1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-16 13:21:50 -05:00
sdrangel/plugins/channelrx/demodadsb/adsbdemodsink.cpp

303 lines
12 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// Copyright (C) 2020 Jon Beniston, M7RCE //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <complex.h>
2020-10-27 13:03:54 -04:00
#include <cmath>
#include <QTime>
#include <QDebug>
#include "util/stepfunctions.h"
#include "util/db.h"
#include "util/crc.h"
#include "audio/audiooutput.h"
#include "dsp/dspengine.h"
#include "dsp/dspcommands.h"
#include "dsp/devicesamplemimo.h"
#include "device/deviceapi.h"
#include "adsbdemodreport.h"
#include "adsbdemodsink.h"
#include "adsb.h"
ADSBDemodSink::ADSBDemodSink() :
m_channelSampleRate(6000000),
m_channelFrequencyOffset(0),
m_sampleIdx(0),
m_sampleCount(0),
m_skipCount(0),
m_correlationThresholdLinear(0.0),
m_magsq(0.0f),
m_magsqSum(0.0f),
m_magsqPeak(0.0f),
m_magsqCount(0),
m_messageQueueToGUI(nullptr),
m_sampleBuffer(nullptr)
{
applySettings(m_settings, true);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
}
ADSBDemodSink::~ADSBDemodSink()
{
delete m_sampleBuffer;
}
void ADSBDemodSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
Complex ci;
for (SampleVector::const_iterator it = begin; it != end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if (m_interpolatorDistance == 1.0f)
{
processOneSample(c);
}
else if (m_interpolatorDistance < 1.0f) // interpolate
{
while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
else // decimate
{
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
}
}
void ADSBDemodSink::processOneSample(Complex &ci)
{
Real sample;
double magsqRaw = ci.real()*ci.real() + ci.imag()*ci.imag();
Real magsq = magsqRaw / (SDR_RX_SCALED*SDR_RX_SCALED);
m_movingAverage(magsq);
m_magsqSum += magsq;
if (magsq > m_magsqPeak)
{
m_magsqPeak = magsq;
}
m_magsqCount++;
sample = magsq;
m_sampleBuffer[m_sampleCount] = sample;
m_sampleCount++;
// Do we have enough data for a frame
if ((m_sampleCount >= m_totalSamples) && (m_skipCount == 0))
{
int startIdx = m_sampleCount - m_totalSamples;
// Correlate received signal with expected preamble
// chip+ indexes are 0, 2, 7, 9
// we correlate only over 6 symbols so that the number of zero chips is twice the
// number of one chips - empirically this is enough to get good correlation
Real premableCorrelationOnes = 0.0;
Real preambleCorrelationZeros = 0.0;
for (int i = 0; i < m_samplesPerChip; i++)
{
premableCorrelationOnes += m_sampleBuffer[startIdx + 0*m_samplesPerChip + i];
preambleCorrelationZeros += m_sampleBuffer[startIdx + 1*m_samplesPerChip + i];
premableCorrelationOnes += m_sampleBuffer[startIdx + 2*m_samplesPerChip + i];
preambleCorrelationZeros += m_sampleBuffer[startIdx + 3*m_samplesPerChip + i];
preambleCorrelationZeros += m_sampleBuffer[startIdx + 4*m_samplesPerChip + i];
preambleCorrelationZeros += m_sampleBuffer[startIdx + 5*m_samplesPerChip + i];
preambleCorrelationZeros += m_sampleBuffer[startIdx + 6*m_samplesPerChip + i];
premableCorrelationOnes += m_sampleBuffer[startIdx + 7*m_samplesPerChip + i];
preambleCorrelationZeros += m_sampleBuffer[startIdx + 8*m_samplesPerChip + i];
premableCorrelationOnes += m_sampleBuffer[startIdx + 9*m_samplesPerChip + i];
preambleCorrelationZeros += m_sampleBuffer[startIdx + 10*m_samplesPerChip + i];
preambleCorrelationZeros += m_sampleBuffer[startIdx + 11*m_samplesPerChip + i];
}
// If the correlation is exactly 0, it's probably no signal
if ((premableCorrelationOnes > m_correlationThresholdLinear) &&
(preambleCorrelationZeros < 2.0*m_correlationThresholdLinear) &&
(premableCorrelationOnes != 0.0f))
{
// Skip over preamble
startIdx += m_settings.m_samplesPerBit*ADS_B_PREAMBLE_BITS;
// Demodulate waveform to bytes
unsigned char data[ADS_B_ES_BYTES];
int byteIdx = 0;
int currentBit;
unsigned char currentByte = 0;
bool adsbOnly = true;
int df;
for (int bit = 0; bit < ADS_B_ES_BITS; bit++)
{
// PPM (Pulse position modulation) - Each bit spreads to two chips, 1->10, 0->01
// Determine if bit is 1 or 0, by seeing which chip has largest combined energy over the sampling period
Real oneSum = 0.0f;
Real zeroSum = 0.0f;
for (int i = 0; i < m_samplesPerChip; i++)
{
oneSum += m_sampleBuffer[startIdx+i];
zeroSum += m_sampleBuffer[startIdx+m_samplesPerChip+i];
}
currentBit = oneSum > zeroSum;
startIdx += m_settings.m_samplesPerBit;
// Convert bit to bytes - MSB first
currentByte |= currentBit << (7-(bit & 0x7));
if ((bit & 0x7) == 0x7)
{
data[byteIdx++] = currentByte;
currentByte = 0;
// Don't try to demodulate any further, if this isn't an ADS-B frame
// to help reduce processing overhead
if (adsbOnly && (bit == 7))
{
df = ((data[0] >> 3) & ADS_B_DF_MASK);
if ((df != 17) && (df != 18))
break;
}
}
}
// Is ADS-B?
df = ((data[0] >> 3) & ADS_B_DF_MASK);
if ((df == 17) || (df == 18))
{
crcadsb crc;
//int icao = (data[1] << 16) | (data[2] << 8) | data[3]; // ICAO aircraft address
int parity = (data[11] << 16) | (data[12] << 8) | data[13]; // Parity / CRC
crc.calculate(data, ADS_B_ES_BYTES-3);
if (parity == crc.get())
{
// Got a valid frame
// Don't try to re-demodulate the same frame
m_skipCount = (ADS_B_ES_BITS+ADS_B_PREAMBLE_BITS)*ADS_B_CHIPS_PER_BIT*m_samplesPerChip;
// Pass to GUI
if (getMessageQueueToGUI())
{
ADSBDemodReport::MsgReportADSB *msg = ADSBDemodReport::MsgReportADSB::create(
QByteArray((char*)data, sizeof(data)),
premableCorrelationOnes,
preambleCorrelationZeros/2.0);
getMessageQueueToGUI()->push(msg);
}
// Pass to worker
if (getMessageQueueToWorker())
{
ADSBDemodReport::MsgReportADSB *msg = ADSBDemodReport::MsgReportADSB::create(
QByteArray((char*)data, sizeof(data)),
premableCorrelationOnes,
preambleCorrelationZeros/2.0);
getMessageQueueToWorker()->push(msg);
}
}
}
}
}
if (m_skipCount > 0)
m_skipCount--;
if (m_sampleCount >= 2*m_totalSamples)
{
// Copy second half of buffer to first
memcpy(&m_sampleBuffer[0], &m_sampleBuffer[m_totalSamples], m_totalSamples*sizeof(Real));
m_sampleCount = m_totalSamples;
}
m_sampleIdx++;
}
void ADSBDemodSink::init(int samplesPerBit)
{
if (m_sampleBuffer)
delete m_sampleBuffer;
m_totalSamples = samplesPerBit*(ADS_B_PREAMBLE_BITS+ADS_B_ES_BITS);
m_samplesPerChip = samplesPerBit/ADS_B_CHIPS_PER_BIT;
m_sampleBuffer = new Real[2*m_totalSamples];
}
void ADSBDemodSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "ADSBDemodSink::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset;
if ((channelFrequencyOffset != m_channelFrequencyOffset) ||
(channelSampleRate != m_channelSampleRate) || force)
{
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
}
if ((channelSampleRate != m_channelSampleRate) || force)
{
m_interpolator.create(16, channelSampleRate, m_settings.m_rfBandwidth / 2.2);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) channelSampleRate / (Real) (ADS_B_BITS_PER_SECOND * m_settings.m_samplesPerBit);
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
}
void ADSBDemodSink::applySettings(const ADSBDemodSettings& settings, bool force)
{
qDebug() << "ADSBDemodSink::applySettings:"
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
<< " m_rfBandwidth: " << settings.m_rfBandwidth
<< " m_correlationThreshold: " << settings.m_correlationThreshold
<< " m_samplesPerBit: " << settings.m_samplesPerBit
<< " force: " << force;
if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth)
|| (settings.m_samplesPerBit != m_settings.m_samplesPerBit) || force)
{
m_interpolator.create(16, m_channelSampleRate, settings.m_rfBandwidth / 2.2);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) (ADS_B_BITS_PER_SECOND * settings.m_samplesPerBit);
}
if ((settings.m_samplesPerBit != m_settings.m_samplesPerBit) || force)
{
init(settings.m_samplesPerBit);
}
if ((settings.m_correlationThreshold != m_settings.m_correlationThreshold) || force) {
m_correlationThresholdLinear = CalcDb::powerFromdB(m_settings.m_correlationThreshold);
}
m_settings = settings;
}