1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-17 22:01:45 -05:00
sdrangel/plugins/feature/startracker/startrackergui.cpp

1500 lines
54 KiB
C++
Raw Normal View History

2021-01-13 15:51:38 -05:00
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2021 Jon Beniston, M7RCE //
// Copyright (C) 2020 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <cmath>
#include <algorithm>
2021-01-13 15:51:38 -05:00
#include <QMessageBox>
#include <QLineEdit>
#include <QRegExp>
#include <QNetworkAccessManager>
#include <QNetworkReply>
2021-01-13 15:51:38 -05:00
#include <QtCharts/QChartView>
#include <QtCharts/QLineSeries>
#include <QtCharts/QDateTimeAxis>
#include <QtCharts/QValueAxis>
#include "feature/featureuiset.h"
#include "feature/featurewebapiutils.h"
#include "gui/basicfeaturesettingsdialog.h"
#include "mainwindow.h"
#include "device/deviceuiset.h"
#include "util/units.h"
#include "util/astronomy.h"
#include "ui_startrackergui.h"
#include "startracker.h"
#include "startrackergui.h"
#include "startrackerreport.h"
#include "startrackersettingsdialog.h"
// Linear extrapolation
static double extrapolate(double x0, double y0, double x1, double y1, double x)
{
return y0 + ((x-x0)/(x1-x0)) * (y1-y0);
}
// Linear interpolation
static double interpolate(double x0, double y0, double x1, double y1, double x)
{
return (y0*(x1-x) + y1*(x-x0)) / (x1-x0);
}
2021-01-13 15:51:38 -05:00
StarTrackerGUI* StarTrackerGUI::create(PluginAPI* pluginAPI, FeatureUISet *featureUISet, Feature *feature)
{
StarTrackerGUI* gui = new StarTrackerGUI(pluginAPI, featureUISet, feature);
return gui;
}
void StarTrackerGUI::destroy()
{
delete this;
}
void StarTrackerGUI::resetToDefaults()
{
m_settings.resetToDefaults();
displaySettings();
applySettings(true);
}
QByteArray StarTrackerGUI::serialize() const
{
return m_settings.serialize();
}
bool StarTrackerGUI::deserialize(const QByteArray& data)
{
if (m_settings.deserialize(data))
{
displaySettings();
applySettings(true);
return true;
}
else
{
resetToDefaults();
return false;
}
}
QString StarTrackerGUI::convertDegreesToText(double degrees)
{
if (m_settings.m_azElUnits == StarTrackerSettings::DMS)
return Units::decimalDegreesToDegreeMinutesAndSeconds(degrees);
else if (m_settings.m_azElUnits == StarTrackerSettings::DM)
return Units::decimalDegreesToDegreesAndMinutes(degrees);
else if (m_settings.m_azElUnits == StarTrackerSettings::D)
return Units::decimalDegreesToDegrees(degrees);
else
return QString("%1").arg(degrees, 0, 'f', 2);
}
bool StarTrackerGUI::handleMessage(const Message& message)
{
if (StarTracker::MsgConfigureStarTracker::match(message))
{
qDebug("StarTrackerGUI::handleMessage: StarTracker::MsgConfigureStarTracker");
const StarTracker::MsgConfigureStarTracker& cfg = (StarTracker::MsgConfigureStarTracker&) message;
m_settings = cfg.getSettings();
blockApplySettings(true);
displaySettings();
blockApplySettings(false);
return true;
}
else if (StarTrackerReport::MsgReportAzAl::match(message))
{
StarTrackerReport::MsgReportAzAl& azAl = (StarTrackerReport::MsgReportAzAl&) message;
ui->azimuth->setText(convertDegreesToText(azAl.getAzimuth()));
ui->elevation->setText(convertDegreesToText(azAl.getElevation()));
return true;
}
else if (StarTrackerReport::MsgReportRADec::match(message))
{
StarTrackerReport::MsgReportRADec& raDec = (StarTrackerReport::MsgReportRADec&) message;
m_settings.m_ra = Units::decimalHoursToHoursMinutesAndSeconds(raDec.getRA());
m_settings.m_dec = Units::decimalDegreesToDegreeMinutesAndSeconds(raDec.getDec());
ui->rightAscension->setText(m_settings.m_ra);
ui->declination->setText(m_settings.m_dec);
raDecChanged();
2021-01-13 15:51:38 -05:00
return true;
}
return false;
}
void StarTrackerGUI::handleInputMessages()
{
Message* message;
while ((message = getInputMessageQueue()->pop()))
{
if (handleMessage(*message)) {
delete message;
}
}
}
void StarTrackerGUI::onWidgetRolled(QWidget* widget, bool rollDown)
{
(void) widget;
(void) rollDown;
}
StarTrackerGUI::StarTrackerGUI(PluginAPI* pluginAPI, FeatureUISet *featureUISet, Feature *feature, QWidget* parent) :
FeatureGUI(parent),
ui(new Ui::StarTrackerGUI),
m_pluginAPI(pluginAPI),
m_featureUISet(featureUISet),
m_doApplySettings(true),
m_lastFeatureState(0),
m_azElLineChart(nullptr),
m_azElPolarChart(nullptr),
m_networkManager(nullptr),
m_solarFlux(0.0),
m_solarFluxesValid(false),
m_images{QImage(":/startracker/startracker/150mhz_ra_dec.png"),
QImage(":/startracker/startracker/150mhz_galactic.png"),
QImage(":/startracker/startracker/408mhz_ra_dec.png"),
QImage(":/startracker/startracker/408mhz_galactic.png"),
QImage(":/startracker/startracker/1420mhz_ra_dec.png"),
QImage(":/startracker/startracker/1420mhz_galactic.png")},
m_temps{FITS(":/startracker/startracker/150mhz_ra_dec.fits"),
FITS(":/startracker/startracker/408mhz_ra_dec.fits"),
FITS(":/startracker/startracker/1420mhz_ra_dec.fits")},
m_spectralIndex(":/startracker/startracker/408mhz_ra_dec_spectral_index.fits")
2021-01-13 15:51:38 -05:00
{
ui->setupUi(this);
setAttribute(Qt::WA_DeleteOnClose, true);
setChannelWidget(false);
connect(this, SIGNAL(widgetRolled(QWidget*,bool)), this, SLOT(onWidgetRolled(QWidget*,bool)));
m_starTracker = reinterpret_cast<StarTracker*>(feature);
m_starTracker->setMessageQueueToGUI(&m_inputMessageQueue);
m_featureUISet->addRollupWidget(this);
connect(this, SIGNAL(customContextMenuRequested(const QPoint &)), this, SLOT(onMenuDialogCalled(const QPoint &)));
connect(getInputMessageQueue(), SIGNAL(messageEnqueued()), this, SLOT(handleInputMessages()));
connect(&m_dlm, &HttpDownloadManager::downloadComplete, this, &StarTrackerGUI::downloadFinished);
2021-01-13 15:51:38 -05:00
connect(&m_statusTimer, SIGNAL(timeout()), this, SLOT(updateStatus()));
m_statusTimer.start(1000);
// Intialise chart
m_chart.legend()->hide();
ui->chart->setChart(&m_chart);
ui->chart->setRenderHint(QPainter::Antialiasing);
2021-01-13 15:51:38 -05:00
m_chart.addAxis(&m_chartXAxis, Qt::AlignBottom);
m_chart.addAxis(&m_chartYAxis, Qt::AlignLeft);
m_chart.layout()->setContentsMargins(0, 0, 0, 0);
m_chart.setMargins(QMargins(1, 1, 1, 1));
m_solarFluxChart.setTitle("");
m_solarFluxChart.legend()->hide();
m_solarFluxChart.addAxis(&m_chartSolarFluxXAxis, Qt::AlignBottom);
m_solarFluxChart.addAxis(&m_chartSolarFluxYAxis, Qt::AlignLeft);
m_solarFluxChart.layout()->setContentsMargins(0, 0, 0, 0);
m_solarFluxChart.setMargins(QMargins(1, 1, 1, 1));
m_chartSolarFluxXAxis.setTitleText(QString("Frequency (MHz)"));
m_chartSolarFluxXAxis.setMinorTickCount(-1);
m_chartSolarFluxYAxis.setTitleText(QString("Solar flux density (%1)").arg(solarFluxUnit()));
// Create axes that are static
m_skyTempGalacticLXAxis.setTitleText(QString("Galactic longitude (%1)").arg(QChar(0xb0)));
m_skyTempGalacticLXAxis.setMin(0);
m_skyTempGalacticLXAxis.setMax(360);
m_skyTempGalacticLXAxis.append("180", 0);
m_skyTempGalacticLXAxis.append("90", 90);
m_skyTempGalacticLXAxis.append("0/360", 180);
m_skyTempGalacticLXAxis.append("270", 270);
//m_skyTempGalacticLXAxis.append("180", 360); // Note - labels need to be unique, so can't have 180 at start and end
m_skyTempGalacticLXAxis.setLabelsPosition(QCategoryAxis::AxisLabelsPositionOnValue);
m_skyTempGalacticLXAxis.setGridLineVisible(false);
m_skyTempRAXAxis.setTitleText(QString("Right ascension (hours)"));
m_skyTempRAXAxis.setMin(0);
m_skyTempRAXAxis.setMax(24);
m_skyTempRAXAxis.append("12", 0);
m_skyTempRAXAxis.append("9", 3);
m_skyTempRAXAxis.append("6", 6);
m_skyTempRAXAxis.append("3", 9);
m_skyTempRAXAxis.append("0", 12);
m_skyTempRAXAxis.append("21", 15);
m_skyTempRAXAxis.append("18", 18);
m_skyTempRAXAxis.append("15", 21);
//m_skyTempRAXAxis.append("12", 24); // Note - labels need to be unique, so can't have 12 at start and end
m_skyTempRAXAxis.setLabelsPosition(QCategoryAxis::AxisLabelsPositionOnValue);
m_skyTempRAXAxis.setGridLineVisible(false);
m_skyTempYAxis.setGridLineVisible(false);
m_skyTempYAxis.setRange(-90.0, 90.0);
m_skyTempYAxis.setGridLineVisible(false);
2021-01-13 15:51:38 -05:00
ui->dateTime->setDateTime(QDateTime::currentDateTime());
displaySettings();
applySettings(true);
// Populate subchart menu
on_chartSelect_currentIndexChanged(0);
2021-01-13 15:51:38 -05:00
// Use My Position from preferences, if none set
if ((m_settings.m_latitude == 0.0) && (m_settings.m_longitude == 0.0))
on_useMyPosition_clicked();
/*
printf("saemundsson=[");
for (int i = 0; i <= 90; i+= 5)
printf("%f ", Astronomy::refractionSaemundsson(i, m_settings.m_pressure, m_settings.m_temperature));
printf("];\n");
printf("palRadio=[");
for (int i = 0; i <= 90; i+= 5)
printf("%f ", Astronomy::refractionPAL(i, m_settings.m_pressure, m_settings.m_temperature, m_settings.m_humidity,
100000000, m_settings.m_latitude, m_settings.m_heightAboveSeaLevel,
m_settings.m_temperatureLapseRate));
printf("];\n");
printf("palLight=[");
for (int i = 0; i <= 90; i+= 5)
printf("%f ",Astronomy::refractionPAL(i, m_settings.m_pressure, m_settings.m_temperature, m_settings.m_humidity,
7.5e14, m_settings.m_latitude, m_settings.m_heightAboveSeaLevel,
m_settings.m_temperatureLapseRate));
printf("];\n");
*/
m_networkManager = new QNetworkAccessManager();
connect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*)));
readSolarFlux();
connect(&m_solarFluxTimer, SIGNAL(timeout()), this, SLOT(autoUpdateSolarFlux()));
m_solarFluxTimer.start(1000*60*60*24); // Update every 24hours
autoUpdateSolarFlux();
2021-01-13 15:51:38 -05:00
}
StarTrackerGUI::~StarTrackerGUI()
{
disconnect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*)));
delete m_networkManager;
2021-01-13 15:51:38 -05:00
delete ui;
}
void StarTrackerGUI::blockApplySettings(bool block)
{
m_doApplySettings = !block;
}
void StarTrackerGUI::displaySettings()
{
setTitleColor(m_settings.m_rgbColor);
setWindowTitle(m_settings.m_title);
blockApplySettings(true);
ui->darkTheme->setChecked(m_settings.m_chartsDarkTheme);
m_solarFluxChart.setTheme(m_settings.m_chartsDarkTheme ? QChart::ChartThemeDark : QChart::ChartThemeLight);
m_chart.setTheme(m_settings.m_chartsDarkTheme ? QChart::ChartThemeDark : QChart::ChartThemeLight);
2021-01-13 15:51:38 -05:00
ui->latitude->setValue(m_settings.m_latitude);
ui->longitude->setValue(m_settings.m_longitude);
ui->target->setCurrentIndex(ui->target->findText(m_settings.m_target));
if (m_settings.m_target == "Custom")
{
ui->rightAscension->setText(m_settings.m_ra);
ui->declination->setText(m_settings.m_dec);
}
if (m_settings.m_dateTime == "")
{
ui->dateTimeSelect->setCurrentIndex(0);
ui->dateTime->setVisible(false);
}
else
{
ui->dateTime->setDateTime(QDateTime::fromString(m_settings.m_dateTime, Qt::ISODateWithMs));
ui->dateTime->setVisible(true);
ui->dateTimeSelect->setCurrentIndex(1);
}
if ((m_settings.m_solarFluxData != StarTrackerSettings::DRAO_2800) && !m_solarFluxesValid)
autoUpdateSolarFlux();
ui->frequency->setValue(m_settings.m_frequency/1000000.0);
ui->beamwidth->setValue(m_settings.m_beamwidth);
2021-01-13 15:51:38 -05:00
updateForTarget();
plotChart();
blockApplySettings(false);
}
void StarTrackerGUI::leaveEvent(QEvent*)
{
}
void StarTrackerGUI::enterEvent(QEvent*)
{
}
void StarTrackerGUI::onMenuDialogCalled(const QPoint &p)
{
if (m_contextMenuType == ContextMenuChannelSettings)
{
BasicFeatureSettingsDialog dialog(this);
dialog.setTitle(m_settings.m_title);
dialog.setColor(m_settings.m_rgbColor);
dialog.setUseReverseAPI(m_settings.m_useReverseAPI);
dialog.setReverseAPIAddress(m_settings.m_reverseAPIAddress);
dialog.setReverseAPIPort(m_settings.m_reverseAPIPort);
dialog.setReverseAPIFeatureSetIndex(m_settings.m_reverseAPIFeatureSetIndex);
dialog.setReverseAPIFeatureIndex(m_settings.m_reverseAPIFeatureIndex);
dialog.move(p);
dialog.exec();
m_settings.m_rgbColor = dialog.getColor().rgb();
m_settings.m_title = dialog.getTitle();
m_settings.m_useReverseAPI = dialog.useReverseAPI();
m_settings.m_reverseAPIAddress = dialog.getReverseAPIAddress();
m_settings.m_reverseAPIPort = dialog.getReverseAPIPort();
m_settings.m_reverseAPIFeatureSetIndex = dialog.getReverseAPIFeatureSetIndex();
m_settings.m_reverseAPIFeatureIndex = dialog.getReverseAPIFeatureIndex();
setWindowTitle(m_settings.m_title);
setTitleColor(m_settings.m_rgbColor);
applySettings();
}
resetContextMenuType();
}
void StarTrackerGUI::on_startStop_toggled(bool checked)
{
if (m_doApplySettings)
{
StarTracker::MsgStartStop *message = StarTracker::MsgStartStop::create(checked);
m_starTracker->getInputMessageQueue()->push(message);
}
}
void StarTrackerGUI::on_latitude_valueChanged(double value)
{
m_settings.m_latitude = value;
applySettings();
plotChart();
}
void StarTrackerGUI::on_longitude_valueChanged(double value)
{
m_settings.m_longitude = value;
applySettings();
plotChart();
}
void StarTrackerGUI::on_rightAscension_editingFinished()
{
m_settings.m_ra = ui->rightAscension->text();
applySettings();
plotChart();
}
void StarTrackerGUI::on_declination_editingFinished()
{
m_settings.m_dec = ui->declination->text();
applySettings();
plotChart();
}
void StarTrackerGUI::updateForTarget()
{
if (m_settings.m_target == "Sun")
{
ui->rightAscension->setReadOnly(true);
ui->declination->setReadOnly(true);
ui->rightAscension->setText("");
ui->declination->setText("");
}
else if (m_settings.m_target == "Moon")
{
ui->rightAscension->setReadOnly(true);
ui->declination->setReadOnly(true);
ui->rightAscension->setText("");
ui->declination->setText("");
}
else if (m_settings.m_target == "Custom")
{
ui->rightAscension->setReadOnly(false);
ui->declination->setReadOnly(false);
}
else
{
ui->rightAscension->setReadOnly(true);
ui->declination->setReadOnly(true);
if (m_settings.m_target == "PSR B0329+54")
{
ui->rightAscension->setText("03h32m59.35s");
ui->declination->setText(QString("54%0134'45.05\"").arg(QChar(0xb0)));
}
else if (m_settings.m_target == "PSR B0833-45")
{
ui->rightAscension->setText("08h35m20.66s");
ui->declination->setText(QString("-45%0110'35.15\"").arg(QChar(0xb0)));
}
else if (m_settings.m_target == "Sagittarius A")
{
ui->rightAscension->setText("17h45m40.04s");
ui->declination->setText(QString("-29%0100'28.17\"").arg(QChar(0xb0)));
}
else if (m_settings.m_target == "Cassiopeia A")
{
ui->rightAscension->setText("23h23m24s");
ui->declination->setText(QString("58%0148'54\"").arg(QChar(0xb0)));
}
else if (m_settings.m_target == "Cygnus A")
{
ui->rightAscension->setText("19h59m28.36s");
ui->declination->setText(QString("40%0144'02.1\"").arg(QChar(0xb0)));
}
else if (m_settings.m_target == "Taurus A (M1)")
{
ui->rightAscension->setText("05h34m31.94s");
ui->declination->setText(QString("22%0100'52.2\"").arg(QChar(0xb0)));
}
else if (m_settings.m_target == "Virgo A (M87)")
{
ui->rightAscension->setText("12h30m49.42s");
ui->declination->setText(QString("12%0123'28.04\"").arg(QChar(0xb0)));
}
on_rightAscension_editingFinished();
on_declination_editingFinished();
}
// Clear as no longer valid when target has changed
ui->azimuth->setText("");
ui->elevation->setText("");
}
void StarTrackerGUI::on_target_currentTextChanged(const QString &text)
{
m_settings.m_target = text;
applySettings();
updateForTarget();
plotChart();
}
void StarTrackerGUI::updateLST()
{
QDateTime dt;
if (m_settings.m_dateTime.isEmpty())
dt = QDateTime::currentDateTime();
else
dt = QDateTime::fromString(m_settings.m_dateTime, Qt::ISODateWithMs);
double lst = Astronomy::localSiderealTime(dt, m_settings.m_longitude);
ui->lst->setText(Units::decimalHoursToHoursMinutesAndSeconds(lst/15.0, 0));
}
void StarTrackerGUI::updateStatus()
{
int state = m_starTracker->getState();
if (m_lastFeatureState != state)
{
// We set checked state of start/stop button, in case it was changed via API
bool oldState;
switch (state)
{
case Feature::StNotStarted:
ui->startStop->setStyleSheet("QToolButton { background:rgb(79,79,79); }");
break;
case Feature::StIdle:
oldState = ui->startStop->blockSignals(true);
ui->startStop->setChecked(false);
ui->startStop->blockSignals(oldState);
ui->startStop->setStyleSheet("QToolButton { background-color : blue; }");
break;
case Feature::StRunning:
oldState = ui->startStop->blockSignals(true);
ui->startStop->setChecked(true);
ui->startStop->blockSignals(oldState);
ui->startStop->setStyleSheet("QToolButton { background-color : green; }");
break;
case Feature::StError:
ui->startStop->setStyleSheet("QToolButton { background-color : red; }");
QMessageBox::information(this, tr("Message"), m_starTracker->getErrorMessage());
break;
default:
break;
}
m_lastFeatureState = state;
}
updateLST();
}
void StarTrackerGUI::applySettings(bool force)
{
if (m_doApplySettings)
{
StarTracker::MsgConfigureStarTracker* message = StarTracker::MsgConfigureStarTracker::create(m_settings, force);
m_starTracker->getInputMessageQueue()->push(message);
}
}
void StarTrackerGUI::on_useMyPosition_clicked(bool checked)
{
2021-01-13 18:03:55 -05:00
(void) checked;
2021-01-13 15:51:38 -05:00
double stationLatitude = MainCore::instance()->getSettings().getLatitude();
double stationLongitude = MainCore::instance()->getSettings().getLongitude();
double stationAltitude = MainCore::instance()->getSettings().getAltitude();
ui->latitude->setValue(stationLatitude);
ui->longitude->setValue(stationLongitude);
m_settings.m_heightAboveSeaLevel = stationAltitude;
applySettings();
plotChart();
}
// Show settings dialog
void StarTrackerGUI::on_displaySettings_clicked()
{
StarTrackerSettingsDialog dialog(&m_settings);
if (dialog.exec() == QDialog::Accepted)
{
applySettings();
displaySolarFlux();
if (ui->chartSelect->currentIndex() == 1)
plotChart();
2021-01-13 15:51:38 -05:00
}
}
void StarTrackerGUI::on_dateTimeSelect_currentTextChanged(const QString &text)
{
if (text == "Now")
{
m_settings.m_dateTime = "";
ui->dateTime->setVisible(false);
}
else
{
m_settings.m_dateTime = ui->dateTime->dateTime().toString(Qt::ISODateWithMs);
ui->dateTime->setVisible(true);
}
applySettings();
plotChart();
}
void StarTrackerGUI::on_dateTime_dateTimeChanged(const QDateTime &datetime)
{
2021-01-13 18:03:55 -05:00
(void) datetime;
2021-01-13 15:51:38 -05:00
if (ui->dateTimeSelect->currentIndex() == 1)
{
m_settings.m_dateTime = ui->dateTime->dateTime().toString(Qt::ISODateWithMs);
applySettings();
plotChart();
}
}
void StarTrackerGUI::plotChart()
{
if (ui->chartSelect->currentIndex() == 0)
{
if (ui->chartSubSelect->currentIndex() == 0)
plotElevationLineChart();
else
plotElevationPolarChart();
}
else if (ui->chartSelect->currentIndex() == 1)
plotSolarFluxChart();
else if (ui->chartSelect->currentIndex() == 2)
plotSkyTemperatureChart();
}
void StarTrackerGUI::raDecChanged()
{
if (ui->chartSelect->currentIndex() == 2)
plotSkyTemperatureChart();
}
void StarTrackerGUI::on_frequency_valueChanged(int value)
{
m_settings.m_frequency = value*1000000.0;
applySettings();
if (ui->chartSelect->currentIndex() != 0)
{
updateChartSubSelect();
plotChart();
}
displaySolarFlux();
}
void StarTrackerGUI::on_beamwidth_valueChanged(double value)
{
m_settings.m_beamwidth = value;
applySettings();
updateChartSubSelect();
if (ui->chartSelect->currentIndex() == 2)
plotChart();
}
void StarTrackerGUI::plotSolarFluxChart()
2021-01-13 15:51:38 -05:00
{
m_solarFluxChart.removeAllSeries();
if (m_solarFluxesValid)
{
double maxValue = -std::numeric_limits<double>::infinity();
double minValue = std::numeric_limits<double>::infinity();
QLineSeries *series = new QLineSeries();
for (int i = 0; i < 8; i++)
{
double value = convertSolarFluxUnits(m_solarFluxes[i]);
series->append(m_solarFluxFrequencies[i], value);
maxValue = std::max(value, maxValue);
minValue = std::min(value, minValue);
}
series->setPointLabelsVisible(true);
series->setPointLabelsFormat("@yPoint");
series->setPointLabelsClipping(false);
m_solarFluxChart.addSeries(series);
series->attachAxis(&m_chartSolarFluxXAxis);
series->attachAxis(&m_chartSolarFluxYAxis);
if (m_settings.m_solarFluxUnits == StarTrackerSettings::SFU)
{
m_chartSolarFluxYAxis.setLabelFormat("%d");
m_chartSolarFluxYAxis.setRange(0.0, ((((int)maxValue)+99)/100)*100);
}
else if (m_settings.m_solarFluxUnits == StarTrackerSettings::JANSKY)
{
m_chartSolarFluxYAxis.setLabelFormat("%.2g");
m_chartSolarFluxYAxis.setRange(0, ((((int)maxValue)+999999)/100000)*100000);
}
else
{
m_chartSolarFluxYAxis.setLabelFormat("%.2g");
m_chartSolarFluxYAxis.setRange(minValue, maxValue);
}
}
else
m_solarFluxChart.setTitle("Press download Solar flux density data to view");
ui->chart->setChart(&m_solarFluxChart);
// m_chart.setPlotAreaBackgroundVisible(false);
// disconnect(&m_chart, SIGNAL(plotAreaChanged(QRectF)), this, SLOT(plotAreaChanged(QRectF)));
}
void StarTrackerGUI::plotSkyTemperatureChart()
{
bool galactic = (ui->chartSubSelect->currentIndex() & 1) == 1;
m_chart.removeAllSeries();
removeAllAxes();
QScatterSeries *series = new QScatterSeries();
float ra = Astronomy::raToDecimal(m_settings.m_ra);
float dec = Astronomy::decToDecimal(m_settings.m_dec);
double beamWidth = m_settings.m_beamwidth;
// Ellipse not supported, so draw circle on shorter axis
double degPerPixelW = 360.0/m_chart.plotArea().width();
double degPerPixelH = 180.0/m_chart.plotArea().height();
double degPerPixel = std::min(degPerPixelW, degPerPixelH);
double markerSize;
if (galactic)
{
// Convert to category coordinates
double l, b;
Astronomy::equatorialToGalactic(ra, dec, l, b);
// Map to linear axis
double lAxis;
if (l < 180.0)
lAxis = 180.0 - l;
else
lAxis = 360.0 - l + 180.0;
series->append(lAxis, b);
}
else
{
// Map to category axis
double raAxis;
if (ra <= 12.0)
raAxis = 12.0 - ra;
else
raAxis = 24 - ra + 12;
series->append(raAxis, dec);
}
// Get temperature
int idx = ui->chartSubSelect->currentIndex();
if ((idx == 6) || (idx == 7))
{
// Adjust temperature from 408MHz FITS file, taking in to account
// observation frequency and beamwidth
FITS *fits = &m_temps[1];
if (fits->valid())
{
const double beamwidth = m_settings.m_beamwidth;
const double halfBeamwidth = beamwidth/2.0;
// Use cos^p(x) for approximation of radiation pattern
// (Essentially the same as Gaussian of exp(-4*ln(theta^2/beamwidth^2))
// (See a2 in https://arxiv.org/pdf/1812.10084.pdf for Elliptical equivalent))
// We have gain of 0dB (1) at 0 degrees, and -3dB (~0.5) at half-beamwidth degrees
// Find exponent that correponds to -3dB at that angle
double minus3dBLinear = pow(10.0, -3.0/10.0);
double p = log(minus3dBLinear)/log(cos(Units::degreesToRadians(halfBeamwidth)));
// Create an matrix with gain as a function of angle
double degreesPerPixelH = abs(fits->degreesPerPixelH());
double degreesPerPixelV = abs(fits->degreesPerPixelV());
int numberOfCoeffsH = ceil(beamwidth/degreesPerPixelH);
int numberOfCoeffsV = ceil(beamwidth/degreesPerPixelV);
if ((numberOfCoeffsH & 1) == 0)
numberOfCoeffsH++;
if ((numberOfCoeffsV & 1) == 0)
numberOfCoeffsV++;
double *beam = new double[numberOfCoeffsH*numberOfCoeffsV];
double sum = 0.0;
int y0 = numberOfCoeffsV/2;
int x0 = numberOfCoeffsH/2;
int nonZeroCount = 0;
for (int y = 0; y < numberOfCoeffsV; y++)
{
for (int x = 0; x < numberOfCoeffsH; x++)
{
double xp = (x - x0) * degreesPerPixelH;
double yp = (y - y0) * degreesPerPixelV;
double r = sqrt(xp*xp+yp*yp);
if (r < halfBeamwidth)
{
beam[y*numberOfCoeffsH+x] = pow(cos(Units::degreesToRadians(r)), p);
sum += beam[y*numberOfCoeffsH+x];
nonZeroCount++;
}
else
beam[y*numberOfCoeffsH+x] = 0.0;
}
}
// Get centre pixel coordinates
double centreX;
if (ra <= 12.0)
centreX = (12.0 - ra) / 24.0;
else
centreX = (24 - ra + 12) / 24.0;
double centreY = (90.0-dec) / 180.0;
int imgX = centreX * fits->width();
int imgY = centreY * fits->height();
// Apply weighting to temperature data
double weightedSum = 0.0;
for (int y = 0; y < numberOfCoeffsV; y++)
{
for (int x = 0; x < numberOfCoeffsH; x++)
{
weightedSum += beam[y*numberOfCoeffsH+x] * fits->scaledWrappedValue(imgX + (x-x0), imgY + (y-y0));
}
}
// From: https://www.cv.nrao.edu/~sransom/web/Ch3.html
// The antenna temperature equals the source brightness temperature multiplied by the fraction of the beam solid angle filled by the source
// So we scale the sum by the total number of non-zero pixels (i.e. beam area)
// If we compare to some maps with different beamwidths here: https://www.cv.nrao.edu/~demerson/radiosky/sky_jun96.pdf
// The values we've computed are a bit higher..
double temp408 = weightedSum/nonZeroCount;
// Scale according to frequency - CMB contribution constant
// Power law at low frequencies, with slight variation in spectral index
// See:
// Global Sky Model: https://ascl.net/1011.010
// An improved Model of Diffuse Galactic Radio Emission: https://arxiv.org/pdf/1605.04920.pdf
// A high-resolution self-consistent whole sky foreground model: https://arxiv.org/abs/1812.10084
// (De-striping:) Full sky study of diffuse Galactic emission at decimeter wavelength https://www.aanda.org/articles/aa/pdf/2003/42/aah4363.pdf
// Data here: http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/410/847
// LFmap: https://www.faculty.ece.vt.edu/swe/lwa/memo/lwa0111.pdf
double iso408 = 50 * pow(150e6/408e6, 2.75); // Extra-galactic isotropic in reference map at 408MHz
double isoT = 50 * pow(150e6/m_settings.m_frequency, 2.75); // Extra-galactic isotropic at target frequency
double cmbT = 2.725; // Cosmic microwave backgroud;
double spectralIndex;
if (m_spectralIndex.valid())
{
// See https://www.aanda.org/articles/aa/pdf/2003/42/aah4363.pdf
spectralIndex = m_spectralIndex.scaledValue(imgX, imgY);
}
else
{
// See https://arxiv.org/abs/1812.10084 fig 2
if (m_settings.m_frequency < 200e6)
spectralIndex = 2.55;
else if (m_settings.m_frequency < 20e9)
spectralIndex = 2.695;
else
spectralIndex = 3.1;
}
double galactic480 = temp408 - cmbT - iso408;
double galacticT = galactic480 * pow(408e6/m_settings.m_frequency, spectralIndex); // Scale galactic contribution by frequency
double temp = galacticT + cmbT + isoT; // Final temperature
series->setPointLabelsVisible(true);
series->setPointLabelsColor(Qt::red);
series->setPointLabelsFormat(QString("%1 K").arg(std::round(temp)));
// Scale marker size by beamwidth
markerSize = std::max((int)round(beamWidth * degPerPixel), 5);
2021-04-28 10:34:54 -04:00
delete[] beam;
}
else
qDebug() << "StarTrackerGUI::plotSkyTemperatureChart: FITS temperature file not valid";
}
else
{
// Read temperature from selected FITS file at target RA/Dec
QImage *img = &m_images[idx];
FITS *fits = &m_temps[idx/2];
double x;
if (ra <= 12.0)
x = (12.0 - ra) / 24.0;
else
x = (24 - ra + 12) / 24.0;
int imgX = x * img->width();
if (imgX >= img->width())
imgX = img->width();
int imgY = (90.0-dec)/180.0 * img->height();
if (imgY >= img->height())
imgY = img->height();
if (fits->valid())
{
double temp = fits->scaledValue(imgX, imgY);
series->setPointLabelsVisible(true);
series->setPointLabelsColor(Qt::red);
series->setPointLabelsFormat(QString("%1 K").arg(std::round(temp)));
}
// Temperature from just one pixel, but need to make marker visbile
markerSize = 5;
}
series->setMarkerSize(markerSize);
m_chart.setTitle("");
m_chart.addSeries(series);
if (galactic)
{
m_chart.addAxis(&m_skyTempGalacticLXAxis, Qt::AlignBottom);
series->attachAxis(&m_skyTempGalacticLXAxis);
m_skyTempYAxis.setTitleText(QString("Galactic latitude (%1)").arg(QChar(0xb0)));
m_chart.addAxis(&m_skyTempYAxis, Qt::AlignLeft);
series->attachAxis(&m_skyTempYAxis);
}
else
{
m_chart.addAxis(&m_skyTempRAXAxis, Qt::AlignBottom);
series->attachAxis(&m_skyTempRAXAxis);
m_skyTempYAxis.setTitleText(QString("Declination (%1)").arg(QChar(0xb0)));
m_chart.addAxis(&m_skyTempYAxis, Qt::AlignLeft);
series->attachAxis(&m_skyTempYAxis);
}
ui->chart->setChart(&m_chart);
plotAreaChanged(m_chart.plotArea());
connect(&m_chart, SIGNAL(plotAreaChanged(QRectF)), this, SLOT(plotAreaChanged(QRectF)));
}
void StarTrackerGUI::plotAreaChanged(const QRectF &plotArea)
{
2021-01-29 12:00:56 -05:00
int width = static_cast<int>(plotArea.width());
int height = static_cast<int>(plotArea.height());
int viewW = static_cast<int>(ui->chart->width());
int viewH = static_cast<int>(ui->chart->height());
// Scale the image to fit plot area
int imageIdx = ui->chartSubSelect->currentIndex();
if (imageIdx == 6)
imageIdx = 2;
else if (imageIdx == 7)
imageIdx = 3;
QImage image = m_images[imageIdx].scaled(QSize(width, height), Qt::IgnoreAspectRatio);
QImage translated(viewW, viewH, QImage::Format_ARGB32);
translated.fill(Qt::white);
QPainter painter(&translated);
2021-01-29 12:00:56 -05:00
painter.drawImage(plotArea.topLeft(), image);
m_chart.setPlotAreaBackgroundBrush(translated);
m_chart.setPlotAreaBackgroundVisible(true);
}
void StarTrackerGUI::removeAllAxes()
{
QList<QAbstractAxis *> axes;
axes = m_chart.axes(Qt::Horizontal);
for (QAbstractAxis *axis : axes)
m_chart.removeAxis(axis);
axes = m_chart.axes(Qt::Vertical);
for (QAbstractAxis *axis : axes)
m_chart.removeAxis(axis);
}
// Plot target elevation angle over the day
void StarTrackerGUI::plotElevationLineChart()
{
QChart *oldChart = m_azElLineChart;
m_azElLineChart = new QChart();
m_azElLineChart->setTheme(m_settings.m_chartsDarkTheme ? QChart::ChartThemeDark : QChart::ChartThemeLight);
QDateTimeAxis *xAxis = new QDateTimeAxis();
QValueAxis *yLeftAxis = new QValueAxis();
QValueAxis *yRightAxis = new QValueAxis();
m_azElLineChart->legend()->hide();
m_azElLineChart->layout()->setContentsMargins(0, 0, 0, 0);
m_azElLineChart->setMargins(QMargins(1, 1, 1, 1));
2021-01-13 15:51:38 -05:00
double maxElevation = -90.0;
QLineSeries *elSeries = new QLineSeries();
QList<QLineSeries *> azSeriesList;
QLineSeries *azSeries = new QLineSeries();
azSeriesList.append(azSeries);
QPen pen(QColor(153, 202, 83), 2, Qt::SolidLine);
azSeries->setPen(pen);
2021-01-13 15:51:38 -05:00
QDateTime dt;
if (m_settings.m_dateTime.isEmpty())
dt = QDateTime::currentDateTime();
else
dt = QDateTime::fromString(m_settings.m_dateTime, Qt::ISODateWithMs);
dt.setTime(QTime(0,0));
QDateTime startTime = dt;
QDateTime endTime = dt;
double prevAz;
int timestep = 10*60;
for (int step = 0; step <= 24*60*60/timestep; step++)
2021-01-13 15:51:38 -05:00
{
AzAlt aa;
RADec rd;
// Calculate elevation of desired object
if (m_settings.m_target == "Sun")
Astronomy::sunPosition(aa, rd, m_settings.m_latitude, m_settings.m_longitude, dt);
else if (m_settings.m_target == "Moon")
Astronomy::moonPosition(aa, rd, m_settings.m_latitude, m_settings.m_longitude, dt);
else
{
rd.ra = Astronomy::raToDecimal(m_settings.m_ra);
rd.dec = Astronomy::decToDecimal(m_settings.m_dec);
aa = Astronomy::raDecToAzAlt(rd, m_settings.m_latitude, m_settings.m_longitude, dt, !m_settings.m_jnow);
}
if (aa.alt > maxElevation)
maxElevation = aa.alt;
// Adjust for refraction
if (m_settings.m_refraction == "Positional Astronomy Library")
{
aa.alt += Astronomy::refractionPAL(aa.alt, m_settings.m_pressure, m_settings.m_temperature, m_settings.m_humidity,
m_settings.m_frequency, m_settings.m_latitude, m_settings.m_heightAboveSeaLevel,
m_settings.m_temperatureLapseRate);
if (aa.alt > 90.0)
aa.alt = 90.0f;
}
else if (m_settings.m_refraction == "Saemundsson")
{
aa.alt += Astronomy::refractionSaemundsson(aa.alt, m_settings.m_pressure, m_settings.m_temperature);
if (aa.alt > 90.0)
aa.alt = 90.0f;
}
if (step == 0)
prevAz = aa.az;
if (((prevAz >= 270) && (aa.az < 90)) || ((prevAz < 90) && (aa.az >= 270)))
{
azSeries = new QLineSeries();
azSeriesList.append(azSeries);
azSeries->setPen(pen);
}
elSeries->append(dt.toMSecsSinceEpoch(), aa.alt);
azSeries->append(dt.toMSecsSinceEpoch(), aa.az);
2021-01-13 15:51:38 -05:00
endTime = dt;
prevAz = aa.az;
dt = dt.addSecs(timestep); // addSecs accounts for daylight savings jumps
}
m_azElLineChart->addAxis(xAxis, Qt::AlignBottom);
m_azElLineChart->addAxis(yLeftAxis, Qt::AlignLeft);
m_azElLineChart->addAxis(yRightAxis, Qt::AlignRight);
m_azElLineChart->addSeries(elSeries);
for (int i = 0; i < azSeriesList.size(); i++)
{
m_azElLineChart->addSeries(azSeriesList[i]);
azSeriesList[i]->attachAxis(xAxis);
azSeriesList[i]->attachAxis(yRightAxis);
2021-01-13 15:51:38 -05:00
}
elSeries->attachAxis(xAxis);
elSeries->attachAxis(yLeftAxis);
xAxis->setTitleText(QString("%1 %2").arg(startTime.date().toString()).arg(startTime.timeZoneAbbreviation()));
xAxis->setFormat("hh");
xAxis->setTickCount(7);
xAxis->setRange(startTime, endTime);
yLeftAxis->setRange(0.0, 90.0);
yLeftAxis->setTitleText(QString("Elevation (%1)").arg(QChar(0xb0)));
yRightAxis->setRange(0.0, 360.0);
yRightAxis->setTitleText(QString("Azimuth (%1)").arg(QChar(0xb0)));
2021-01-13 15:51:38 -05:00
if (maxElevation < 0)
m_azElLineChart->setTitle("Not visible from this latitude");
2021-01-13 15:51:38 -05:00
else
m_azElLineChart->setTitle("");
ui->chart->setChart(m_azElLineChart);
delete oldChart;
}
// Plot target elevation angle over the day
void StarTrackerGUI::plotElevationPolarChart()
{
QChart *oldChart = m_azElPolarChart;
m_azElPolarChart = new QPolarChart();
m_azElPolarChart->setTheme(m_settings.m_chartsDarkTheme ? QChart::ChartThemeDark : QChart::ChartThemeLight);
QValueAxis *angularAxis = new QValueAxis();
QCategoryAxis *radialAxis = new QCategoryAxis();
angularAxis->setTickCount(9);
angularAxis->setMinorTickCount(1);
angularAxis->setLabelFormat("%d");
angularAxis->setRange(0, 360);
radialAxis->setMin(0);
radialAxis->setMax(90);
radialAxis->append("90", 0);
radialAxis->append("60", 30);
radialAxis->append("30", 60);
radialAxis->append("0", 90);
radialAxis->setLabelsPosition(QCategoryAxis::AxisLabelsPositionOnValue);
m_azElPolarChart->addAxis(angularAxis, QPolarChart::PolarOrientationAngular);
m_azElPolarChart->addAxis(radialAxis, QPolarChart::PolarOrientationRadial);
m_azElPolarChart->legend()->hide();
m_azElPolarChart->layout()->setContentsMargins(0, 0, 0, 0);
m_azElPolarChart->setMargins(QMargins(1, 1, 1, 1));
double maxElevation = -90.0;
QLineSeries *polarSeries = new QLineSeries();
QDateTime dt;
if (m_settings.m_dateTime.isEmpty())
dt = QDateTime::currentDateTime();
else
dt = QDateTime::fromString(m_settings.m_dateTime, Qt::ISODateWithMs);
dt.setTime(QTime(0,0));
QDateTime startTime = dt;
QDateTime endTime = dt;
QDateTime riseTime;
QDateTime setTime;
int riseIdx = -1;
int setIdx = -1;
int idx = 0;
int timestep = 10*60; // Rise/set times accurate to nearest 10 minutes
double prevAlt;
for (int step = 0; step <= 24*60*60/timestep; step++)
{
AzAlt aa;
RADec rd;
// Calculate elevation of desired object
if (m_settings.m_target == "Sun")
Astronomy::sunPosition(aa, rd, m_settings.m_latitude, m_settings.m_longitude, dt);
else if (m_settings.m_target == "Moon")
Astronomy::moonPosition(aa, rd, m_settings.m_latitude, m_settings.m_longitude, dt);
else
{
rd.ra = Astronomy::raToDecimal(m_settings.m_ra);
rd.dec = Astronomy::decToDecimal(m_settings.m_dec);
aa = Astronomy::raDecToAzAlt(rd, m_settings.m_latitude, m_settings.m_longitude, dt, !m_settings.m_jnow);
}
if (aa.alt > maxElevation)
maxElevation = aa.alt;
// Adjust for refraction
if (m_settings.m_refraction == "Positional Astronomy Library")
{
aa.alt += Astronomy::refractionPAL(aa.alt, m_settings.m_pressure, m_settings.m_temperature, m_settings.m_humidity,
m_settings.m_frequency, m_settings.m_latitude, m_settings.m_heightAboveSeaLevel,
m_settings.m_temperatureLapseRate);
if (aa.alt > 90.0)
aa.alt = 90.0f;
}
else if (m_settings.m_refraction == "Saemundsson")
{
aa.alt += Astronomy::refractionSaemundsson(aa.alt, m_settings.m_pressure, m_settings.m_temperature);
if (aa.alt > 90.0)
aa.alt = 90.0f;
}
if (idx == 0)
prevAlt = aa.alt;
// We can have set before rise in a day, if the object starts > 0
if ((aa.alt >= 0.0) && (prevAlt < 0.0))
{
riseTime = dt;
riseIdx = idx;
}
if ((aa.alt < 0.0) && (prevAlt >= 0.0))
{
setTime = endTime;
setIdx = idx;
}
polarSeries->append(aa.az, 90 - aa.alt);
idx++;
endTime = dt;
prevAlt = aa.alt;
dt = dt.addSecs(timestep); // addSecs accounts for daylight savings jumps
}
// Polar charts can't handle points that are more than 180 degrees apart, so
// we need to split passes that cross from 359 -> 0 degrees (or the reverse)
QList<QLineSeries *> series;
series.append(new QLineSeries());
QLineSeries *s = series.first();
QPen pen(QColor(32, 159, 223), 2, Qt::SolidLine);
s->setPen(pen);
qreal prevAz = polarSeries->at(0).x();
qreal prevEl = polarSeries->at(0).y();
for (int i = 1; i < polarSeries->count(); i++)
{
qreal az = polarSeries->at(i).x();
qreal el = polarSeries->at(i).y();
if ((prevAz > 270.0) && (az <= 90.0))
{
double elMid = interpolate(prevAz, prevEl, az+360.0, el, 360.0);
s->append(360.0, elMid);
series.append(new QLineSeries());
s = series.last();
s->setPen(pen);
s->append(0.0, elMid);
s->append(az, el);
}
else if ((prevAz <= 90.0) && (az > 270.0))
{
double elMid = interpolate(prevAz, prevEl, az-360.0, el, 0.0);
s->append(0.0, elMid);
series.append(new QLineSeries());
s = series.last();
s->setPen(pen);
s->append(360.0, elMid);
s->append(az, el);
}
else
s->append(polarSeries->at(i));
prevAz = az;
prevEl = el;
}
for (int i = 0; i < series.length(); i++)
{
m_azElPolarChart->addSeries(series[i]);
series[i]->attachAxis(angularAxis);
series[i]->attachAxis(radialAxis);
}
// Create series with single point, so we can plot time of rising
if (riseTime.isValid())
{
QLineSeries *riseSeries = new QLineSeries();
riseSeries->append(polarSeries->at(riseIdx));
riseSeries->setPointLabelsFormat(QString("Rise %1").arg(riseTime.time().toString("hh:mm")));
riseSeries->setPointLabelsVisible(true);
riseSeries->setPointLabelsClipping(false);
m_azElPolarChart->addSeries(riseSeries);
riseSeries->attachAxis(angularAxis);
riseSeries->attachAxis(radialAxis);
}
// Create series with single point, so we can plot time of setting
if (setTime.isValid())
{
QLineSeries *setSeries = new QLineSeries();
setSeries->append(polarSeries->at(setIdx));
setSeries->setPointLabelsFormat(QString("Set %1").arg(setTime.time().toString("hh:mm")));
setSeries->setPointLabelsVisible(true);
setSeries->setPointLabelsClipping(false);
m_azElPolarChart->addSeries(setSeries);
setSeries->attachAxis(angularAxis);
setSeries->attachAxis(radialAxis);
}
if (maxElevation < 0)
m_azElPolarChart->setTitle("Not visible from this latitude");
else
m_azElPolarChart->setTitle("");
ui->chart->setChart(m_azElPolarChart);
delete polarSeries;
delete oldChart;
2021-01-13 15:51:38 -05:00
}
// Find target on the Map
void StarTrackerGUI::on_viewOnMap_clicked()
{
QString target = m_settings.m_target == "Sun" || m_settings.m_target == "Moon" ? m_settings.m_target : "Star";
FeatureWebAPIUtils::mapFind(target);
}
void StarTrackerGUI::updateChartSubSelect()
{
if (ui->chartSelect->currentIndex() == 2)
{
ui->chartSubSelect->setItemText(6, QString("%1 MHz %2%3 Equatorial")
.arg((int)std::round(m_settings.m_frequency/1e6))
.arg((int)std::round(m_settings.m_beamwidth))
.arg(QChar(0xb0)));
ui->chartSubSelect->setItemText(7, QString("%1 MHz %2%3 Galactic")
.arg((int)std::round(m_settings.m_frequency/1e6))
.arg((int)std::round(m_settings.m_beamwidth))
.arg(QChar(0xb0)));
}
}
void StarTrackerGUI::on_chartSelect_currentIndexChanged(int index)
{
bool oldState = ui->chartSubSelect->blockSignals(true);
ui->chartSubSelect->clear();
if (index == 0)
{
ui->chartSubSelect->addItem("Az/El vs time");
ui->chartSubSelect->addItem("Polar");
}
else if (index == 2)
{
ui->chartSubSelect->addItem(QString("150 MHz 5%1 Equatorial").arg(QChar(0xb0)));
ui->chartSubSelect->addItem(QString("150 MHz 5%1 Galactic").arg(QChar(0xb0)));
ui->chartSubSelect->addItem("408 MHz 51' Equatorial");
ui->chartSubSelect->addItem("408 MHz 51' Galactic");
ui->chartSubSelect->addItem("1420 MHz 35' Equatorial");
ui->chartSubSelect->addItem("1420 MHz 35' Galactic");
ui->chartSubSelect->addItem("Custom Equatorial");
ui->chartSubSelect->addItem("Custom Galactic");
ui->chartSubSelect->setCurrentIndex(2);
updateChartSubSelect();
}
ui->chartSubSelect->blockSignals(oldState);
plotChart();
}
void StarTrackerGUI::on_chartSubSelect_currentIndexChanged(int index)
{
2021-01-29 12:00:56 -05:00
(void) index;
plotChart();
}
double StarTrackerGUI::convertSolarFluxUnits(double sfu)
{
switch (m_settings.m_solarFluxUnits)
{
case StarTrackerSettings::SFU:
return sfu;
case StarTrackerSettings::JANSKY:
return Units::solarFluxUnitsToJansky(sfu);
case StarTrackerSettings::WATTS_M_HZ:
return Units::solarFluxUnitsToWattsPerMetrePerHertz(sfu);
}
return 0.0;
}
QString StarTrackerGUI::solarFluxUnit()
{
switch (m_settings.m_solarFluxUnits)
{
case StarTrackerSettings::SFU:
return "sfu";
case StarTrackerSettings::JANSKY:
return "Jy";
case StarTrackerSettings::WATTS_M_HZ:
return "Wm^-2Hz^-1";
}
return "";
}
void StarTrackerGUI::displaySolarFlux()
{
if (((m_settings.m_solarFluxData == StarTrackerSettings::DRAO_2800) && (m_solarFlux == 0.0))
|| ((m_settings.m_solarFluxData != StarTrackerSettings::DRAO_2800) && !m_solarFluxesValid))
ui->solarFlux->setText("");
else
{
double solarFlux;
if (m_settings.m_solarFluxData == StarTrackerSettings::DRAO_2800)
{
solarFlux = m_solarFlux;
ui->solarFlux->setToolTip(QString("Solar flux density at 2800 MHz"));
}
else if (m_settings.m_solarFluxData == StarTrackerSettings::TARGET_FREQ)
{
double freqMhz = m_settings.m_frequency/1000000.0;
const int fluxes = sizeof(m_solarFluxFrequencies)/sizeof(*m_solarFluxFrequencies);
int i;
for (i = 0; i < fluxes; i++)
{
if (freqMhz < m_solarFluxFrequencies[i])
break;
}
if (i == 0)
{
solarFlux = extrapolate(m_solarFluxFrequencies[0], m_solarFluxes[0],
m_solarFluxFrequencies[1], m_solarFluxes[1],
freqMhz
);
}
else if (i == fluxes)
{
solarFlux = extrapolate(m_solarFluxFrequencies[fluxes-2], m_solarFluxes[fluxes-2],
m_solarFluxFrequencies[fluxes-1], m_solarFluxes[fluxes-1],
freqMhz
);
}
else
{
solarFlux = interpolate(m_solarFluxFrequencies[i-1], m_solarFluxes[i-1],
m_solarFluxFrequencies[i], m_solarFluxes[i],
freqMhz
);
}
ui->solarFlux->setToolTip(QString("Solar flux density interpolated to %1 MHz").arg(freqMhz));
}
else
{
int idx = m_settings.m_solarFluxData-StarTrackerSettings::L_245;
solarFlux = m_solarFluxes[idx];
ui->solarFlux->setToolTip(QString("Solar flux density at %1 MHz").arg(m_solarFluxFrequencies[idx]));
}
ui->solarFlux->setText(QString("%1 %2").arg(convertSolarFluxUnits(solarFlux)).arg(solarFluxUnit()));
ui->solarFlux->setCursorPosition(0);
}
}
bool StarTrackerGUI::readSolarFlux()
{
2021-01-29 12:00:56 -05:00
QFile file(getSolarFluxFilename());
QDateTime lastModified = file.fileTime(QFileDevice::FileModificationTime);
if (QDateTime::currentDateTime().secsTo(lastModified) >= -(60*60*24))
{
if (file.open(QIODevice::ReadOnly | QIODevice::Text))
{
QByteArray bytes = file.readLine();
QString string(bytes);
// HHMMSS 245 410 610 1415 2695 4995 8800 15400 Mhz
// 000000 000019 000027 000037 000056 000073 000116 000202 000514 sfu
QRegExp re("([0-9]{2})([0-9]{2})([0-9]{2}) ([0-9]+) ([0-9]+) ([0-9]+) ([0-9]+) ([0-9]+) ([0-9]+) ([0-9]+) ([0-9]+)");
if (re.indexIn(string) != -1)
{
for (int i = 0; i < 8; i++)
m_solarFluxes[i] = re.capturedTexts()[i+4].toInt();
m_solarFluxesValid = true;
displaySolarFlux();
plotChart();
return true;
}
}
}
else
qDebug() << "StarTrackerGUI::readSolarFlux: Solar flux data is more than 1 day old";
return false;
}
void StarTrackerGUI::networkManagerFinished(QNetworkReply *reply)
{
ui->solarFlux->setText(""); // Don't show obsolete data
QNetworkReply::NetworkError replyError = reply->error();
if (replyError)
{
qWarning() << "StarTrackerGUI::networkManagerFinished:"
<< " error(" << (int) replyError
<< "): " << replyError
<< ": " << reply->errorString();
}
else
{
QString answer = reply->readAll();
QRegExp re("\\<th\\>Observed Flux Density\\<\\/th\\>\\<td\\>([0-9]+(\\.[0-9]+)?)\\<\\/td\\>");
if (re.indexIn(answer) != -1)
{
m_solarFlux = re.capturedTexts()[1].toDouble();
displaySolarFlux();
}
else
qDebug() << "StarTrackerGUI::networkManagerFinished - No Solar flux found: " << answer;
}
reply->deleteLater();
}
2021-01-29 12:00:56 -05:00
QString StarTrackerGUI::getSolarFluxFilename()
{
return HttpDownloadManager::downloadDir() + "/solar_flux.srd";
}
void StarTrackerGUI::updateSolarFlux(bool all)
{
qDebug() << "StarTrackerGUI: Updating Solar flux data";
if ((m_settings.m_solarFluxData != StarTrackerSettings::DRAO_2800) || all)
{
QDate today = QDateTime::currentDateTimeUtc().date();
2021-01-29 12:00:56 -05:00
QString solarFluxFile = getSolarFluxFilename();
if (m_dlm.confirmDownload(solarFluxFile, nullptr, 1))
{
QString urlString = QString("https://www.sws.bom.gov.au/Category/World Data Centre/Data Display and Download/Solar Radio/station/learmonth/SRD/%1/L%2.SRD")
.arg(today.year()).arg(today.toString("yyMMdd"));
m_dlm.download(QUrl(urlString), solarFluxFile, this);
}
}
if ((m_settings.m_solarFluxData == StarTrackerSettings::DRAO_2800) || all)
{
m_networkRequest.setUrl(QUrl("https://www.spaceweather.gc.ca/solarflux/sx-4-en.php"));
m_networkManager->get(m_networkRequest);
}
}
void StarTrackerGUI::autoUpdateSolarFlux()
{
updateSolarFlux(false);
}
void StarTrackerGUI::on_downloadSolarFlux_clicked()
{
updateSolarFlux(true);
}
void StarTrackerGUI::on_darkTheme_clicked(bool checked)
{
m_settings.m_chartsDarkTheme = checked;
m_solarFluxChart.setTheme(m_settings.m_chartsDarkTheme ? QChart::ChartThemeDark : QChart::ChartThemeLight);
m_chart.setTheme(m_settings.m_chartsDarkTheme ? QChart::ChartThemeDark : QChart::ChartThemeLight);
plotChart();
applySettings();
}
void StarTrackerGUI::downloadFinished(const QString& filename, bool success)
{
2021-01-29 12:00:56 -05:00
(void) filename;
if (success)
readSolarFlux();
}