1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-22 16:08:39 -05:00
sdrangel/sdrbase/dsp/costasloop.h

123 lines
4.2 KiB
C
Raw Normal View History

///////////////////////////////////////////////////////////////////////////////////
// Copyright 2006-2021 Free Software Foundation, Inc. //
// Copyright (C) 2018 Edouard Griffiths, F4EXB //
// Copyright (C) 2021 Jon Beniston, M7RCE //
// //
// Based on the Costas Loop from GNU Radio //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef SDRBASE_DSP_COSTASLOOP_H_
#define SDRBASE_DSP_COSTASLOOP_H_
#include <QDebug>
#include "dsp/dsptypes.h"
#include "export.h"
/** Costas Loop for phase and frequency tracking. */
class SDRBASE_API CostasLoop
{
public:
CostasLoop(float loopBW, unsigned int pskOrder);
~CostasLoop();
void computeCoefficients(float loopBW);
void setPskOrder(unsigned int pskOrder) { m_pskOrder = pskOrder; }
void reset();
void setSampleRate(unsigned int sampleRate);
void feed(float re, float im);
const std::complex<float>& getComplex() const { return m_y; }
float getReal() const { return m_y.real(); }
float getImag() const { return m_y.imag(); }
float getFreq() const { return m_freq; }
float getPhiHat() const { return m_phase; }
private:
std::complex<float> m_y;
float m_phase;
float m_freq;
float m_error;
float m_maxFreq;
float m_minFreq;
float m_alpha;
float m_beta;
unsigned int m_pskOrder;
void advanceLoop(float error)
{
m_freq = m_freq + m_beta * error;
m_phase = m_phase + m_freq + m_alpha * error;
}
void phaseWrap()
{
2021-03-05 08:59:33 -05:00
const float two_pi = (float)(2.0 * M_PI);
while (m_phase > two_pi)
m_phase -= two_pi;
while (m_phase < -two_pi)
m_phase += two_pi;
}
void frequencyLimit()
{
if (m_freq > m_maxFreq)
m_freq = m_maxFreq;
else if (m_freq < m_minFreq)
m_freq = m_minFreq;
}
void setMaxFreq(float freq)
{
m_maxFreq = freq;
}
void setMinFreq(float freq)
{
m_minFreq = freq;
}
float phaseDetector2(std::complex<float> sample) const // for BPSK
{
return (sample.real() * sample.imag());
}
float phaseDetector4(std::complex<float> sample) const // for QPSK
{
return ((sample.real() > 0.0f ? 1.0f : -1.0f) * sample.imag() -
(sample.imag() > 0.0f ? 1.0f : -1.0f) * sample.real());
};
float phaseDetector8(std::complex<float> sample) const // for 8PSK
{
const float K = (sqrtf(2.0) - 1);
if (fabsf(sample.real()) >= fabsf(sample.imag()))
{
return ((sample.real() > 0.0f ? 1.0f : -1.0f) * sample.imag() -
(sample.imag() > 0.0f ? 1.0f : -1.0f) * sample.real() * K);
}
else
{
return ((sample.real() > 0.0f ? 1.0f : -1.0f) * sample.imag() * K -
(sample.imag() > 0.0f ? 1.0f : -1.0f) * sample.real());
}
};
};
#endif /* SDRBASE_DSP_COSTASLOOP_H_ */