1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-09 01:56:05 -05:00
sdrangel/plugins/samplemimo/testmi/testmi.cpp

873 lines
36 KiB
C++
Raw Normal View History

2020-11-10 08:28:37 -05:00
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <string.h>
#include <errno.h>
#include <QDebug>
#include <QNetworkReply>
#include <QNetworkAccessManager>
#include <QBuffer>
#include "SWGDeviceSettings.h"
#include "SWGDeviceState.h"
#include "SWGTestMISettings.h"
#include "device/deviceapi.h"
#include "dsp/dspcommands.h"
#include "dsp/dspengine.h"
#include "dsp/dspdevicemimoengine.h"
#include "dsp/devicesamplesource.h"
#include "testmiworker.h"
#include "testmi.h"
MESSAGE_CLASS_DEFINITION(TestMI::MsgConfigureTestSource, Message)
MESSAGE_CLASS_DEFINITION(TestMI::MsgStartStop, Message)
TestMI::TestMI(DeviceAPI *deviceAPI) :
m_deviceAPI(deviceAPI),
m_settings(),
m_deviceDescription("TestMI"),
m_running(false),
m_masterTimer(deviceAPI->getMasterTimer())
{
m_mimoType = MIMOAsynchronous;
m_sampleMIFifo.init(2, 96000 * 4);
m_deviceAPI->setNbSourceStreams(2);
m_networkManager = new QNetworkAccessManager();
connect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*)));
}
TestMI::~TestMI()
{
disconnect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*)));
delete m_networkManager;
if (m_running) {
stopRx();
}
}
void TestMI::destroy()
{
delete this;
}
void TestMI::init()
{
applySettings(m_settings, true);
}
bool TestMI::startRx()
{
qDebug("TestMI::startRx");
QMutexLocker mutexLocker(&m_mutex);
if (m_running) {
stopRx();
}
m_testSourceWorkers.push_back(new TestMIWorker(&m_sampleMIFifo, 0));
m_testSourceWorkerThreads.push_back(new QThread());
m_testSourceWorkers.back()->moveToThread(m_testSourceWorkerThreads.back());
m_testSourceWorkers.back()->setSamplerate(m_settings.m_streams[0].m_sampleRate);
m_testSourceWorkers.push_back(new TestMIWorker(&m_sampleMIFifo, 1));
m_testSourceWorkerThreads.push_back(new QThread());
m_testSourceWorkers.back()->moveToThread(m_testSourceWorkerThreads.back());
m_testSourceWorkers.back()->setSamplerate(m_settings.m_streams[1].m_sampleRate);
startWorkers();
mutexLocker.unlock();
applySettings(m_settings, true);
m_running = true;
return true;
}
bool TestMI::startTx()
{
qDebug("TestMI::startTx");
return false;
}
void TestMI::stopRx()
{
qDebug("TestMI::stopRx");
QMutexLocker mutexLocker(&m_mutex);
stopWorkers();
std::vector<TestMIWorker*>::iterator itW = m_testSourceWorkers.begin();
std::vector<QThread*>::iterator itT = m_testSourceWorkerThreads.begin();
for (; (itW != m_testSourceWorkers.end()) && (itT != m_testSourceWorkerThreads.end()); ++itW, ++itT)
{
(*itW)->deleteLater();
delete (*itT);
}
m_testSourceWorkers.clear();
m_testSourceWorkerThreads.clear();
m_running = false;
}
void TestMI::stopTx()
{
qDebug("TestMI::stopTx");
}
void TestMI::startWorkers()
{
std::vector<TestMIWorker*>::iterator itW = m_testSourceWorkers.begin();
std::vector<QThread*>::iterator itT = m_testSourceWorkerThreads.begin();
for (; (itW != m_testSourceWorkers.end()) && (itT != m_testSourceWorkerThreads.end()); ++itW, ++itT)
{
(*itW)->startWork();
(*itT)->start();
}
}
void TestMI::stopWorkers()
{
std::vector<TestMIWorker*>::iterator itW = m_testSourceWorkers.begin();
std::vector<QThread*>::iterator itT = m_testSourceWorkerThreads.begin();
for (; (itW != m_testSourceWorkers.end()) && (itT != m_testSourceWorkerThreads.end()); ++itW, ++itT)
{
(*itW)->stopWork();
(*itT)->quit();
(*itT)->wait();
}
}
QByteArray TestMI::serialize() const
{
return m_settings.serialize();
}
bool TestMI::deserialize(const QByteArray& data)
{
bool success = true;
if (!m_settings.deserialize(data))
{
m_settings.resetToDefaults();
success = false;
}
MsgConfigureTestSource* message = MsgConfigureTestSource::create(m_settings, true);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue)
{
MsgConfigureTestSource* messageToGUI = MsgConfigureTestSource::create(m_settings, true);
m_guiMessageQueue->push(messageToGUI);
}
return success;
}
const QString& TestMI::getDeviceDescription() const
{
return m_deviceDescription;
}
int TestMI::getSourceSampleRate(int index) const
{
if (index < (int) m_settings.m_streams.size()) {
return m_settings.m_streams[index].m_sampleRate/(1<<m_settings.m_streams[index].m_log2Decim);
} else {
return 0;
}
}
quint64 TestMI::getSourceCenterFrequency(int index) const
{
if (index < (int) m_settings.m_streams.size()) {
return m_settings.m_streams[index].m_centerFrequency;
} else {
return 0;
}
}
void TestMI::setSourceCenterFrequency(qint64 centerFrequency, int index)
{
TestMISettings settings = m_settings; // note: calls copy constructor
if (index < (int) settings.m_streams.size())
{
settings.m_streams[index].m_centerFrequency = centerFrequency;
MsgConfigureTestSource* message = MsgConfigureTestSource::create(settings, false);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue)
{
MsgConfigureTestSource* messageToGUI = MsgConfigureTestSource::create(settings, false);
m_guiMessageQueue->push(messageToGUI);
}
}
}
bool TestMI::handleMessage(const Message& message)
{
if (MsgConfigureTestSource::match(message))
{
MsgConfigureTestSource& conf = (MsgConfigureTestSource&) message;
qDebug() << "TestMI::handleMessage: MsgConfigureTestSource";
bool success = applySettings(conf.getSettings(), conf.getForce());
if (!success)
{
qDebug("TestMI::handleMessage: config error");
}
return true;
}
else if (MsgStartStop::match(message))
{
MsgStartStop& cmd = (MsgStartStop&) message;
qDebug() << "TestMI::handleMessage: MsgStartStop: " << (cmd.getStartStop() ? "start" : "stop");
if (cmd.getStartStop())
{
if (m_deviceAPI->initDeviceEngine())
{
m_deviceAPI->startDeviceEngine();
}
}
else
{
m_deviceAPI->stopDeviceEngine();
}
if (m_settings.m_useReverseAPI) {
webapiReverseSendStartStop(cmd.getStartStop());
}
return true;
}
else
{
return false;
}
}
bool TestMI::applySettings(const TestMISettings& settings, bool force)
{
DeviceSettingsKeys deviceSettingsKeys;
qDebug() << "TestMI::applySettings: common: "
<< " m_useReverseAPI: " << settings.m_useReverseAPI
<< " m_reverseAPIAddress: " << settings.m_reverseAPIAddress
<< " m_reverseAPIPort: " << settings.m_reverseAPIPort
<< " m_reverseAPIDeviceIndex: " << settings.m_reverseAPIDeviceIndex;
for (unsigned int istream = 0; (istream < m_settings.m_streams.size()) && (istream < settings.m_streams.size()); istream++)
{
qDebug() << "TestMI::applySettings: stream #" << istream << ": "
<< " m_centerFrequency: " << settings.m_streams[istream].m_centerFrequency
<< " m_frequencyShift: " << settings.m_streams[istream].m_frequencyShift
<< " m_sampleRate: " << settings.m_streams[istream].m_sampleRate
<< " m_log2Decim: " << settings.m_streams[istream].m_log2Decim
<< " m_fcPos: " << settings.m_streams[istream].m_fcPos
<< " m_amplitudeBits: " << settings.m_streams[istream].m_amplitudeBits
<< " m_sampleSizeIndex: " << settings.m_streams[istream].m_sampleSizeIndex
<< " m_autoCorrOptions: " << settings.m_streams[istream].m_autoCorrOptions
<< " m_dcFactor: " << settings.m_streams[istream].m_dcFactor
<< " m_iFactor: " << settings.m_streams[istream].m_iFactor
<< " m_qFactor: " << settings.m_streams[istream].m_qFactor
<< " m_phaseImbalance: " << settings.m_streams[istream].m_phaseImbalance
<< " m_modulation: " << settings.m_streams[istream].m_modulation
<< " m_amModulation: " << settings.m_streams[istream].m_amModulation
<< " m_fmDeviation: " << settings.m_streams[istream].m_fmDeviation
<< " m_modulationTone: " << settings.m_streams[istream].m_modulationTone;
deviceSettingsKeys.m_streamsSettingsKeys.push_back(QList<QString>());
QList<QString>& reverseAPIKeys = deviceSettingsKeys.m_streamsSettingsKeys.back();
if ((m_settings.m_streams[istream].m_autoCorrOptions != settings.m_streams[istream].m_autoCorrOptions) || force)
{
reverseAPIKeys.append("autoCorrOptions");
switch(settings.m_streams[istream].m_autoCorrOptions)
{
case TestMIStreamSettings::AutoCorrDC:
m_deviceAPI->configureCorrections(true, false, istream);
break;
case TestMIStreamSettings::AutoCorrDCAndIQ:
m_deviceAPI->configureCorrections(true, true, istream);
break;
case TestMIStreamSettings::AutoCorrNone:
default:
m_deviceAPI->configureCorrections(false, false, istream);
break;
}
}
if ((m_settings.m_streams[istream].m_sampleRate != settings.m_streams[istream].m_sampleRate) || force)
{
reverseAPIKeys.append("sampleRate");
if ((istream < m_testSourceWorkers.size()) && (m_testSourceWorkers[istream]))
{
m_testSourceWorkers[istream]->setSamplerate(settings.m_streams[istream].m_sampleRate);
qDebug("TestMI::applySettings: thread on stream: %u sample rate set to %d",
istream, settings.m_streams[istream].m_sampleRate);
}
}
if ((m_settings.m_streams[istream].m_log2Decim != settings.m_streams[istream].m_log2Decim) || force)
{
reverseAPIKeys.append("log2Decim");
if ((istream < m_testSourceWorkers.size()) && (m_testSourceWorkers[istream]))
{
m_testSourceWorkers[istream]->setLog2Decimation(settings.m_streams[istream].m_log2Decim);
qDebug("TestMI::applySettings: thread on stream: %u set decimation to %d",
istream, (1<<settings.m_streams[istream].m_log2Decim));
}
}
if ((m_settings.m_streams[istream].m_centerFrequency != settings.m_streams[istream].m_centerFrequency)
|| (m_settings.m_streams[istream].m_fcPos != settings.m_streams[istream].m_fcPos)
|| (m_settings.m_streams[istream].m_frequencyShift != settings.m_streams[istream].m_frequencyShift)
|| (m_settings.m_streams[istream].m_sampleRate != settings.m_streams[istream].m_sampleRate)
|| (m_settings.m_streams[istream].m_log2Decim != settings.m_streams[istream].m_log2Decim) || force)
{
reverseAPIKeys.append("centerFrequency");
reverseAPIKeys.append("fcPos");
reverseAPIKeys.append("frequencyShift");
qint64 deviceCenterFrequency = DeviceSampleSource::calculateDeviceCenterFrequency(
settings.m_streams[istream].m_centerFrequency,
0, // no transverter mode
settings.m_streams[istream].m_log2Decim,
(DeviceSampleSource::fcPos_t) settings.m_streams[istream].m_fcPos,
settings.m_streams[istream].m_sampleRate,
DeviceSampleSource::FrequencyShiftScheme::FSHIFT_STD,
false);
int frequencyShift = settings.m_streams[istream].m_frequencyShift;
quint32 devSampleRate = settings.m_streams[istream].m_sampleRate;
if (settings.m_streams[istream].m_log2Decim != 0)
{
frequencyShift += DeviceSampleSource::calculateFrequencyShift(
settings.m_streams[istream].m_log2Decim,
(DeviceSampleSource::fcPos_t) settings.m_streams[istream].m_fcPos,
settings.m_streams[istream].m_sampleRate,
DeviceSampleSource::FSHIFT_STD);
}
if ((istream < m_testSourceWorkers.size()) && (m_testSourceWorkers[istream]))
{
m_testSourceWorkers[istream]->setFcPos((int) settings.m_streams[istream].m_fcPos);
m_testSourceWorkers[istream]->setFrequencyShift(frequencyShift);
qDebug() << "TestMI::applySettings:"
<< " thread on istream: " << istream
<< " center freq: " << settings.m_streams[istream].m_centerFrequency << " Hz"
<< " device center freq: " << deviceCenterFrequency << " Hz"
<< " device sample rate: " << devSampleRate << "Hz"
<< " Actual sample rate: " << devSampleRate/(1<<m_settings.m_streams[istream].m_log2Decim) << "Hz"
<< " f shift: " << settings.m_streams[istream].m_frequencyShift;
}
}
if ((m_settings.m_streams[istream].m_amplitudeBits != settings.m_streams[istream].m_amplitudeBits) || force)
{
reverseAPIKeys.append("amplitudeBits");
if ((istream < m_testSourceWorkers.size()) && (m_testSourceWorkers[istream])) {
m_testSourceWorkers[istream]->setAmplitudeBits(settings.m_streams[istream].m_amplitudeBits);
}
}
if ((m_settings.m_streams[istream].m_dcFactor != settings.m_streams[istream].m_dcFactor) || force)
{
reverseAPIKeys.append("dcFactor");
if ((istream < m_testSourceWorkers.size()) && (m_testSourceWorkers[istream])) {
m_testSourceWorkers[istream]->setDCFactor(settings.m_streams[istream].m_dcFactor);
}
}
if ((m_settings.m_streams[istream].m_iFactor != settings.m_streams[istream].m_iFactor) || force)
{
reverseAPIKeys.append("iFactor");
if ((istream < m_testSourceWorkers.size()) && (m_testSourceWorkers[istream])) {
m_testSourceWorkers[istream]->setIFactor(settings.m_streams[istream].m_iFactor);
}
}
if ((m_settings.m_streams[istream].m_qFactor != settings.m_streams[istream].m_qFactor) || force)
{
reverseAPIKeys.append("qFactor");
if ((istream < m_testSourceWorkers.size()) && (m_testSourceWorkers[istream])) {
m_testSourceWorkers[istream]->setQFactor(settings.m_streams[istream].m_qFactor);
}
}
if ((m_settings.m_streams[istream].m_phaseImbalance != settings.m_streams[istream].m_phaseImbalance) || force)
{
reverseAPIKeys.append("phaseImbalance");
if ((istream < m_testSourceWorkers.size()) && (m_testSourceWorkers[istream])) {
m_testSourceWorkers[istream]->setPhaseImbalance(settings.m_streams[istream].m_phaseImbalance);
}
}
if ((m_settings.m_streams[istream].m_sampleSizeIndex != settings.m_streams[istream].m_sampleSizeIndex) || force)
{
reverseAPIKeys.append("sampleSizeIndex");
if ((istream < m_testSourceWorkers.size()) && (m_testSourceWorkers[istream])) {
m_testSourceWorkers[istream]->setBitSize(settings.m_streams[istream].m_sampleSizeIndex);
}
}
if ((m_settings.m_streams[istream].m_sampleRate != settings.m_streams[istream].m_sampleRate)
|| (m_settings.m_streams[istream].m_centerFrequency != settings.m_streams[istream].m_centerFrequency)
|| (m_settings.m_streams[istream].m_log2Decim != settings.m_streams[istream].m_log2Decim)
|| (m_settings.m_streams[istream].m_fcPos != settings.m_streams[istream].m_fcPos) || force)
{
int sampleRate = settings.m_streams[istream].m_sampleRate/(1<<settings.m_streams[istream].m_log2Decim);
DSPMIMOSignalNotification *engineNotif = new DSPMIMOSignalNotification(
sampleRate, settings.m_streams[istream].m_centerFrequency, true, istream);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(engineNotif);
}
if ((m_settings.m_streams[istream].m_modulationTone != settings.m_streams[istream].m_modulationTone) || force)
{
reverseAPIKeys.append("modulationTone");
if ((istream < m_testSourceWorkers.size()) && (m_testSourceWorkers[istream])) {
m_testSourceWorkers[istream]->setToneFrequency(settings.m_streams[istream].m_modulationTone * 10);
}
}
if ((m_settings.m_streams[istream].m_modulation != settings.m_streams[istream].m_modulation) || force)
{
reverseAPIKeys.append("modulation");
if ((istream < m_testSourceWorkers.size()) && (m_testSourceWorkers[istream]))
{
m_testSourceWorkers[istream]->setModulation(settings.m_streams[istream].m_modulation);
if (settings.m_streams[istream].m_modulation == TestMIStreamSettings::ModulationPattern0) {
m_testSourceWorkers[istream]->setPattern0();
} else if (settings.m_streams[istream].m_modulation == TestMIStreamSettings::ModulationPattern1) {
m_testSourceWorkers[istream]->setPattern1();
} else if (settings.m_streams[istream].m_modulation == TestMIStreamSettings::ModulationPattern2) {
m_testSourceWorkers[istream]->setPattern2();
}
}
}
if ((m_settings.m_streams[istream].m_amModulation != settings.m_streams[istream].m_amModulation) || force)
{
reverseAPIKeys.append("amModulation");
if ((istream < m_testSourceWorkers.size()) && (m_testSourceWorkers[istream])) {
m_testSourceWorkers[istream]->setAMModulation(settings.m_streams[istream].m_amModulation / 100.0f);
}
}
if ((m_settings.m_streams[istream].m_fmDeviation != settings.m_streams[istream].m_fmDeviation) || force)
{
reverseAPIKeys.append("fmDeviation");
if ((istream < m_testSourceWorkers.size()) && (m_testSourceWorkers[istream])) {
m_testSourceWorkers[istream]->setFMDeviation(settings.m_streams[istream].m_fmDeviation * 100.0f);
}
}
} // for each stream index
if (settings.m_useReverseAPI)
{
qDebug("TestMI::applySettings: call webapiReverseSendSettings");
bool fullUpdate = ((m_settings.m_useReverseAPI != settings.m_useReverseAPI) && settings.m_useReverseAPI) ||
(m_settings.m_reverseAPIAddress != settings.m_reverseAPIAddress) ||
(m_settings.m_reverseAPIPort != settings.m_reverseAPIPort) ||
(m_settings.m_reverseAPIDeviceIndex != settings.m_reverseAPIDeviceIndex);
webapiReverseSendSettings(deviceSettingsKeys, settings, fullUpdate || force);
}
m_settings = settings;
return true;
}
int TestMI::webapiRunGet(
int subsystemIndex,
SWGSDRangel::SWGDeviceState& response,
QString& errorMessage)
{
if (subsystemIndex == 0)
{
m_deviceAPI->getDeviceEngineStateStr(*response.getState()); // Rx only
return 200;
}
else
{
errorMessage = QString("Subsystem index invalid: expect 0 (Rx) only");
return 404;
}
}
int TestMI::webapiRun(
bool run,
int subsystemIndex,
SWGSDRangel::SWGDeviceState& response,
QString& errorMessage)
{
if (subsystemIndex == 0)
{
m_deviceAPI->getDeviceEngineStateStr(*response.getState()); // Rx only
MsgStartStop *message = MsgStartStop::create(run);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue) // forward to GUI if any
{
MsgStartStop *msgToGUI = MsgStartStop::create(run);
m_guiMessageQueue->push(msgToGUI);
}
return 200;
}
else
{
errorMessage = QString("Subsystem index invalid: expect 0 (Rx) only");
return 404;
}
}
int TestMI::webapiSettingsGet(
SWGSDRangel::SWGDeviceSettings& response,
QString& errorMessage)
{
(void) errorMessage;
response.setTestMiSettings(new SWGSDRangel::SWGTestMISettings());
response.getTestMiSettings()->init();
webapiFormatDeviceSettings(response, m_settings);
return 200;
}
int TestMI::webapiSettingsPutPatch(
bool force,
const QStringList& deviceSettingsKeys,
SWGSDRangel::SWGDeviceSettings& response, // query + response
QString& errorMessage)
{
(void) errorMessage;
TestMISettings settings = m_settings;
webapiUpdateDeviceSettings(settings, deviceSettingsKeys, response);
MsgConfigureTestSource *msg = MsgConfigureTestSource::create(settings, force);
m_inputMessageQueue.push(msg);
if (m_guiMessageQueue) // forward to GUI if any
{
MsgConfigureTestSource *msgToGUI = MsgConfigureTestSource::create(settings, force);
m_guiMessageQueue->push(msgToGUI);
}
webapiFormatDeviceSettings(response, settings);
return 200;
}
void TestMI::webapiUpdateDeviceSettings(
TestMISettings& settings,
const QStringList& deviceSettingsKeys,
SWGSDRangel::SWGDeviceSettings& response)
{
if (deviceSettingsKeys.contains("streams"))
{
QList<SWGSDRangel::SWGTestMiStreamSettings*> *streamsSettings = response.getTestMiSettings()->getStreams();
QList<SWGSDRangel::SWGTestMiStreamSettings*>::const_iterator it = streamsSettings->begin();
for (; it != streamsSettings->end(); ++it)
{
int istream = (*it)->getStreamIndex();
if (deviceSettingsKeys.contains(QString("streams[%1].centerFrequency").arg(istream))) {
settings.m_streams[istream].m_centerFrequency = (*it)->getCenterFrequency();
}
if (deviceSettingsKeys.contains(QString("streams[%1].frequencyShift").arg(istream))) {
settings.m_streams[istream].m_frequencyShift = (*it)->getFrequencyShift();
}
if (deviceSettingsKeys.contains(QString("streams[%1].sampleRate").arg(istream))) {
settings.m_streams[istream].m_sampleRate = (*it)->getSampleRate();
}
if (deviceSettingsKeys.contains(QString("streams[%1].log2Decim").arg(istream))) {
settings.m_streams[istream].m_log2Decim = (*it)->getLog2Decim();
}
if (deviceSettingsKeys.contains(QString("streams[%1].fcPos").arg(istream))) {
int fcPos = (*it)->getFcPos();
fcPos = fcPos < 0 ? 0 : fcPos > 2 ? 2 : fcPos;
settings.m_streams[istream].m_fcPos = (TestMIStreamSettings::fcPos_t) fcPos;
}
if (deviceSettingsKeys.contains(QString("streams[%1].sampleSizeIndex").arg(istream))) {
int sampleSizeIndex = (*it)->getSampleSizeIndex();
sampleSizeIndex = sampleSizeIndex < 0 ? 0 : sampleSizeIndex > 1 ? 2 : sampleSizeIndex;
settings.m_streams[istream].m_sampleSizeIndex = sampleSizeIndex;
}
if (deviceSettingsKeys.contains(QString("streams[%1].amplitudeBits").arg(istream))) {
settings.m_streams[istream].m_amplitudeBits = (*it)->getAmplitudeBits();
}
if (deviceSettingsKeys.contains(QString("streams[%1].autoCorrOptions").arg(istream))) {
int autoCorrOptions = (*it)->getAutoCorrOptions();
autoCorrOptions = autoCorrOptions < 0 ? 0 : autoCorrOptions >= TestMIStreamSettings::AutoCorrLast ? TestMIStreamSettings::AutoCorrLast-1 : autoCorrOptions;
settings.m_streams[istream].m_sampleSizeIndex = (TestMIStreamSettings::AutoCorrOptions) autoCorrOptions;
}
if (deviceSettingsKeys.contains(QString("streams[%1].modulation").arg(istream))) {
int modulation = (*it)->getModulation();
modulation = modulation < 0 ? 0 : modulation >= TestMIStreamSettings::ModulationLast ? TestMIStreamSettings::ModulationLast-1 : modulation;
settings.m_streams[istream].m_modulation = (TestMIStreamSettings::Modulation) modulation;
}
if (deviceSettingsKeys.contains(QString("streams[%1].modulationTone").arg(istream))) {
settings.m_streams[istream].m_modulationTone = (*it)->getModulationTone();
}
if (deviceSettingsKeys.contains(QString("streams[%1].amModulation").arg(istream))) {
settings.m_streams[istream].m_amModulation = (*it)->getAmModulation();
};
if (deviceSettingsKeys.contains(QString("streams[%1].fmDeviation").arg(istream))) {
settings.m_streams[istream].m_fmDeviation = (*it)->getFmDeviation();
};
if (deviceSettingsKeys.contains(QString("streams[%1].dcFactor").arg(istream))) {
settings.m_streams[istream].m_dcFactor = (*it)->getDcFactor();
};
if (deviceSettingsKeys.contains(QString("streams[%1].iFactor").arg(istream))) {
settings.m_streams[istream].m_iFactor = (*it)->getIFactor();
};
if (deviceSettingsKeys.contains(QString("streams[%1].qFactor").arg(istream))) {
settings.m_streams[istream].m_qFactor = (*it)->getQFactor();
};
if (deviceSettingsKeys.contains(QString("streams[%1].phaseImbalance").arg(istream))) {
settings.m_streams[istream].m_phaseImbalance = (*it)->getPhaseImbalance();
};
}
}
if (deviceSettingsKeys.contains("useReverseAPI")) {
settings.m_useReverseAPI = response.getTestMiSettings()->getUseReverseApi() != 0;
}
if (deviceSettingsKeys.contains("reverseAPIAddress")) {
settings.m_reverseAPIAddress = *response.getTestMiSettings()->getReverseApiAddress();
}
if (deviceSettingsKeys.contains("reverseAPIPort")) {
settings.m_reverseAPIPort = response.getTestMiSettings()->getReverseApiPort();
}
if (deviceSettingsKeys.contains("reverseAPIDeviceIndex")) {
settings.m_reverseAPIDeviceIndex = response.getTestMiSettings()->getReverseApiDeviceIndex();
}
}
void TestMI::webapiFormatDeviceSettings(SWGSDRangel::SWGDeviceSettings& response, const TestMISettings& settings)
{
std::vector<TestMIStreamSettings>::const_iterator it = settings.m_streams.begin();
int istream = 0;
for (; it != settings.m_streams.end(); ++it, istream++)
{
QList<SWGSDRangel::SWGTestMiStreamSettings*> *streams = response.getTestMiSettings()->getStreams();
streams->append(new SWGSDRangel::SWGTestMiStreamSettings);
streams->back()->init();
streams->back()->setStreamIndex(istream);
streams->back()->setCenterFrequency(it->m_centerFrequency);
streams->back()->setFrequencyShift(it->m_frequencyShift);
streams->back()->setSampleRate(it->m_sampleRate);
streams->back()->setLog2Decim(it->m_log2Decim);
streams->back()->setFcPos((int) it->m_fcPos);
streams->back()->setSampleSizeIndex((int) it->m_sampleSizeIndex);
streams->back()->setAmplitudeBits(it->m_amplitudeBits);
streams->back()->setAutoCorrOptions((int) it->m_autoCorrOptions);
streams->back()->setModulation((int) it->m_modulation);
streams->back()->setModulationTone(it->m_modulationTone);
streams->back()->setAmModulation(it->m_amModulation);
streams->back()->setFmDeviation(it->m_fmDeviation);
streams->back()->setDcFactor(it->m_dcFactor);
streams->back()->setIFactor(it->m_iFactor);
streams->back()->setQFactor(it->m_qFactor);
streams->back()->setPhaseImbalance(it->m_phaseImbalance);
}
response.getTestMiSettings()->setUseReverseApi(settings.m_useReverseAPI ? 1 : 0);
if (response.getTestMiSettings()->getReverseApiAddress()) {
*response.getTestMiSettings()->getReverseApiAddress() = settings.m_reverseAPIAddress;
} else {
response.getTestMiSettings()->setReverseApiAddress(new QString(settings.m_reverseAPIAddress));
}
response.getTestMiSettings()->setReverseApiPort(settings.m_reverseAPIPort);
response.getTestMiSettings()->setReverseApiDeviceIndex(settings.m_reverseAPIDeviceIndex);
}
void TestMI::webapiReverseSendSettings(const DeviceSettingsKeys& deviceSettingsKeys, const TestMISettings& settings, bool force)
{
SWGSDRangel::SWGDeviceSettings *swgDeviceSettings = new SWGSDRangel::SWGDeviceSettings();
swgDeviceSettings->setDirection(0); // single Rx
swgDeviceSettings->setOriginatorIndex(m_deviceAPI->getDeviceSetIndex());
swgDeviceSettings->setDeviceHwType(new QString("TestSource"));
swgDeviceSettings->setTestMiSettings(new SWGSDRangel::SWGTestMISettings());
SWGSDRangel::SWGTestMISettings *swgTestMISettings = swgDeviceSettings->getTestMiSettings();
// transfer data that has been modified. When force is on transfer all data except reverse API data
QList<QList<QString>>::const_iterator it = deviceSettingsKeys.m_streamsSettingsKeys.begin();
int istream = 0;
for (; it != deviceSettingsKeys.m_streamsSettingsKeys.end(); ++it, istream++)
{
if ((it->size() > 0) || force)
{
QList<SWGSDRangel::SWGTestMiStreamSettings*> *streams = swgTestMISettings->getStreams();
streams->append(new SWGSDRangel::SWGTestMiStreamSettings);
streams->back()->init();
streams->back()->setStreamIndex(istream);
const QList<QString>& streamSettingsKeys = *it;
if (streamSettingsKeys.contains("centerFrequency") || force) {
streams->back()->setCenterFrequency(settings.m_streams[istream].m_centerFrequency);
}
if (streamSettingsKeys.contains("frequencyShift") || force) {
streams->back()->setFrequencyShift(settings.m_streams[istream].m_frequencyShift);
}
if (streamSettingsKeys.contains("sampleRate") || force) {
streams->back()->setSampleRate(settings.m_streams[istream].m_sampleRate);
}
if (streamSettingsKeys.contains("log2Decim") || force) {
streams->back()->setLog2Decim(settings.m_streams[istream].m_log2Decim);
}
if (streamSettingsKeys.contains("fcPos") || force) {
streams->back()->setFcPos((int) settings.m_streams[istream].m_fcPos);
}
if (streamSettingsKeys.contains("sampleSizeIndex") || force) {
streams->back()->setSampleSizeIndex(settings.m_streams[istream].m_sampleSizeIndex);
}
if (streamSettingsKeys.contains("amplitudeBits") || force) {
streams->back()->setAmplitudeBits(settings.m_streams[istream].m_amplitudeBits);
}
if (streamSettingsKeys.contains("autoCorrOptions") || force) {
streams->back()->setAutoCorrOptions((int) settings.m_streams[istream].m_sampleSizeIndex);
}
if (streamSettingsKeys.contains("modulation") || force) {
streams->back()->setModulation((int) settings.m_streams[istream].m_modulation);
}
if (streamSettingsKeys.contains("modulationTone")) {
streams->back()->setModulationTone(settings.m_streams[istream].m_modulationTone);
}
if (streamSettingsKeys.contains("amModulation") || force) {
streams->back()->setAmModulation(settings.m_streams[istream].m_amModulation);
};
if (streamSettingsKeys.contains("fmDeviation") || force) {
streams->back()->setFmDeviation(settings.m_streams[istream].m_fmDeviation);
};
if (streamSettingsKeys.contains("dcFactor") || force) {
streams->back()->setDcFactor(settings.m_streams[istream].m_dcFactor);
};
if (streamSettingsKeys.contains("iFactor") || force) {
streams->back()->setIFactor(settings.m_streams[istream].m_iFactor);
};
if (streamSettingsKeys.contains("qFactor") || force) {
streams->back()->setQFactor(settings.m_streams[istream].m_qFactor);
};
if (streamSettingsKeys.contains("phaseImbalance") || force) {
streams->back()->setPhaseImbalance(settings.m_streams[istream].m_phaseImbalance);
};
}
}
QString channelSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/device/settings")
.arg(settings.m_reverseAPIAddress)
.arg(settings.m_reverseAPIPort)
.arg(settings.m_reverseAPIDeviceIndex);
m_networkRequest.setUrl(QUrl(channelSettingsURL));
m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json");
QBuffer *buffer = new QBuffer();
buffer->open((QBuffer::ReadWrite));
buffer->write(swgDeviceSettings->asJson().toUtf8());
buffer->seek(0);
// Always use PATCH to avoid passing reverse API settings
QNetworkReply *reply = m_networkManager->sendCustomRequest(m_networkRequest, "PATCH", buffer);
buffer->setParent(reply);
delete swgDeviceSettings;
}
void TestMI::webapiReverseSendStartStop(bool start)
{
SWGSDRangel::SWGDeviceSettings *swgDeviceSettings = new SWGSDRangel::SWGDeviceSettings();
swgDeviceSettings->setDirection(0); // single Rx
swgDeviceSettings->setOriginatorIndex(m_deviceAPI->getDeviceSetIndex());
swgDeviceSettings->setDeviceHwType(new QString("TestSource"));
QString channelSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/device/run")
.arg(m_settings.m_reverseAPIAddress)
.arg(m_settings.m_reverseAPIPort)
.arg(m_settings.m_reverseAPIDeviceIndex);
m_networkRequest.setUrl(QUrl(channelSettingsURL));
m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json");
QBuffer *buffer = new QBuffer();
buffer->open((QBuffer::ReadWrite));
buffer->write(swgDeviceSettings->asJson().toUtf8());
buffer->seek(0);
QNetworkReply *reply;
if (start) {
reply = m_networkManager->sendCustomRequest(m_networkRequest, "POST", buffer);
} else {
reply = m_networkManager->sendCustomRequest(m_networkRequest, "DELETE", buffer);
}
buffer->setParent(reply);
delete swgDeviceSettings;
}
void TestMI::networkManagerFinished(QNetworkReply *reply)
{
QNetworkReply::NetworkError replyError = reply->error();
if (replyError)
{
qWarning() << "TestMI::networkManagerFinished:"
<< " error(" << (int) replyError
<< "): " << replyError
<< ": " << reply->errorString();
}
else
{
QString answer = reply->readAll();
answer.chop(1); // remove last \n
qDebug("TestMI::networkManagerFinished: reply:\n%s", answer.toStdString().c_str());
}
reply->deleteLater();
}