1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-12-23 18:15:45 -05:00
sdrangel/sdrbase/dsp/raisedcosine.h

176 lines
6.5 KiB
C
Raw Normal View History

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2020-2021, 2023 Jon Beniston, M7RCE <jon@beniston.com> //
// Copyright (C) 2020 Kacper Michajłow <kasper93@gmail.com> //
// Copyright (C) 2015 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef INCLUDE_RAISEDCOSINE_H
#define INCLUDE_RAISEDCOSINE_H
#include <cmath>
#include <cstdio>
#include "dsp/dsptypes.h"
// Raised-cosine low-pass filter for pulse shaping, without intersymbol interference (ISI)
// https://en.wikipedia.org/wiki/Raised-cosine_filter
// This could be optimised in to a polyphase filter, as samplesPerSymbol-1 inputs
// to filter() should be zero, as the data is upsampled to the sample rate
template <class Type> class RaisedCosine {
public:
RaisedCosine() : m_ptr(0) { }
// beta - roll-off factor
// symbolSpan - number of symbols over which the filter is spread
// samplesPerSymbol - number of samples per symbol
2020-10-08 10:13:06 -04:00
// normaliseUpsampledAmplitude - when true, scale the filter such that an upsampled
// (by samplesPerSymbol) bipolar sequence (E.g. [1 0 0 -1 0 0..]) has maximum
// output values close to (1,-1)
void create(double beta, int symbolSpan, int samplesPerSymbol, bool normaliseUpsampledAmplitude = false)
{
int nTaps = symbolSpan * samplesPerSymbol + 1;
2023-09-04 08:25:25 -04:00
int i;
// check constraints
if(!(nTaps & 1)) {
qDebug("Raised cosine filter has to have an odd number of taps");
nTaps++;
}
// make room
m_samples.resize(nTaps);
for(int i = 0; i < nTaps; i++)
m_samples[i] = 0;
m_ptr = 0;
m_taps.resize(nTaps / 2 + 1);
// calculate filter taps
for(i = 0; i < nTaps / 2 + 1; i++)
{
double t = (i - (nTaps / 2)) / (double)samplesPerSymbol;
double denominator = 1.0 - std::pow(2.0 * beta * t, 2.0);
double sinc;
if (denominator != 0.0)
{
if (t == 0)
sinc = 1.0;
else
sinc = sin(M_PI*t)/(M_PI*t);
m_taps[i] = sinc * (cos(M_PI*beta*t) / denominator) / (double)samplesPerSymbol;
}
else
m_taps[i] = beta * sin(M_PI/(2.0*beta)) / (2.0*samplesPerSymbol);
}
// normalize
2020-10-08 10:13:06 -04:00
if (!normaliseUpsampledAmplitude)
{
// normalize energy
double sum = 0;
for(i = 0; i < (int)m_taps.size() - 1; i++)
sum += std::pow(m_taps[i], 2.0) * 2;
sum += std::pow(m_taps[i], 2.0);
sum = std::sqrt(sum);
for(i = 0; i < (int)m_taps.size(); i++)
m_taps[i] /= sum;
}
else
{
// Calculate maximum output of filter, assuming upsampled bipolar input E.g. [1 0 0 -1 0 0..]
// This doesn't necessarily include the centre tap, as ISI there should be zero,
// it's often at the midpoint between two symbols. However, depending on beta,
// the input that produces the worst case can vary, so we currently try them all
double maxGain = 0;
for (int input = 0; input < (1 << symbolSpan); input++)
2020-10-08 10:13:06 -04:00
{
double maxV = 0;
for(int i = 0; i < nTaps; i++) {
m_samples[i] = 0;
}
for (int i = 0; i < symbolSpan; i++)
{
Type sym = (input >> i) & 1 ? 1 : -1;
for (int j = 0; j < samplesPerSymbol; j++)
{
Type out;
if (j == 1) {
out = filter(sym);
} else {
out = filter(0);
}
double outAbs = abs(out);
if (outAbs > maxV) {
maxV = outAbs;
}
}
}
if (maxV > maxGain) {
maxGain = maxV;
}
2020-10-08 10:13:06 -04:00
}
2020-10-08 10:13:06 -04:00
// Scale up so maximum out is 1
for(i = 0; i < (int)m_taps.size(); i++)
m_taps[i] /= maxGain;
}
}
Type filter(Type sample)
{
Type acc = 0;
2021-03-18 13:17:58 -04:00
unsigned int n_samples = m_samples.size();
unsigned int n_taps = m_taps.size() - 1;
unsigned int a = m_ptr;
unsigned int b = a == n_samples - 1 ? 0 : a + 1;
m_samples[m_ptr] = sample;
2021-03-18 13:17:58 -04:00
for (unsigned int i = 0; i < n_taps; ++i)
{
acc += (m_samples[a] + m_samples[b]) * m_taps[i];
2021-03-18 13:17:58 -04:00
a = (a == 0) ? n_samples - 1 : a - 1;
b = (b == n_samples - 1) ? 0 : b + 1;
}
2021-03-18 13:17:58 -04:00
acc += m_samples[a] * m_taps[n_taps];
2021-03-18 13:17:58 -04:00
m_ptr = (m_ptr == n_samples - 1) ? 0 : m_ptr + 1;
return acc;
}
// Print taps as a Matlab vector
void printTaps(const char *name)
{
printf("%s = [", name);
for (int i = 0; i <= m_taps.size() - 1; ++i) {
printf("%g ", m_taps[i]);
}
for (int i = m_taps.size() - 2; i >= 0; --i) {
printf("%g ", m_taps[i]);
}
printf("];\n");
}
private:
std::vector<Real> m_taps;
std::vector<Type> m_samples;
2021-03-18 16:33:52 -04:00
unsigned int m_ptr;
};
#endif // INCLUDE_RAISEDCOSINE_H