1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-15 21:01:45 -05:00
sdrangel/plugins/channeltx/modatv/atvmodsource.h

502 lines
20 KiB
C
Raw Normal View History

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef PLUGINS_CHANNELTX_MODATV_ATVMODSOURCE_H_
#define PLUGINS_CHANNELTX_MODATV_ATVMODSOURCE_H_
#include <vector>
#include <QObject>
#include <QMutex>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/videoio.hpp>
#include <stdint.h>
#include "dsp/channelsamplesource.h"
#include "dsp/nco.h"
#include "dsp/interpolator.h"
#include "util/movingaverage.h"
#include "dsp/fftfilt.h"
#include "util/message.h"
#include "atvmodsettings.h"
class MessageQueue;
class ATVModSource : public ChannelSampleSource
{
public:
ATVModSource();
~ATVModSource();
virtual void pull(SampleVector::iterator begin, unsigned int nbSamples);
virtual void pullOne(Sample& sample);
virtual void prefetch(unsigned int nbSamples);
int getEffectiveSampleRate() const { return m_tvSampleRate; };
double getMagSq() const { return m_movingAverage.asDouble(); }
void getCameraNumbers(std::vector<int>& numbers);
void setMessageQueueToGUI(MessageQueue *messageQueue) { m_messageQueueToGUI = messageQueue; }
2019-12-07 05:47:52 -05:00
void getLevels(qreal& rmsLevel, qreal& peakLevel, int& numSamples) const
{
rmsLevel = m_rmsLevel;
2019-12-07 05:47:52 -05:00
peakLevel = m_peakLevelOut;
numSamples = m_levelNbSamples;
}
void applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force = false);
void applySettings(const ATVModSettings& settings, bool force = false);
void openImage(const QString& fileName);
void openVideo(const QString& fileName);
void seekVideoFileStream(int seekPercentage);
void reportVideoFileSourceStreamTiming();
void configureCameraIndex(int index);
void configureCameraData(uint32_t index, float mnaualFPS, bool manualFPSEnable);
static void getBaseValues(int outputSampleRate, int linesPerSecond, int& sampleRateUnits, uint32_t& nbPointsPerRateUnit);
static float getRFBandwidthDivisor(ATVModSettings::ATVModulation modulation);
private:
class ATVCamera
{
public:
cv::VideoCapture m_camera; //!< camera object
cv::Mat m_videoframeOriginal; //!< camera non resized image
cv::Mat m_videoFrame; //!< displayable camera frame
int m_cameraNumber; //!< camera device number
float m_videoFPS; //!< camera FPS rate
float m_videoFPSManual; //!< camera FPS rate manually set
bool m_videoFPSManualEnable; //!< Enable camera FPS rate manual set value
int m_videoWidth; //!< camera frame width
int m_videoHeight; //!< camera frame height
float m_videoFx; //!< camera horizontal scaling factor
float m_videoFy; //!< camera vertictal scaling factor
float m_videoFPSq; //!< camera FPS sacaling factor
float m_videoFPSqManual; //!< camera FPS sacaling factor manually set
float m_videoFPSCount; //!< camera FPS fractional counter
int m_videoPrevFPSCount; //!< camera FPS previous integer counter
ATVCamera() :
m_cameraNumber(-1),
m_videoFPS(25.0f),
m_videoFPSManual(20.0f),
m_videoFPSManualEnable(false),
m_videoWidth(1),
m_videoHeight(1),
m_videoFx(1.0f),
m_videoFy(1.0f),
m_videoFPSq(1.0f),
m_videoFPSqManual(1.0f),
m_videoFPSCount(0.0f),
m_videoPrevFPSCount(0)
{}
ATVCamera(const ATVCamera& camera) :
m_camera(camera.m_camera),
m_videoframeOriginal(camera.m_videoframeOriginal),
m_videoFrame(camera.m_videoFrame),
m_cameraNumber(camera.m_cameraNumber),
m_videoFPS(camera.m_videoFPS),
m_videoFPSManual(camera.m_videoFPSManual),
m_videoFPSManualEnable(camera.m_videoFPSManualEnable),
m_videoWidth(camera.m_videoWidth),
m_videoHeight(camera.m_videoHeight),
m_videoFx(camera.m_videoFx),
m_videoFy(camera.m_videoFy),
m_videoFPSq(camera.m_videoFPSq),
m_videoFPSqManual(camera.m_videoFPSqManual),
m_videoFPSCount(camera.m_videoFPSCount),
m_videoPrevFPSCount(camera.m_videoPrevFPSCount)
{}
};
int m_channelSampleRate;
int m_channelFrequencyOffset;
ATVModSettings m_settings;
NCO m_carrierNco;
Complex m_modSample;
float m_modPhasor; //!< For FM modulation
Interpolator m_interpolator;
Real m_interpolatorDistance;
Real m_interpolatorDistanceRemain;
int m_tvSampleRate; //!< sample rate for generating signal
uint32_t m_pointsPerLine; //!< Number of points per full line
int m_pointsPerSync; //!< number of line points for the horizontal sync
int m_pointsPerBP; //!< number of line points for the back porch
int m_pointsPerImgLine; //!< number of line points for the image line
uint32_t m_pointsPerFP; //!< number of line points for the front porch
int m_pointsPerFSync; //!< number of line points for the field first sync
uint32_t m_pointsPerHBar; //!< number of line points for a bar of the bar chart
uint32_t m_linesPerVBar; //!< number of lines for a bar of the bar chart
uint32_t m_pointsPerTU; //!< number of line points per time unit
int m_nbLines; //!< number of lines per complete frame
int m_nbLines2; //!< same number as above (non interlaced) or half the number above (interlaced)
uint32_t m_nbImageLines; //!< number of image lines excluding synchronization lines
uint32_t m_nbImageLines2; //!< same number as above (non interlaced) or half the number above (interlaced)
int m_nbHorizPoints; //!< number of line points per horizontal line
int m_nbSyncLinesHeadE; //!< number of header sync lines on even frame
int m_nbSyncLinesHeadO; //!< number of header sync lines on odd frame
int m_nbSyncLinesBottom;//!< number of sync lines at bottom
int m_nbLongSyncLines; //!< number of whole long sync lines for vertical synchronization
int m_nbHalfLongSync; //!< number of half long sync / equalization lines
int m_nbWholeEqLines; //!< number of whole equalizing lines
bool m_singleLongSync; //!< single or double long sync per long sync line
int m_nbBlankLines; //!< number of lines in a frame (full or half) that are blanked (black) at the top of the image
float m_blankLineLvel; //!< video level of blank lines
float m_hBarIncrement; //!< video level increment at each horizontal bar increment
float m_vBarIncrement; //!< video level increment at each vertical bar increment
bool m_interleaved; //!< true if image is interlaced (2 half frames per frame)
bool m_evenImage; //!< in interlaced mode true if this is an even image
int m_horizontalCount; //!< current point index on line
int m_lineCount; //!< current line index in frame
float m_fps; //!< resulting frames per second
MovingAverageUtil<double, double, 16> m_movingAverage;
quint32 m_levelCalcCount;
2019-12-07 05:47:52 -05:00
qreal m_rmsLevel;
qreal m_peakLevelOut;
Real m_peakLevel;
Real m_levelSum;
cv::Mat m_imageFromFile; //!< original image not resized not overlaid by text
cv::Mat m_imageOriginal; //!< original not resized image
cv::Mat m_image; //!< resized image for transmission at given rate
bool m_imageOK;
cv::VideoCapture m_video; //!< current video capture
cv::Mat m_videoframeOriginal; //!< current frame from video
cv::Mat m_videoFrame; //!< current displayable video frame
float m_videoFPS; //!< current video FPS rate
int m_videoWidth; //!< current video frame width
int m_videoHeight; //!< current video frame height
float m_videoFx; //!< current video horizontal scaling factor
float m_videoFy; //!< current video vertictal scaling factor
float m_videoFPSq; //!< current video FPS sacaling factor
float m_videoFPSCount; //!< current video FPS fractional counter
int m_videoPrevFPSCount; //!< current video FPS previous integer counter
int m_videoLength; //!< current video length in frames
bool m_videoEOF; //!< current video has reached end of file
bool m_videoOK;
std::vector<ATVCamera> m_cameras; //!< vector of available cameras
int m_cameraIndex; //!< curent camera index in list of available cameras
std::string m_overlayText;
QString m_imageFileName;
QString m_videoFileName;
// Used for standard SSB
fftfilt* m_SSBFilter;
Complex* m_SSBFilterBuffer;
int m_SSBFilterBufferIndex;
// Used for vestigial SSB with asymmetrical filtering (needs double sideband scheme)
fftfilt* m_DSBFilter;
Complex* m_DSBFilterBuffer;
int m_DSBFilterBufferIndex;
MessageQueue *m_messageQueueToGUI;
static const int m_ssbFftLen;
static const float m_blackLevel;
static const float m_spanLevel;
static const int m_levelNbSamples;
static const int m_nbBars; //!< number of bars in bar or chessboard patterns
static const int m_cameraFPSTestNbFrames; //!< number of frames for camera FPS test
void pullFinalize(Complex& ci, Sample& sample);
void pullVideo(Real& sample);
void calculateLevel(Real& sample);
void modulateSample();
Complex& modulateSSB(Real& sample);
Complex& modulateVestigialSSB(Real& sample);
void applyStandard(const ATVModSettings& settings);
void resizeImage();
void calculateVideoSizes();
void resizeVideo();
void scanCameras();
void releaseCameras();
void calculateCamerasSizes();
void resizeCameras();
void resizeCamera();
void mixImageAndText(cv::Mat& image);
MessageQueue *getMessageQueueToGUI() { return m_messageQueueToGUI; }
inline void pullImageLine(Real& sample, bool noHSync = false)
{
if (m_horizontalCount < m_pointsPerSync) // sync pulse
{
sample = noHSync ? m_blackLevel : 0.0f; // ultra-black
}
else if (m_horizontalCount < m_pointsPerSync + m_pointsPerBP) // back porch
{
sample = m_blackLevel; // black
}
else if (m_horizontalCount < m_pointsPerSync + m_pointsPerBP + m_pointsPerImgLine)
{
int pointIndex = m_horizontalCount - (m_pointsPerSync + m_pointsPerBP);
int oddity = m_lineCount < m_nbLines2 + 1 ? 0 : 1;
int iLine = oddity == 0 ? m_lineCount : m_lineCount - m_nbLines2 - 1;
int iLineImage = iLine - m_nbBlankLines - (oddity == 0 ? m_nbSyncLinesHeadE : m_nbSyncLinesHeadO);
switch(m_settings.m_atvModInput)
{
case ATVModSettings::ATVModInputHBars:
sample = (pointIndex / m_pointsPerHBar) * m_hBarIncrement + m_blackLevel;
break;
case ATVModSettings::ATVModInputVBars:
sample = (iLine / m_linesPerVBar) * m_vBarIncrement + m_blackLevel;
break;
case ATVModSettings::ATVModInputChessboard:
sample = (((iLine / m_linesPerVBar)*5 + (pointIndex / m_pointsPerHBar)) % 2) * m_spanLevel * m_settings.m_uniformLevel + m_blackLevel;
break;
case ATVModSettings::ATVModInputHGradient:
sample = (pointIndex / (float) m_pointsPerImgLine) * m_spanLevel + m_blackLevel;
break;
case ATVModSettings::ATVModInputVGradient:
sample = ((iLine -5) / (float) m_nbImageLines2) * m_spanLevel + m_blackLevel;
break;
case ATVModSettings::ATVModInputImage:
if (!m_imageOK || (iLineImage < -oddity) || m_image.empty())
{
sample = m_spanLevel * m_settings.m_uniformLevel + m_blackLevel;
}
else
{
unsigned char pixv;
if (m_interleaved) {
pixv = m_image.at<unsigned char>(2*iLineImage + oddity, pointIndex); // row (y), col (x)
} else {
pixv = m_image.at<unsigned char>(iLineImage, pointIndex); // row (y), col (x)
}
sample = (pixv / 256.0f) * m_spanLevel + m_blackLevel;
}
break;
case ATVModSettings::ATVModInputVideo:
if (!m_videoOK || (iLineImage < -oddity) || m_videoFrame.empty())
{
sample = m_spanLevel * m_settings.m_uniformLevel + m_blackLevel;
}
else
{
unsigned char pixv;
if (m_interleaved) {
pixv = m_videoFrame.at<unsigned char>(2*iLineImage + oddity, pointIndex); // row (y), col (x)
} else {
pixv = m_videoFrame.at<unsigned char>(iLineImage, pointIndex); // row (y), col (x)
}
sample = (pixv / 256.0f) * m_spanLevel + m_blackLevel;
}
break;
case ATVModSettings::ATVModInputCamera:
if ((iLineImage < -oddity) || (m_cameraIndex < 0))
{
sample = m_spanLevel * m_settings.m_uniformLevel + m_blackLevel;
}
else
{
ATVCamera& camera = m_cameras[m_cameraIndex];
if (camera.m_videoFrame.empty())
{
sample = m_spanLevel * m_settings.m_uniformLevel + m_blackLevel;
}
else
{
unsigned char pixv;
if (m_interleaved) {
pixv = camera.m_videoFrame.at<unsigned char>(2*iLineImage + oddity, pointIndex); // row (y), col (x)
} else {
pixv = camera.m_videoFrame.at<unsigned char>(iLineImage, pointIndex); // row (y), col (x)
}
sample = (pixv / 256.0f) * m_spanLevel + m_blackLevel;
}
}
break;
case ATVModSettings::ATVModInputUniform:
default:
sample = m_spanLevel * m_settings.m_uniformLevel + m_blackLevel;
}
}
else // front porch
{
sample = m_blackLevel; // black
}
}
inline void pullVSyncLineLongPulses(Real& sample)
{
int halfIndex = m_horizontalCount % (m_nbHorizPoints/2);
if (halfIndex < (m_nbHorizPoints/2) - m_pointsPerSync) // ultra-black
{
sample = 0.0f;
}
else // black
{
if (m_singleLongSync && (m_horizontalCount < m_nbHorizPoints/2)) {
sample = 0.0f;
} else {
sample = m_blackLevel;
}
}
}
inline void pullVSyncLineEqualizingPulses(Real& sample)
{
if (m_horizontalCount < m_pointsPerSync)
{
sample = 0.0f; // ultra-black
}
else if (m_horizontalCount < (m_nbHorizPoints/2))
{
sample = m_blackLevel; // black
}
else if (m_horizontalCount < (m_nbHorizPoints/2) + m_pointsPerFSync)
{
sample = 0.0f; // ultra-black
}
else
{
sample = m_blackLevel; // black
}
}
inline void pullVSyncLineEqualizingThenLongPulses(Real& sample)
{
if (m_horizontalCount < m_pointsPerSync)
{
sample = 0.0f; // ultra-black
}
else if (m_horizontalCount < (m_nbHorizPoints/2))
{
sample = m_blackLevel; // black
}
else if (m_horizontalCount < m_nbHorizPoints - m_pointsPerSync)
{
sample = 0.0f; // ultra-black
}
else
{
sample = m_blackLevel; // black
}
}
inline void pullVSyncLineLongThenEqualizingPulses(Real& sample)
{
if (m_horizontalCount < (m_nbHorizPoints/2) - m_pointsPerSync)
{
sample = 0.0f; // ultra-black
}
else if (m_horizontalCount < (m_nbHorizPoints/2))
{
sample = m_blackLevel; // black
}
else if (m_horizontalCount < (m_nbHorizPoints/2) + m_pointsPerFSync)
{
sample = 0.0f; // ultra-black
}
else
{
sample = m_blackLevel; // black
}
}
inline void pullVSyncLine(Real& sample)
{
if (m_lineCount < m_nbLines2 + 1) // even
{
int fieldLine = m_lineCount;
if (fieldLine < m_nbLongSyncLines) // 0,1: Whole line "long" pulses
{
pullVSyncLineLongPulses(sample);
}
else if (fieldLine < m_nbLongSyncLines + m_nbHalfLongSync) // long pulse then equalizing pulse
{
pullVSyncLineLongThenEqualizingPulses(sample);
}
else if (fieldLine < m_nbLongSyncLines + m_nbHalfLongSync + m_nbWholeEqLines) // Whole line equalizing pulses
{
pullVSyncLineEqualizingPulses(sample);
}
else if (fieldLine > m_nbLines2 - m_nbHalfLongSync) // equalizing pulse then long pulse
{
pullVSyncLineEqualizingThenLongPulses(sample);
}
else if (fieldLine > m_nbLines2 - m_nbHalfLongSync - m_nbWholeEqLines) // Whole line equalizing pulses
{
pullVSyncLineEqualizingPulses(sample);
}
else // black images
{
if (m_horizontalCount < m_pointsPerSync)
{
sample = 0.0f;
}
else
{
sample = m_blankLineLvel;
}
}
}
else // odd
{
int fieldLine = m_lineCount - m_nbLines2 - 1;
if (fieldLine < m_nbLongSyncLines) // 0,1: Whole line "long" pulses
{
pullVSyncLineLongPulses(sample);
}
else if (fieldLine < m_nbLongSyncLines + m_nbWholeEqLines) // Whole line equalizing pulses
{
pullVSyncLineEqualizingPulses(sample);
}
else if (fieldLine > m_nbLines2 - 1 - m_nbWholeEqLines - m_nbHalfLongSync) // Whole line equalizing pulses
{
pullVSyncLineEqualizingPulses(sample);
}
else // black images
{
if (m_horizontalCount < m_pointsPerSync)
{
sample = 0.0f;
}
else
{
sample = m_blankLineLvel;
}
}
}
}
};
#endif /* PLUGINS_CHANNELTX_MODATV_ATVMOD_H_ */