1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-09-16 01:56:32 -04:00
sdrangel/Readme.md

167 lines
10 KiB
Markdown
Raw Normal View History

2015-08-30 20:09:10 -04:00
![SDR Angel banner](/doc/img/sdrangel_banner.png)
**SDRangel** is an Open Source Qt5/OpenGL SDR and signal analyzer frontend to various hardware.
Although it keeps the same look and feel as its parent application **SDRangelove** it is a major redesign from it hitting more than half the lines of the code. Therefore the code base cannot be kept in sync anymore with its parent. It also contains enhancements and major differences. So it should now fly with its own wings and with its own name: **SDRangel**
<h1>Source code</h1>
<h2>Repository branches</h2>
- master: the production branch
- dev: the development branch
- fix: production fixes that can't wait
2015-08-30 20:09:10 -04:00
- legacy: the modified code from the parent application [hexameron rtl-sdrangelove](https://github.com/hexameron/rtl-sdrangelove) before a major redeisign of the code was carried out and sync was lost.
<h2>Untested plugins</h2>
These plugins come from the parent code base and have been maintained so that they compile but they are not being actively tested:
- Channels:
- lora
2015-12-05 12:48:15 -05:00
- tcpsrc (although it has evolved please use the udpsrc plugin instead)
<h2>Unsupported plugins</h2>
These plugins come from the parent code base and are still present in the source tree but are not part of the build:
- Channels:
- tetra
- Sample sources:
- gnuradio
- osmosdr
- v4l-msi
- v4l-rtl
2015-09-01 02:36:10 -04:00
<h3>Gnuradio</h3>
The Gnuradio plugin source needs extra packages, including `liblog4cpp-dev libboost-system-dev gnuradio-dev libosmosdr-dev`
If you use your own location for Gnuradio install directory you need to specify library and include locations. Example with `/opt/install/gnuradio-3.7.5.1` with the following defines on `cmake` command line:
`-DGNURADIO_RUNTIME_LIBRARIES=/opt/install/gnuradio-3.7.5.1/lib/libgnuradio-runtime.so -DGNURADIO_RUNTIME_INCLUDE_DIRS=/opt/install/gnuradio-3.7.5.1/include`
<h3>osmosdr</h3>
If you use your own location for gr.osmocom install directory you need to specify library and include locations. Example with `/opt/install/gr-osmosdr` with the following defines on `cmake` command line:
`-DGNURADIO_OSMOSDR_LIBRARIES=/opt/install/gr-osmosdr/lib/libgnuradio-osmosdr.so -DGNURADIO_OSMOSDR_INCLUDE_DIRS=/opt/install/gr-osmosdr/include`
<h3>v4l-*</h3>
Use `cmake ../ -DV4L-RTL=ON` to build the Linux kernel driver for RTL-SDR (Experimental). Needs a recent kernel and libv4l2. Will need extra work to support SDRPlay. Needs `cp KERNEL_SOURCE/include/linux/compiler.h /usr/include/linux/` and `cp KERNEL_SOURCE/include/uapi/linux/videodev2.h /usr/include/uapi/linux/` and package `libv4l-dev`.
<h1>Supported hardware</h1>
2014-12-09 07:52:00 -05:00
2015-09-09 23:53:37 -04:00
<h2>Airspy</h2>
Airspy is supported through the libairspy library that should be installed in your system for proper build of the software and operation support. Add `libairspy-dev` to the list of dependencies to install.
If you use your own location for libairspy install directory you need to specify library and include locations. Example with `/opt/install/libairspy` with the following defines on `cmake` command line:
`-DLIBAIRSPY_LIBRARIES=/opt/install/libairspy/lib/libairspy.so -DLIBAIRSPY_INCLUDE_DIR=/opt/install/libairspy/include`
Please note that if you are using a recent version of libairspy (>= 1.0.6) the dynamic retrieval of sample rates is supported. To benefit from it you should modify the `plugins/samplesource/airspy/CMakeLists.txt` and change line `add_definitions(${QT_DEFINITIONS})` by `add_definitions("${QT_DEFINITIONS} -DLIBAIRSPY_DYN_RATES")`. In fact both lines are present with the last one commented out.
2015-09-09 23:53:37 -04:00
Be also aware that the lower rates (2.5 MS/s or 5 MS/s with modified firmware) are affected by a noise artifact so 10 MS/s is preferable for weak signal work or instrumentation. A decimation by 64 was implemented to facilitate narrow band work at 10 MS/s input rate.
<h2>BladeRF</h2>
BladeRF is supported through the libbladerf library that should be installed in your system for proper build of the software and operation support. Add `libbladerf-dev` to the list of dependencies to install.
If you use your own location for libbladeRF install directory you need to specify library and include locations. Example with `/opt/install/libbladerf` with the following defines on `cmake` command line:
`-DLIBBLADERF_LIBRARIES=/opt/install/libbladeRF/lib/libbladeRF.so -DLIBBLADERF_INCLUDE_DIR=/opt/install/libbladeRF/include`
2014-12-09 07:52:00 -05:00
<h2>FunCube Dongle</h2>
2015-09-08 02:28:43 -04:00
Both Pro and Pro+ are supported with the plugins in fcdpro and fcdproplus respectively. For the Pro+ the band filter selection is not effective as it is handled by the firmware using the center frequency.
The control interface is based on qthid and has been built in the software in the fcdhid library. You don't need anything else than libusb support. Library fcdlib is used to store the constants for each dongle type.
The Pro+ has trouble starting. The sound card interface is not recognized when you just plug it in and start SDRAngel. The workaround is to start qthid then a recording program like Audacity and start recording in Audacity. Then just quit Audacity without saving and quit qthid. After this operation the Pro+ should be recognized by SDRAngel until you unplug it.
<h2>HackRF</h2>
HackRF is supported through the libhackrf library that should be installed in your system for proper build of the software and operation support. Add `libhackrf-dev` to the list of dependencies to install. Please note that you will need a recent version (2015.07.2 or 2015.07.1 at least) of libhackrf that supports the sequential listing of devices so you might need to build and install the Github version: `https://github.com/mossmann/hackrf.git`. Note also that the firmware must be updated to match the library version as per instructions found in the HackRF wiki.
If you use your own location for libhackrf install directory you need to specify library and include locations. Example with `/opt/install/libhackrf` with the following defines on `cmake` command line:
`-DLIBHACKRF_LIBRARIES=/opt/install/libhackrf/lib/libhackrf.so -DLIBHACKRF_INCLUDE_DIR=/opt/install/libhackrf/include`
2015-09-27 16:44:47 -04:00
HackRF is better used with a sampling frequency over 8 MS/s. You can use the 9.6Ms/s setting that decimates nicely into integer kS/s sample rates. There are quite a few problems with narrowband work with this hardware. You may try various amplifiers settings to limit images and I/Q imbalance with varying success... The cheap RTL-SDR dongles usually do better.
<h2>RTL-SDR</h2>
RTL-SDR based dongles are supported through the librtlsdr library that should be installed in your system for proper build of the software and operation support. Add `librtlsdr-dev` to the list of dependencies to install.
If you use your own location for librtlsdr install directory you need to specify library and include locations. Example with `/opt/install/librtlsdr` with the following defines on `cmake` command line:
`-DLIBRTLSDR_LIBRARIES=/opt/install/librtlsdr/lib/librtlsdr.so -DLIBRTLSDR_INCLUDE_DIR=/opt/install/librtlsdr/include`
<h1>Software build</h1>
<h2>For Ubuntu</h2>
2014-10-30 08:31:21 -04:00
`sudo apt-get install cmake g++ pkg-config libfftw3-dev libqt5multimedia5-plugins qtmultimedia5-dev qttools5-dev qttools5-dev-tools libqt5opengl5-dev qtbase5-dev libusb-1.0 librtlsdr-dev libboost-all-dev`
`mkdir build && cd build && cmake ../ && make`
2014-12-09 14:13:33 -05:00
`librtlsdr-dev` is in the `universe` repo. (utopic 14.10 amd64.)
2014-11-05 07:34:33 -05:00
There is no installation procedure the executable is at the root of the build directory
2014-12-09 14:13:33 -05:00
<h2>For Debian</h2>
For any version of Debian you will need Qt5.
2014-12-09 14:13:33 -05:00
Debian 7 "wheezy" uses Qt4. Qt5 is available from the "wheezy-backports" repo, but this will remove Qt4. Debian 8 "jessie" uses Qt5.
For Debian Jessie or Stretch:
2014-12-09 14:13:33 -05:00
`sudo apt-get install cmake g++ pkg-config libfftw3-dev libusb-1.0-0-dev libusb-dev qt5-default qtbase5-dev qtchooser libqt5multimedia5-plugins qtmultimedia5-dev qttools5-dev qttools5-dev-tools libqt5opengl5-dev qtbase5-dev librtlsdr-dev libboost-all-dev`
2014-12-09 14:13:33 -05:00
`mkdir build && cd build && cmake ../ && make`
<h1>Known Issues</h1>
2015-02-20 03:45:57 -05:00
- The message queuing model supports a n:1 connection to an object (on its input queue) and a 1:1 connection from an object (on its output queue). Assuming a different model can cause insidious disruptions.
- As the objects input and output queues can be publicly accessed there is no strict control of which objects post messages on these queues. The correct assumption is that messages can be popped from the input queue only by its holder and that messages can be pushed on the output queue only by its holder.
2015-09-28 21:51:28 -04:00
- Objects managing more than one message queue (input + output for example) do not work well under stress conditions. Output queue removed from sample sources but this model has to be revised throughout the application.
<h1>Limitations</h1>
- Tabbed panels showing "X0" refer to the only one selected device it is meant to be populated by more tabs when it will support more than one device possibly Rx + Tx.
<h1>Features</h1>
<h2>Changes from SDRangelove</h2>
See the v1.0.1 first official relase [release notes](https://github.com/f4exb/sdrangel/releases/tag/v1.0.1)
<h2>To Do</h2>
- Allow the handling of more than one device at the same time. For Rx/Tx devices like the BladeRF Rx and Tx appear as two logical devices with two plugin instances and a common handler for the physical device services both plugins. This effectively opens Tx support.
2015-10-06 21:20:17 -04:00
- Tx channels
- Possibility to connect channels for example Rx to Tx or single Rx channel to dual Rx channel supporting MI(MO) features like 360 degree polarization detection.
2015-09-30 02:55:58 -04:00
- Specialize plugins into channel and sample source plugins since both have almost complete different requirements and only little in common
- 32 bit samples for the Channel Analyzer
- Enhance presets management (Edit, Move, Import/Export from/to human readable format like JSON).
- Headless mode based on a saved configuration in above human readable form
- Allow arbitrary sample rate for channelizers and demodulators (not multiple of 48 kHz). Prerequisite for polyphase channelizer
- Implement polyphase channelizer
2015-09-08 02:28:43 -04:00
- Level calibration
- Even more demods ...
2015-07-24 02:46:26 -04:00
<h1>Developper's notes</h1>
<h2>Build options</h2>
The release type can be specified with the `-DBUILD_TYPE` cmake option. It takes the following values:
- `RELEASE` (default): produces production release code i.e.optimized and no debug symbols
- `RELEASEWITHDBGINFO`: optimized with debug info
- `DEBUG`: unoptimized with debug info
You can specify whether or not you want to see debug messages printed out to the console with the `-DDEBUG_OUTPUT` cmake option:
- `OFF` (default): no debug output
- `ON`: debug output