1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-16 05:11:49 -05:00
sdrangel/sdrbase/util/radiosonde.cpp

711 lines
20 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2022 Jon Beniston, M7RCE <jon@beniston.com> //
// //
// Based on code and docs by einergehtnochrein, rs1729 and bazjo //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QDateTime>
#include <QVector3D>
#include "util/radiosonde.h"
#include "util/coordinates.h"
RS41Frame::RS41Frame(const QByteArray ba) :
m_statusValid(false),
m_batteryVoltage(0.0),
m_pcbTemperature(0),
m_humiditySensorHeating(0),
m_transmitPower(0),
m_maxSubframeNumber(0),
m_subframeNumber(0),
m_measValid(false),
m_gpsInfoValid(false),
m_posValid(false),
m_latitude(0.0),
m_longitude(0.0),
m_height(0.0),
m_bytes(ba),
m_pressureCalibrated(false),
2022-03-01 12:48:36 -05:00
m_temperatureCalibrated(false),
m_humidityTemperatureCalibrated(false),
m_humidityCalibrated(false)
{
int length = getFrameLength(ba[RS41_OFFSET_FRAME_TYPE]);
for (int i = RS41_OFFSET_BLOCK_0; i < length; )
{
uint8_t blockID = ba[i+0];
uint8_t blockLength = ba[i+1];
switch (blockID)
{
case RS41_ID_STATUS:
decodeStatus(ba.mid(i+2, blockLength));
break;
case RS41_ID_MEAS:
decodeMeas(ba.mid(i+2, blockLength));
break;
case RS41_ID_GPSINFO:
decodeGPSInfo(ba.mid(i+2, blockLength));
break;
case RS41_ID_GPSRAW:
break;
case RS41_ID_GPSPOS:
decodeGPSPos(ba.mid(i+2, blockLength));
break;
case RS41_ID_EMPTY:
break;
}
i += 2 + blockLength + 2; // ID, length, data, CRC
}
}
QString RS41Frame::toHex()
{
return m_bytes.toHex();
}
uint16_t RS41Frame::getUInt16(const QByteArray ba, int offset) const
{
return (ba[offset] & 0xff)
| ((ba[offset+1] & 0xff) << 8);
}
uint32_t RS41Frame::getUInt24(const QByteArray ba, int offset) const
{
return (ba[offset] & 0xff)
| ((ba[offset+1] & 0xff) << 8)
| ((ba[offset+2] & 0xff) << 16);
}
uint32_t RS41Frame::getUInt32(const QByteArray ba, int offset) const
{
return (ba[offset] & 0xff)
| ((ba[offset+1] & 0xff) << 8)
| ((ba[offset+2] & 0xff) << 16)
| ((ba[offset+3] & 0xff) << 24);
}
void RS41Frame::decodeStatus(const QByteArray ba)
{
m_statusValid = true;
m_frameNumber = getUInt16(ba, 0);
m_serial = QString(ba.mid(0x2, 8));
m_batteryVoltage = (ba[0xa] & 0xff) / 10.0;
QStringList phases = {"Ground", "Ascent", "0x2", "Descent"};
int phase = ba[0xd] & 0x3;
m_flightPhase = phases[phase];
m_batteryStatus = (ba[0xe] & 0x10) == 0 ? "OK" : "Low";
m_pcbTemperature = (ba[0x10] & 0xff);
m_humiditySensorHeating = getUInt16(ba, 0x13);
m_transmitPower = ba[0x15] & 0xff;
m_maxSubframeNumber = ba[0x16] & 0xff;
m_subframeNumber = ba[0x17] & 0xff;
m_subframe = ba.mid(0x18, 16);
}
void RS41Frame::decodeMeas(const QByteArray ba)
{
m_measValid = true;
m_tempMain = getUInt24(ba, 0x0);
m_tempRef1 = getUInt24(ba, 0x3);
m_tempRef2 = getUInt24(ba, 0x6);
m_humidityMain = getUInt24(ba, 0x9);
m_humidityRef1 = getUInt24(ba, 0xc);
m_humidityRef2 = getUInt24(ba, 0xf);
m_humidityTempMain = getUInt24(ba, 0x12);
m_humidityTempRef1 = getUInt24(ba, 0x15);
m_humidityTempRef2 = getUInt24(ba, 0x18);
m_pressureMain = getUInt24(ba, 0x1b);
m_pressureRef1 = getUInt24(ba, 0x1e);
m_pressureRef2 = getUInt24(ba, 0x21);
m_pressureTemp = getUInt16(ba, 0x26) / 100.0f;
}
void RS41Frame::decodeGPSInfo(const QByteArray ba)
{
m_gpsInfoValid = true;
uint16_t gpsWeek = getUInt16(ba, 0x0);
uint32_t gpsTimeOfWeek = getUInt32(ba, 0x2); // Milliseconds
QDateTime epoch(QDate(1980, 1, 6), QTime(0, 0, 0), Qt::OffsetFromUTC, 18); // GPS doesn't count leap seconds
m_gpsDateTime = epoch.addDays(gpsWeek*7).addMSecs(gpsTimeOfWeek);
}
void RS41Frame::decodeGPSPos(const QByteArray ba)
{
m_satellitesUsed = ba[0x12] & 0xff;
if (m_satellitesUsed > 0)
{
m_posValid = true;
int32_t ecefX = (int32_t)getUInt32(ba, 0x0);
int32_t ecefY = (int32_t)getUInt32(ba, 0x4);
int32_t ecefZ = (int32_t)getUInt32(ba, 0x8);
// Convert cm to m
// Convert to latitude, longitude and altitude
Coordinates::ecefToGeodetic(ecefX / 100.0, ecefY / 100.0, ecefZ / 100.0, m_latitude, m_longitude, m_height);
int32_t velX = (int16_t)getUInt16(ba, 0xc);
int32_t velY = (int16_t)getUInt16(ba, 0xe);
int32_t velZ = (int16_t)getUInt16(ba, 0x10);
// Convert cm/s to m/s
// Calculate speed / heading
Coordinates::ecefVelToSpeedHeading(m_latitude, m_longitude, velX / 100.0, velY / 100.0, velZ / 100.0, m_speed, m_verticalRate, m_heading);
}
}
// Find the water vapor saturation pressure for a given temperature.
float waterVapourSaturationPressure(float tCelsius)
{
// Convert to Kelvin
float T = tCelsius + 273.15f;
// Correction
T = - 0.4931358f
+ (1.0f + 4.6094296e-3f) * T
- 1.3746454e-5f * T * T
+ 1.2743214e-8f * T * T * T;
// Hyland and Wexler equation
float p = expf(-5800.2206f / T
+ 1.3914993f
+ 6.5459673f * logf(T)
- 4.8640239e-2f * T
+ 4.1764768e-5f * T * T
- 1.4452093e-8f * T * T * T);
// Scale result to hPa
return p / 100.0f;
}
float calcT(int f, int f1, int f2, float r1, float r2, float *poly, float *cal)
{
/*float g = (float)(f2-f1) / (r2-r1); // gain
float Rb = (f1*r2-f2*r1) / (float)(f2-f1); // offset
float Rc = f/g - Rb;
float R = Rc * cal[0];
float T = (poly[0] + poly[1]*R + poly[2]*R*R + cal[1])*(1.0 + cal[2]);
return T;
*/
// Convert integer measurement to scale factor
float s = (f-f1)/(float)(f2-f1);
// Calculate resistance (scale between two reference resistors)
float rUncal = r1 + (r2 - r1) * s;
float r = rUncal * cal[0];
// Convert resistance to temperature
float tUncal = poly[0] + poly[1]*r + poly[2]*r*r;
// Correct temperature (5th order polynomial)
float tCal = 0.0f;
for (int i = 6; i > 0; i--)
{
tCal *= tUncal;
tCal += cal[i];
}
tCal += tUncal;
return tCal;
}
float calcU(int cInt, int cMin, int cMax, float c1, float c2, float T, float HT, float *capCal, float *matrixCal)
{
//qDebug() << "cInt " << cInt << " cMin " << cMin << " cMax " << cMax << " c1 " << c1 << " c2 " << c2 << " T " << T << " HT " << HT << " capCal[0] " << capCal[0] << " capCal[1] " << capCal[1];
/*
float a0 = 7.5f;
float a1 = 350.0f / capCal[0];
float fh = (cInt-cMin) / (float)(cMax-cMin);
float rh = 100.0f * (a1*fh - a0);
float T0 = 0.0f;
float T1 = -25.0f;
rh += T0 - T/5.5;
if (T < T1) {
rh *= 1.0 + (T1-T)/90.0;
}
if (rh < 0.0) {
rh = 0.0;
}
if (rh > 100.0) {
rh = 100.0;
}
if (T < -273.0) {
rh = -1.0;
}
qDebug() << "RH old method: " << rh; */
// Convert integer measurement to scale factor
float s = (cInt - cMin) / (float)(cMax-cMin);
// Calculate capacitance (scale between two reference caps)
float cUncal = c1 + (c2 - c1) * s;
float cCal = (cUncal / capCal[0] - 1.0f) * capCal[1];
float uUncal = 0.0f;
float t = (HT - 20.0f) / 180.0f;
float f1 = 1.0f;
for (int i = 0; i < 7; i++)
{
float f2 = 1.0;
for (int j = 0; j < 6; j++)
{
uUncal += f1 * f2 * matrixCal[i*6+j];
f2 *= t;
}
f1 *= cCal;
}
// Adjust for difference in outside air temperature and the humidty sensor temperature
float uCal = uUncal * waterVapourSaturationPressure(T) / waterVapourSaturationPressure(HT);
// Ensure within range of 0..100%
uCal = std::min(100.0f, uCal);
uCal = std::max(0.0f, uCal);
return uCal;
}
float calcP(int f, int f1, int f2, float pressureTemp, float *cal)
{
// Convert integer measurement to scale factor
float s = (f-f1) / (float)(f2-f1);
float t = pressureTemp;
float t2 = t * t;
float t3 = t2 * t;
float poly[6];
poly[0] = cal[0] + cal[7] * t + cal[11] * t2 + cal[15] * t3;
poly[1] = cal[1] + cal[8] * t + cal[12] * t2 + cal[16] * t3;
poly[2] = cal[2] + cal[9] * t + cal[13] * t2 + cal[17] * t3;
poly[3] = cal[3] + cal[10] * t + cal[14] * t2;
poly[4] = cal[4];
poly[5] = cal[5];
float p = cal[6] / s;
float p2 = p * p;
float p3 = p2 * p;
float p4 = p3 * p;
float p5 = p4 * p;
float pCal = poly[0] + poly[1] * p + poly[2] * p2 + poly[3] * p3 + poly[4] * p4 + poly[5] * p5;
return pCal;
}
float RS41Frame::getPressureFloat(const RS41Subframe *subframe)
{
if (!m_pressureCalibrated) {
calcPressure(subframe);
}
return m_pressure;
}
QString RS41Frame::getPressureString(const RS41Subframe *subframe)
{
if (!m_pressureCalibrated) {
calcPressure(subframe);
}
return m_pressureString;
}
float RS41Frame::getTemperatureFloat(const RS41Subframe *subframe)
{
if (!m_temperatureCalibrated) {
calcTemperature(subframe);
}
return m_temperature;
}
QString RS41Frame::getTemperatureString(const RS41Subframe *subframe)
{
if (!m_temperatureCalibrated) {
calcTemperature(subframe);
}
return m_temperatureString;
}
void RS41Frame::calcPressure(const RS41Subframe *subframe)
{
float cal[18];
if (m_pressureMain == 0)
{
m_pressure = 0.0f;
m_pressureString = "";
return;
}
m_pressureCalibrated = subframe->getPressureCal(cal);
m_pressure = calcP(m_pressureMain, m_pressureRef1, m_pressureRef2, m_pressureTemp, cal);
// RS41 pressure resolution of 0.01hPa
m_pressureString = QString::number(m_pressure, 'f', 2);
if (!m_pressureCalibrated) {
m_pressureString = m_pressureString + "U"; // U for uncalibrated
}
}
void RS41Frame::calcTemperature(const RS41Subframe *subframe)
{
float r1, r2;
float poly[3];
float cal[7];
if (m_tempMain == 0)
{
m_temperature = 0.0f;
m_temperatureString = "";
return;
}
m_temperatureCalibrated = subframe->getTempCal(r1, r2, poly, cal);
m_temperature = calcT(m_tempMain, m_tempRef1, m_tempRef2,
r1, r2,
poly, cal);
// RS41 temperature resolution of 0.01C
m_temperatureString = QString::number(m_temperature, 'f', 2);
if (!m_temperatureCalibrated) {
m_temperatureString = m_temperatureString + "U"; // U for uncalibrated
}
}
float RS41Frame::getHumidityTemperatureFloat(const RS41Subframe *subframe)
{
if (!m_humidityTemperatureCalibrated) {
calcHumidityTemperature(subframe);
}
return m_humidityTemperature;
}
void RS41Frame::calcHumidityTemperature(const RS41Subframe *subframe)
{
float r1, r2;
float poly[3];
float cal[7];
if (m_humidityTempMain == 0)
{
m_humidityTemperature = 0.0f;
return;
}
m_humidityTemperatureCalibrated = subframe->getHumidityTempCal(r1, r2, poly, cal);
m_humidityTemperature = calcT(m_humidityTempMain, m_humidityTempRef1, m_humidityTempRef2,
r1, r2,
poly, cal);
}
float RS41Frame::getHumidityFloat(const RS41Subframe *subframe)
{
if (!m_humidityCalibrated) {
calcHumidity(subframe);
}
return m_humidity;
}
QString RS41Frame::getHumidityString(const RS41Subframe *subframe)
{
if (!m_humidityCalibrated) {
calcHumidity(subframe);
}
return m_humidityString;
}
void RS41Frame::calcHumidity(const RS41Subframe *subframe)
{
float c1, c2;
float capCal[2];
float calMatrix[7*6];
if (m_humidityMain == 0)
{
m_humidity = 0.0f;
m_humidityString = "";
return;
}
float temperature = getTemperatureFloat(subframe);
float humidityTemperature = getHumidityTemperatureFloat(subframe);
bool humidityCalibrated = subframe->getHumidityCal(c1, c2, capCal, calMatrix);
m_humidityCalibrated = m_temperatureCalibrated && m_humidityTemperatureCalibrated && humidityCalibrated;
m_humidity = calcU(m_humidityMain, m_humidityRef1, m_humidityRef2,
c1, c2,
temperature, humidityTemperature,
capCal, calMatrix);
// RS41 humidity resolution of 0.1%
m_humidityString = QString::number(m_humidity, 'f', 1);
if (!m_humidityCalibrated) {
m_humidityString = m_humidityString + "U"; // U for uncalibrated
}
}
RS41Frame* RS41Frame::decode(const QByteArray ba)
{
return new RS41Frame(ba);
}
int RS41Frame::getFrameLength(int frameType)
{
return frameType == RS41_FRAME_STD ? RS41_LENGTH_STD : RS41_LENGTH_EXT;
}
RS41Subframe::RS41Subframe() :
m_subframe(51*16, (char)0)
{
for (int i = 0; i < 51; i++) {
m_subframeValid[i] = false;
}
}
// Update subframe with subframe data from received message
void RS41Subframe::update(RS41Frame *message)
{
m_subframeValid[message->m_subframeNumber] = true;
int offset = message->m_subframeNumber * 16;
for (int i = 0; i < 16; i++) {
m_subframe[offset+i] = message->m_subframe[i];
}
}
// Indicate if we have all the required temperature calibration data
bool RS41Subframe::hasTempCal() const
{
return m_subframeValid[3] && m_subframeValid[4] && m_subframeValid[5] && m_subframeValid[6] && m_subframeValid[7];
}
// Get temperature calibration data
// r1, r2 - Temperature reference resistances (Ohms)
// poly - Resistance to temperature 2nd order polynomial
bool RS41Subframe::getTempCal(float &r1, float &r2, float *poly, float *cal) const
{
if (hasTempCal())
{
r1 = getFloat(0x3d);
r2 = getFloat(0x41);
for (int i = 0; i < 3; i++) {
poly[i] = getFloat(0x4d + i * 4);
}
for (int i = 0; i < 7; i++) {
cal[i] = getFloat(0x59 + i * 4);
}
return true;
}
else
{
// Use default values
r1 = 750.0f;
r2 = 1100.0f;
poly[0] = -243.9108f;
poly[1] = 0.187654f;
poly[2] = 8.2e-06f;
cal[0] = 1.279928f;
for (int i = 1; i < 7; i++) {
cal[i] = 0.0f;
}
return false;
}
}
// Indicate if we have all the required humidty calibration data
bool RS41Subframe::hasHumidityCal() const
{
return m_subframeValid[4] && m_subframeValid[7]
&& m_subframeValid[8] && m_subframeValid[9] && m_subframeValid[0xa] && m_subframeValid[0xb]
&& m_subframeValid[0xc] && m_subframeValid[0xd] && m_subframeValid[0xe] && m_subframeValid[0xf]
&& m_subframeValid[0x10] && m_subframeValid[0x11] && m_subframeValid[0x12];
}
// Get humidty calibration data
bool RS41Subframe::getHumidityCal(float &c1, float &c2, float *capCal, float *calMatrix) const
{
if (hasHumidityCal())
{
c1 = getFloat(0x45);
c2 = getFloat(0x49);
for (int i = 0; i < 2; i++) {
capCal[i] = getFloat(0x75 + i * 4);
}
for (int i = 0; i < 7*6; i++) {
calMatrix[i] = getFloat(0x7d + i * 4);
}
return true;
}
else
{
// Use default values
c1 = 0.0f;
c2 = 47.0f;
capCal[0] = 45.9068f;
capCal[1] = 4.92924f;
static const float calMatrixDefault[7*6] = {
-0.002586f, -2.24367f, 9.92294f, -3.61913f, 54.3554f, -93.3012f,
51.7056f, 38.8709f, 209.437f, -378.437f, 9.17326f, 19.5301f,
150.257f, -150.907f, -280.315f, 182.293f, 3247.39f, 4083.65f,
-233.568f, 345.375f, 200.217f, -388.246f, -3617.66f, 0.0f,
225.841f, -233.051f, 0.0f, 0.0f, 0.0f, 0.0f,
-93.0635f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f
};
std::copy(calMatrixDefault, calMatrixDefault + 7*6, calMatrix);
return false;
}
}
// Indicate if we have all the required humidty temperature sensor calibration data
bool RS41Subframe::hasHumidityTempCal() const
{
return m_subframeValid[3] && m_subframeValid[4] && m_subframeValid[0x12] && m_subframeValid[0x13] && m_subframeValid[0x14];
}
// Get humidty temperature sensor calibration data
bool RS41Subframe::getHumidityTempCal(float &r1, float &r2, float *poly, float *cal) const
{
if (hasHumidityTempCal())
{
r1 = getFloat(0x3d);
r2 = getFloat(0x41);
for (int i = 0; i < 3; i++) {
poly[i] = getFloat(0x125 + i * 4);
}
for (int i = 0; i < 7; i++) {
cal[i] = getFloat(0x131 + i * 4);
}
return true;
}
else
{
// Use default values
r1 = 750.0f;
r2 = 1100.0f;
poly[0] = -243.9108f;
poly[1] = 0.187654f;
poly[2] = 8.2e-06f;
cal[0] = 1.279928f;
for (int i = 1; i < 7; i++) {
cal[i] = 0.0f;
}
return false;
}
}
// Indicate if we have all the required pressure calibration data
bool RS41Subframe::hasPressureCal() const
{
return m_subframeValid[0x25] && m_subframeValid[0x26] && m_subframeValid[0x27]
&& m_subframeValid[0x28] && m_subframeValid[0x29] && m_subframeValid[0x2a];
}
// Get pressure calibration data
bool RS41Subframe::getPressureCal(float *cal) const
{
if (hasPressureCal())
{
for (int i = 0; i < 18; i++) {
cal[i] = getFloat(0x25e + i * 4);
}
return true;
}
else
{
// Use default values - TODO: Need to obtain from inflight device
for (int i = 0; i < 18; i++) {
cal[i] = 0.0f;
}
return false;
}
}
// Get type of RS41. E.g. "RS41-SGP"
QString RS41Subframe::getType() const
{
if (m_subframeValid[0x21] & m_subframeValid[0x22])
{
return QString(m_subframe.mid(0x218, 10)).trimmed();
}
else
{
return "RS41";
}
}
// Get transmission frequency in MHz
QString RS41Subframe::getFrequencyMHz() const
{
if (m_subframeValid[0])
{
uint8_t lower = m_subframe[2] & 0xff;
uint8_t upper = m_subframe[3] & 0xff;
float freq = 400.0 + (upper + (lower / 255.0)) * 0.04;
return QString::number(freq, 'f', 3);
}
else
{
return "";
}
}
QString RS41Subframe::getBurstKillStatus() const
{
if (m_subframeValid[2])
{
uint8_t status = m_subframe[0x2b];
return status == 0 ? "Inactive" : "Active";
}
else
{
return "";
}
}
// Seconds until power-off once active
QString RS41Subframe::getBurstKillTimer() const
{
if (m_subframeValid[0x31])
{
uint16_t secs = getUInt16(0x316);
QTime t(0, 0, 0);
t = t.addSecs(secs);
return t.toString("hh:mm:ss");
}
else
{
return "";
}
}
uint16_t RS41Subframe::getUInt16(int offset) const
{
return (m_subframe[offset] & 0xff) | ((m_subframe[offset+1] & 0xff) << 8);
}
float RS41Subframe::getFloat(int offset) const
{
float f;
// Assumes host is little endian with 32-bit float
memcpy(&f, m_subframe.data() + offset, 4);
return f;
}