16[2*m_blockSize*2];
if (wasRunning) {
startWork();
}
}
}
void TestMOSyncWorker::setLog2Interpolation(unsigned int log2Interpolation)
{
2020-11-14 13:18:41 -05:00
if (log2Interpolation > 6) {
2020-11-10 14:32:57 -05:00
return;
}
if (log2Interpolation != m_log2Interp)
{
qDebug() << "TestSinkThread::setLog2Interpolation:"
<< " new:" << log2Interpolation
<< " old:" << m_log2Interp;
bool wasRunning = false;
if (m_running)
{
stopWork();
wasRunning = true;
}
m_log2Interp = log2Interpolation;
if (wasRunning) {
startWork();
}
}
}
unsigned int TestMOSyncWorker::getLog2Interpolation() const
{
return m_log2Interp;
}
void TestMOSyncWorker::setFcPos(int fcPos)
{
m_fcPos = fcPos;
}
int TestMOSyncWorker::getFcPos() const
{
return m_fcPos;
}
void TestMOSyncWorker::callback(qint16* buf, qint32 samplesPerChannel)
{
unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End;
m_sampleFifo->readSync(samplesPerChannel/(1<<m_log2Interp), iPart1Begin, iPart1End, iPart2Begin, iPart2End);
if (iPart1Begin != iPart1End)
{
callbackPart(buf, (iPart1End - iPart1Begin)*(1<<m_log2Interp), iPart1Begin);
}
if (iPart2Begin != iPart2End)
{
unsigned int shift = (iPart1End - iPart1Begin)*(1<<m_log2Interp);
callbackPart(buf + 2*shift, (iPart2End - iPart2Begin)*(1<<m_log2Interp), iPart2Begin);
}
}
// Interpolate according to specified log2 (ex: log2=4 => decim=16). len is a number of samples (not a number of I or Q)
void TestMOSyncWorker::callbackPart(qint16* buf, qint32 nSamples, int iBegin)
{
for (unsigned int channel = 0; channel < 2; channel++)
{
SampleVector::iterator begin = m_sampleFifo->getData(channel).begin() + iBegin;
if (m_log2Interp == 0)
{
m_interpolators[channel].interpolate1(&begin, &buf[channel*2*nSamples], 2*nSamples);
}
else
{
if (m_fcPos == 0) // Infra
{
switch (m_log2Interp)
{
case 1:
m_interpolators[channel].interpolate2_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 2:
m_interpolators[channel].interpolate4_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 3:
m_interpolators[channel].interpolate8_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 4:
m_interpolators[channel].interpolate16_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 5:
m_interpolators[channel].interpolate32_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 6:
m_interpolators[channel].interpolate64_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
default:
break;
}
}
else if (m_fcPos == 1) // Supra
{
switch (m_log2Interp)
{
case 1:
m_interpolators[channel].interpolate2_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 2:
m_interpolators[channel].interpolate4_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 3:
m_interpolators[channel].interpolate8_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 4:
m_interpolators[channel].interpolate16_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 5:
m_interpolators[channel].interpolate32_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 6:
m_interpolators[channel].interpolate64_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
default:
break;
}
}
else if (m_fcPos == 2) // Center
{
switch (m_log2Interp)
{
case 1:
m_interpolators[channel].interpolate2_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 2:
m_interpolators[channel].interpolate4_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 3:
m_interpolators[channel].interpolate8_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 4:
m_interpolators[channel].interpolate16_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 5:
m_interpolators[channel].interpolate32_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 6:
m_interpolators[channel].interpolate64_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
default:
break;
}
}
}
if (channel == m_feedSpectrumIndex) {
feedSpectrum(&buf[channel*2*nSamples], nSamples*2);
}
}
}
void TestMOSyncWorker::tick()
{
if (m_running)
{
qint64 throttlems = m_elapsedTimer.restart();
if (throttlems != m_throttlems)
{
m_throttlems = throttlems;
m_samplesChunkSize = (m_samplerate * (m_throttlems+(m_throttleToggle ? 1 : 0))) / 1000;
m_throttleToggle = !m_throttleToggle;
}
unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End;
std::vector<SampleVector>& data = m_sampleFifo->getData();
m_sampleFifo->readSync(m_samplesChunkSize, iPart1Begin, iPart1End, iPart2Begin, iPart2End);
if (iPart1Begin != iPart1End) {
callbackPart(data, iPart1Begin, iPart1End);
}
if (iPart2Begin != iPart2End) {
callbackPart(data, iPart2Begin, iPart2End);
}
}
}
void TestMOSyncWorker::callbackPart(std::vector<SampleVector>& data, unsigned int iBegin, unsigned int iEnd)
{
unsigned int chunkSize = iEnd - iBegin;
for (unsigned int channel = 0; channel < 2; channel++)
{
SampleVector::iterator beginRead = data[channel].begin() + iBegin;
if (m_log2Interp == 0)
{
m_interpolators[channel].interpolate1(&beginRead, m_buf, 2*chunkSize);
if (channel == m_feedSpectrumIndex) {
feedSpectrum(m_buf, 2*chunkSize);
}
}
else
{
switch (m_log2Interp)
{
case 1:
m_interpolators[channel].interpolate2_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interp)*2);
break;
case 2:
m_interpolators[channel].interpolate4_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interp)*2);
break;
case 3:
m_interpolators[channel].interpolate8_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interp)*2);
break;
case 4:
m_interpolators[channel].interpolate16_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interp)*2);
break;
case 5:
m_interpolators[channel].interpolate32_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interp)*2);
break;
case 6:
m_interpolators[channel].interpolate64_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interp)*2);
break;
default:
break;
}
if (channel == m_feedSpectrumIndex) {
feedSpectrum(m_buf, 2*chunkSize*(1<<m_log2Interp));
}
}
}
}
void TestMOSyncWorker::feedSpectrum(int16_t *buf, unsigned int bufSize)
{
if (!m_spectrumSink) {
return;
}
m_samplesVector.allocate(bufSize/2);
Sample16 *s16Buf = (Sample16*) buf;
std::transform(
s16Buf,
s16Buf + (bufSize/2),
m_samplesVector.m_vector.begin(),
[](Sample16 s) -> Sample {
return Sample{s.m_real, s.m_imag};
}
);
m_spectrumSink->feed(m_samplesVector.m_vector.begin(), m_samplesVector.m_vector.begin() + (bufSize/2), false);
}