1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-17 22:01:45 -05:00
sdrangel/plugins/channelrx/demoddatv/leansdr/bch.h

335 lines
9.2 KiB
C
Raw Normal View History

// This file is part of LeanSDR Copyright (C) 2016-2018 <pabr@pabr.org>.
// See the toplevel README for more information.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#ifndef LEANSDR_BCH_H
#define LEANSDR_BCH_H
#include "leansdr/discrmath.h"
namespace leansdr
{
// Interface to hide the template parameters
struct bch_interface
{
virtual ~bch_interface() {}
virtual void encode(const uint8_t *msg, size_t msgbytes, uint8_t *out) = 0;
virtual int decode(uint8_t *cw, size_t cwbytes) = 0;
}; // bch_interface
// BCH error correction.
// T: Unsigned type for packing binary polynomials.
// N: Number of parity bits.
// NP: Width of the polynomials supplied.
// DP: Actual degree of the minimum polynomials (all must be same).
// TGF: Unsigned type for syndromes (must be wider than DP).
// GFTRUNCGEN: Generator polynomial for GF(2^DP), with X^DP omitted.
template <typename T, int N, int NP, int DP, typename TGF, int GFTRUNCGEN>
struct bch_engine : bch_interface
{
bch_engine(
const bitvect<T, NP> *polys,
int _npolys
) :
npolys(_npolys)
{
// Build the generator polynomial (product of polys[]).
g = 1;
for (int i = 0; i < npolys; ++i) {
g = g * polys[i];
}
// Convert the polynomials to truncated representation
// (with X^DP omitted) for use with divmod().
truncpolys = new bitvect<T, DP>[npolys];
for (int i = 0; i < npolys; ++i) {
truncpolys[i].copy(polys[i]);
}
// Check which polynomial contains each root.
// Note: The DVB-S2 polynomials are numbered so that
// syndpoly[2*i]==i, but we don't use that property.
syndpolys = new int[2 * npolys];
for (int i = 0; i < 2 * npolys; ++i)
{
int j;
for (j = 0; j < npolys; ++j)
{
if (!eval_poly(truncpolys[j], true, 1 + i)) {
break;
}
}
if (j == npolys) {
fail("Bad polynomials/root");
}
syndpolys[i] = j;
}
}
virtual ~bch_engine()
{
delete[] truncpolys;
delete[] syndpolys;
}
// Generate BCH parity bits.
void encode(const uint8_t *msg, size_t msgbytes, uint8_t *out)
{
bitvect<T, N> parity = shiftdivmod(msg, msgbytes, g);
// Output as bytes, coefficient of highest degree first
for (int i = N / 8; i--; ++out) {
*out = parity.v[i / sizeof(T)] >> ((i & (sizeof(T) - 1)) * 8);
}
}
// Decode BCH.
// Return number of bits corrected, or -1 on failure.
int decode(uint8_t *cw, size_t cwbytes)
{
//again:
bool corrupted = false;
// Divide by individual polynomials.
// TBD Maybe do in parallel, scanning cw only once.
2019-07-17 07:57:50 -04:00
bitvect<T, DP> *rem = new bitvect<T, DP>[npolys]; // npolys is not static hence 'bitvect<T, DP> rem[npolys]' does not compile in all compilers
for (int j = 0; j < npolys; ++j)
{
rem[j] = divmod(cw, cwbytes, truncpolys[j]);
}
// Compute syndromes.
2019-07-17 07:57:50 -04:00
TGF *S = new TGF[2 * npolys]; // npolys is not static hence 'TGF S[2 * npolys]' does not compile in all compilers
for (int i = 0; i < 2 * npolys; ++i)
{
// Compute R(alpha^(1+i)), exploiting the fact that
// R(x)=Q(x)g_j(X)+rem_j(X) and g_j(alpha^(1+i))=0
// for some j that we already determined.
// TBD Compute even exponents using conjugates.
S[i] = eval_poly(rem[syndpolys[i]], false, 1 + i);
if (S[i]) {
corrupted = true;
}
}
if (!corrupted)
{
delete[] S;
delete[] rem;
return 0;
}
#if 0
fprintf(stderr, "synd:");
for ( int i=0; i<2*npolys; ++i ) fprintf(stderr, " %04x", S[i]);
fprintf(stderr, "\n");
#endif
// S_j = R(alpha_j) = 0+E(alpha_j) = sum(l=1..L)((alpha^j)^i_l)
// where i_1 .. i_L are the degrees of the non-zero coefficients of E.
// S_j = sum(l=1..L)((alpha^i_l)^j) = sum(l=1..L)(X_l^j)
// Berlekamp - Massey
// http://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm
// TBD More efficient to work with logs of syndromes ?
int NN = 2 * npolys;
2019-07-17 07:57:50 -04:00
TGF *C = new TGF[NN];
C[0] = 1;
2019-07-17 07:57:50 -04:00
TGF *B = new TGF[NN];
B[0] = 1;
2019-07-17 07:57:50 -04:00
// TGF C[NN] = { crap code
// 1,
// },
// B[NN] = {
// 1,
// };
int L = 0, m = 1;
TGF b = 1;
for (int n = 0; n < NN; ++n)
{
TGF d = S[n];
for (int i = 1; i <= L; ++i) {
d = GF.add(d, GF.mul(C[i], S[n - i]));
}
if (d == 0)
{
++m;
}
else
{
TGF d_div_b = GF.mul(d, GF.inv(b));
if (2 * L <= n)
{
2019-07-17 07:57:50 -04:00
TGF *tmp = new TGF[NN]; // replaced crap code
std::copy(C, C+NN, tmp); //memcpy(tmp, C, sizeof(tmp));
for (int i = 0; i < NN - m; ++i) {
C[m + i] = GF.sub(C[m + i], GF.mul(d_div_b, B[i]));
}
L = n + 1 - L;
std::copy(tmp, tmp+NN, B); //memcpy(B, tmp, sizeof(B));
b = d;
m = 1;
2019-07-17 07:57:50 -04:00
delete[] tmp;
}
else
{
for (int i = 0; i < NN - m; ++i) {
C[m + i] = GF.sub(C[m + i], GF.mul(d_div_b, B[i]));
}
++m;
}
}
}
// L is the number of errors.
// C of degree L is the error locator polynomial (Lambda).
// C(X) = sum(l=1..L)(1-X_l*X).
#if 0
fprintf(stderr, "C[%d]=", L);
for ( int i=0; i<NN; ++i ) fprintf(stderr, " %04x", C[i]);
fprintf(stderr, "\n");
#endif
// Forney
// http://en.wikipedia.org/wiki/Forney_algorithm
// Simplified because coefficients are in GF(2).
// Find zeroes of C by exhaustive search.
// TODO Chien method
int roots_found = 0;
for (int i = 0; i < (1 << DP) - 1; ++i)
{
// Candidate root ALPHA^i
TGF v = eval_poly(C, L, i);
if (!v)
{
// ALPHA^i is a root of C, i.e. the inverse of an X_l.
int loc = (i ? (1 << DP) - 1 - i : 0); // exponent of inverse
// Reverse because cw[0..cwbytes-1] is stored MSB first
int rloc = cwbytes * 8 - 1 - loc;
if (rloc < 0)
{
// This may happen if the code is used truncated.
2019-07-17 07:57:50 -04:00
delete[] C;
delete[] B;
delete[] S;
delete[] rem;
return -1;
}
cw[rloc / 8] ^= 128 >> (rloc & 7);
++roots_found;
if (roots_found == L) {
break;
}
}
}
2019-07-17 07:57:50 -04:00
delete[] C;
delete[] B;
delete[] S;
delete[] rem;
2019-07-17 07:57:50 -04:00
if (roots_found != L) {
return -1;
}
return L;
}
private:
// Eval a GF(2)[X] polynomial at a power of ALPHA.
TGF eval_poly(const bitvect<T, DP> &poly, bool is_trunc, int rootexp)
{
TGF acc = 0;
int re = 0;
for (int i = 0; i < DP; ++i)
{
if (poly[i]) {
acc = GF.add(acc, GF.exp(re));
}
re += rootexp;
if (re >= (1 << DP) - 1) {
re -= (1 << DP) - 1; // mod 2^DP-1 incrementally
}
}
if (is_trunc) {
acc = GF.add(acc, GF.exp(re));
}
return acc;
}
// Eval a GF(2^16)[X] polynomial at a power of ALPHA.
TGF eval_poly(const TGF *poly, int deg, int rootexp)
{
TGF acc = 0;
int re = 0;
for (int i = 0; i <= deg; ++i)
{
acc = GF.add(acc, GF.mul(poly[i], GF.exp(re)));
re += rootexp;
if (re >= (1 << DP) - 1) {
re -= (1 << DP) - 1; // mod 2^DP-1 incrementally
}
}
return acc;
}
bitvect<T, DP> *truncpolys;
int npolys;
int *syndpolys;
bitvect<T, N> g;
// Finite group for syndrome calculations
gf2n<TGF, DP, 2, GFTRUNCGEN> GF;
}; // bch_engine
} // namespace leansdr
#endif // LEANSDR_BCH_H