1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-08 17:46:03 -05:00
sdrangel/plugins/channelrx/udpsink/udpsinksink.h

233 lines
7.0 KiB
C
Raw Normal View History

2019-12-08 04:09:24 -05:00
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef INCLUDE_UDPSINKSINK_H
#define INCLUDE_UDPSINKSINK_H
#include <QObject>
#include "dsp/channelsamplesink.h"
#include "dsp/nco.h"
#include "dsp/fftfilt.h"
#include "dsp/interpolator.h"
#include "dsp/phasediscri.h"
#include "dsp/movingaverage.h"
#include "dsp/agc.h"
2020-10-31 16:30:45 -04:00
#include "dsp/firfilter.h"
2019-12-08 04:09:24 -05:00
#include "util/udpsinkutil.h"
#include "audio/audiofifo.h"
#include "udpsinksettings.h"
class QUdpSocket;
class BasebandSampleSink;
class UDPSinkSink : public QObject, public ChannelSampleSink {
Q_OBJECT
public:
UDPSinkSink();
~UDPSinkSink();
virtual void feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end);
void applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force = true);
void applySettings(const UDPSinkSettings& settings, bool force = false);
AudioFifo *getAudioFifo() { return &m_audioFifo; }
void setSpectrum(BasebandSampleSink* spectrum) { m_spectrum = spectrum; }
void enableSpectrum(bool enable) { m_spectrumEnabled = enable; }
void setSpectrumPositiveOnly(bool positiveOnly) { m_spectrumPositiveOnly = positiveOnly; }
double getMagSq() const { return m_magsq; }
double getInMagSq() const { return m_inMagsq; }
bool getSquelchOpen() const { return m_squelchOpen; }
static const int udpBlockSize = 512; // UDP block size in number of bytes
private slots:
void audioReadyRead();
private:
struct Sample16
{
Sample16() : m_r(0), m_i(0) {}
Sample16(int16_t r, int16_t i) : m_r(r), m_i(i) {}
int16_t m_r;
int16_t m_i;
};
struct Sample24
{
Sample24() : m_r(0), m_i(0) {}
Sample24(int32_t r, int32_t i) : m_r(r), m_i(i) {}
int32_t m_r;
int32_t m_i;
};
int m_channelSampleRate;
int m_channelFrequencyOffset;
UDPSinkSettings m_settings;
QUdpSocket *m_audioSocket;
double m_magsq;
double m_inMagsq;
MovingAverage<double> m_outMovingAverage;
MovingAverage<double> m_inMovingAverage;
MovingAverage<double> m_amMovingAverage;
Real m_scale;
Complex m_last, m_this;
NCO m_nco;
Interpolator m_interpolator;
Real m_sampleDistanceRemain;
fftfilt* UDPFilter;
SampleVector m_sampleBuffer;
UDPSinkUtil<Sample16> *m_udpBuffer16;
UDPSinkUtil<int16_t> *m_udpBufferMono16;
UDPSinkUtil<Sample24> *m_udpBuffer24;
AudioVector m_audioBuffer;
uint m_audioBufferFill;
AudioFifo m_audioFifo;
BasebandSampleSink* m_spectrum;
bool m_spectrumEnabled;
bool m_spectrumPositiveOnly;
quint32 m_nextSSBId;
quint32 m_nextS16leId;
char *m_udpAudioBuf;
static const int m_udpAudioPayloadSize = 8192; //!< UDP audio samples buffer. No UDP block on Earth is larger than this
static const Real m_agcTarget;
PhaseDiscriminators m_phaseDiscri;
double m_squelch;
bool m_squelchOpen;
int m_squelchOpenCount;
int m_squelchCloseCount;
int m_squelchGate; //!< number of samples computed from given gate
int m_squelchRelease;
MagAGC m_agc;
Bandpass<double> m_bandpass;
inline void calculateSquelch(double value)
{
if ((!m_settings.m_squelchEnabled) || (value > m_squelch))
{
if (m_squelchGate == 0)
{
m_squelchOpen = true;
}
else
{
if (m_squelchOpenCount < m_squelchGate)
{
m_squelchOpenCount++;
}
else
{
m_squelchCloseCount = m_squelchRelease;
m_squelchOpen = true;
}
}
}
else
{
if (m_squelchGate == 0)
{
m_squelchOpen = false;
}
else
{
if (m_squelchCloseCount > 0)
{
m_squelchCloseCount--;
}
else
{
m_squelchOpenCount = 0;
m_squelchOpen = false;
}
}
}
}
inline void initSquelch(bool open)
{
if (open)
{
m_squelchOpen = true;
m_squelchOpenCount = m_squelchGate;
m_squelchCloseCount = m_squelchRelease;
}
else
{
m_squelchOpen = false;
m_squelchOpenCount = 0;
m_squelchCloseCount = 0;
}
}
void udpWrite(FixReal real, FixReal imag)
{
if (SDR_RX_SAMP_SZ == 16)
{
if (m_settings.m_sampleFormat == UDPSinkSettings::FormatIQ16) {
m_udpBuffer16->write(Sample16(real, imag));
} else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatIQ24) {
m_udpBuffer24->write(Sample24(real<<8, imag<<8));
} else {
m_udpBuffer16->write(Sample16(real, imag));
}
}
else if (SDR_RX_SAMP_SZ == 24)
{
if (m_settings.m_sampleFormat == UDPSinkSettings::FormatIQ16) {
m_udpBuffer16->write(Sample16(real>>8, imag>>8));
} else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatIQ24) {
m_udpBuffer24->write(Sample24(real, imag));
} else {
m_udpBuffer16->write(Sample16(real>>8, imag>>8));
}
}
}
void udpWriteMono(FixReal sample)
{
if (SDR_RX_SAMP_SZ == 16) {
m_udpBufferMono16->write(sample);
} else if (SDR_RX_SAMP_SZ == 24) {
m_udpBufferMono16->write(sample>>8);
}
}
void udpWriteNorm(Real real, Real imag) {
m_udpBuffer16->write(Sample16(real*32768.0, imag*32768.0));
}
void udpWriteNormMono(Real sample) {
m_udpBufferMono16->write(sample*32768.0);
}
};
#endif // INCLUDE_UDPSINKSINK_H