1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-18 06:11:46 -05:00
sdrangel/libfreedv/fdmdv.cpp

1996 lines
59 KiB
C++
Raw Normal View History

2019-03-04 19:01:38 -05:00
/*---------------------------------------------------------------------------*\
FILE........: fdmdv.c
AUTHOR......: David Rowe
DATE CREATED: April 14 2012
Functions that implement the FDMDV modem.
\*---------------------------------------------------------------------------*/
/*
Copyright (C) 2012 David Rowe
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License version 2.1, as
published by the Free Software Foundation. This program is
distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*---------------------------------------------------------------------------*\
INCLUDES
\*---------------------------------------------------------------------------*/
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "fdv_arm_math.h"
#include "fdmdv_internal.h"
#include "codec2_fdmdv.h"
#include "comp_prim.h"
2019-03-04 19:01:38 -05:00
#include "rn.h"
#include "rxdec_coeff.h"
#include "test_bits.h"
#include "pilot_coeff.h"
#include "codec2_fft.h"
#include "hanning.h"
#include "os.h"
#include "machdep.h"
namespace FreeDV
{
static int sync_uw[] = {1,-1,1,-1,1,-1};
#ifdef __EMBEDDED__
#define printf gdb_stdio_printf
#endif
static const COMP pi_on_4 = { .70710678118654752439, .70710678118654752439 }; // COSF(PI/4) , SINF(PI/4)
/*--------------------------------------------------------------------------* \
FUNCTION....: fdmdv_create
AUTHOR......: David Rowe
DATE CREATED: 16/4/2012
Create and initialise an instance of the modem. Returns a pointer
to the modem states or NULL on failure. One set of states is
sufficient for a full duplex modem.
\*---------------------------------------------------------------------------*/
struct FDMDV * fdmdv_create(int Nc)
{
struct FDMDV *f;
int c, i, k;
assert(NC == FDMDV_NC_MAX); /* check public and private #defines match */
assert(Nc <= NC);
assert(FDMDV_NOM_SAMPLES_PER_FRAME == M_FAC);
assert(FDMDV_MAX_SAMPLES_PER_FRAME == (M_FAC+M_FAC/P));
f = (struct FDMDV*) malloc(sizeof(struct FDMDV));
if (f == NULL)
return NULL;
f->Nc = Nc;
f->ntest_bits = Nc*NB*4;
f->current_test_bit = 0;
f->rx_test_bits_mem = (int*) malloc(sizeof(int)*f->ntest_bits);
assert(f->rx_test_bits_mem != NULL);
for(i=0; i<f->ntest_bits; i++)
f->rx_test_bits_mem[i] = 0;
assert((sizeof(test_bits)/sizeof(int)) >= (std::size_t) f->ntest_bits);
2019-03-04 19:01:38 -05:00
f->old_qpsk_mapping = 0;
f->tx_pilot_bit = 0;
for(c=0; c<Nc+1; c++) {
f->prev_tx_symbols[c].real = 1.0;
f->prev_tx_symbols[c].imag = 0.0;
f->prev_rx_symbols[c].real = 1.0;
f->prev_rx_symbols[c].imag = 0.0;
for(k=0; k<NSYM; k++) {
f->tx_filter_memory[c][k].real = 0.0;
f->tx_filter_memory[c][k].imag = 0.0;
}
/* Spread initial FDM carrier phase out as far as possible.
This helped PAPR for a few dB. We don't need to adjust rx
phase as DQPSK takes care of that. */
f->phase_tx[c].real = COSF(2.0*PI*c/(Nc+1));
f->phase_tx[c].imag = SINF(2.0*PI*c/(Nc+1));
f->phase_rx[c].real = 1.0;
f->phase_rx[c].imag = 0.0;
for(k=0; k<NT*P; k++) {
f->rx_filter_mem_timing[c][k].real = 0.0;
f->rx_filter_mem_timing[c][k].imag = 0.0;
}
}
f->prev_tx_symbols[Nc].real = 2.0;
fdmdv_set_fsep(f, FSEP);
f->freq[Nc].real = COSF(2.0*PI*0.0/FS);
f->freq[Nc].imag = SINF(2.0*PI*0.0/FS);
f->freq_pol[Nc] = 2.0*PI*0.0/FS;
f->fbb_rect.real = COSF(2.0*PI*FDMDV_FCENTRE/FS);
f->fbb_rect.imag = SINF(2.0*PI*FDMDV_FCENTRE/FS);
f->fbb_pol = 2.0*PI*FDMDV_FCENTRE/FS;
f->fbb_phase_tx.real = 1.0;
f->fbb_phase_tx.imag = 0.0;
f->fbb_phase_rx.real = 1.0;
f->fbb_phase_rx.imag = 0.0;
/* Generate DBPSK pilot Look Up Table (LUT) */
generate_pilot_lut(f->pilot_lut, &f->freq[Nc]);
/* freq Offset estimation states */
f->fft_pilot_cfg = codec2_fft_alloc (MPILOTFFT, 0, NULL, NULL);
assert(f->fft_pilot_cfg != NULL);
for(i=0; i<NPILOTBASEBAND; i++) {
f->pilot_baseband1[i].real = f->pilot_baseband2[i].real = 0.0;
f->pilot_baseband1[i].imag = f->pilot_baseband2[i].imag = 0.0;
}
f->pilot_lut_index = 0;
f->prev_pilot_lut_index = 3*M_FAC;
for(i=0; i<NRXDECMEM; i++) {
f->rxdec_lpf_mem[i].real = 0.0;
f->rxdec_lpf_mem[i].imag = 0.0;
}
for(i=0; i<NPILOTLPF; i++) {
f->pilot_lpf1[i].real = f->pilot_lpf2[i].real = 0.0;
f->pilot_lpf1[i].imag = f->pilot_lpf2[i].imag = 0.0;
}
f->foff = 0.0;
f->foff_phase_rect.real = 1.0;
f->foff_phase_rect.imag = 0.0;
for(i=0; i<NRX_FDM_MEM; i++) {
f->rx_fdm_mem[i].real = 0.0;
f->rx_fdm_mem[i].imag = 0.0;
}
f->fest_state = 0;
f->sync = 0;
f->timer = 0;
for(i=0; i<NSYNC_MEM; i++)
f->sync_mem[i] = 0;
for(c=0; c<Nc+1; c++) {
f->sig_est[c] = 0.0;
f->noise_est[c] = 0.0;
}
f->sig_pwr_av = 0.0;
f->foff_filt = 0.0;
return f;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_destroy
AUTHOR......: David Rowe
DATE CREATED: 16/4/2012
Destroy an instance of the modem.
\*---------------------------------------------------------------------------*/
void fdmdv_destroy(struct FDMDV *fdmdv)
{
assert(fdmdv != NULL);
codec2_fft_free(fdmdv->fft_pilot_cfg);
free(fdmdv->rx_test_bits_mem);
free(fdmdv);
}
void fdmdv_use_old_qpsk_mapping(struct FDMDV *fdmdv) {
fdmdv->old_qpsk_mapping = 1;
}
int fdmdv_bits_per_frame(struct FDMDV *fdmdv)
{
return (fdmdv->Nc * NB);
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_get_test_bits()
AUTHOR......: David Rowe
DATE CREATED: 16/4/2012
Generate a frame of bits from a repeating sequence of random data. OK so
it's not very random if it repeats but it makes syncing at the demod easier
for test purposes.
\*---------------------------------------------------------------------------*/
void fdmdv_get_test_bits(struct FDMDV *f, int tx_bits[])
{
int i;
int bits_per_frame = fdmdv_bits_per_frame(f);
for(i=0; i<bits_per_frame; i++) {
tx_bits[i] = test_bits[f->current_test_bit];
f->current_test_bit++;
if (f->current_test_bit > (f->ntest_bits-1))
f->current_test_bit = 0;
}
}
float fdmdv_get_fsep(struct FDMDV *f)
{
return f->fsep;
}
void fdmdv_set_fsep(struct FDMDV *f, float fsep) {
int c;
float carrier_freq;
f->fsep = fsep;
/* Set up frequency of each carrier */
for(c=0; c<f->Nc/2; c++) {
carrier_freq = (-f->Nc/2 + c)*f->fsep;
f->freq[c].real = COSF(2.0*PI*carrier_freq/FS);
f->freq[c].imag = SINF(2.0*PI*carrier_freq/FS);
f->freq_pol[c] = 2.0*PI*carrier_freq/FS;
}
for(c=f->Nc/2; c<f->Nc; c++) {
carrier_freq = (-f->Nc/2 + c + 1)*f->fsep;
f->freq[c].real = COSF(2.0*PI*carrier_freq/FS);
f->freq[c].imag = SINF(2.0*PI*carrier_freq/FS);
f->freq_pol[c] = 2.0*PI*carrier_freq/FS;
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: bits_to_dqpsk_symbols()
AUTHOR......: David Rowe
DATE CREATED: 16/4/2012
Maps bits to parallel DQPSK symbols. Generate Nc+1 QPSK symbols from
vector of (1,Nc*Nb) input tx_bits. The Nc+1 symbol is the +1 -1 +1
.... BPSK sync carrier.
\*---------------------------------------------------------------------------*/
void bits_to_dqpsk_symbols(COMP tx_symbols[], int Nc, COMP prev_tx_symbols[], int tx_bits[], int *pilot_bit, int old_qpsk_mapping)
{
int c, msb, lsb;
COMP j = {0.0,1.0};
/* Map tx_bits to to Nc DQPSK symbols. Note legacy support for
old (suboptimal) V0.91 FreeDV mapping */
for(c=0; c<Nc; c++) {
msb = tx_bits[2*c];
lsb = tx_bits[2*c+1];
if ((msb == 0) && (lsb == 0))
tx_symbols[c] = prev_tx_symbols[c];
if ((msb == 0) && (lsb == 1))
tx_symbols[c] = cmult(j, prev_tx_symbols[c]);
if ((msb == 1) && (lsb == 0)) {
if (old_qpsk_mapping)
tx_symbols[c] = cneg(prev_tx_symbols[c]);
else
tx_symbols[c] = cmult(cneg(j),prev_tx_symbols[c]);
}
if ((msb == 1) && (lsb == 1)) {
if (old_qpsk_mapping)
tx_symbols[c] = cmult(cneg(j),prev_tx_symbols[c]);
else
tx_symbols[c] = cneg(prev_tx_symbols[c]);
}
}
/* +1 -1 +1 -1 BPSK sync carrier, once filtered becomes (roughly)
two spectral lines at +/- Rs/2 */
if (*pilot_bit)
tx_symbols[Nc] = cneg(prev_tx_symbols[Nc]);
else
tx_symbols[Nc] = prev_tx_symbols[Nc];
if (*pilot_bit)
*pilot_bit = 0;
else
*pilot_bit = 1;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: tx_filter()
AUTHOR......: David Rowe
DATE CREATED: 17/4/2012
Given Nc*NB bits construct M_FAC samples (1 symbol) of Nc+1 filtered
symbols streams.
\*---------------------------------------------------------------------------*/
void tx_filter(COMP tx_baseband[NC+1][M_FAC], int Nc, COMP tx_symbols[], COMP tx_filter_memory[NC+1][NSYM])
{
int c;
int i,j,k;
float acc;
COMP gain;
gain.real = sqrtf(2.0)/2.0;
gain.imag = 0.0;
for(c=0; c<Nc+1; c++)
tx_filter_memory[c][NSYM-1] = cmult(tx_symbols[c], gain);
/*
tx filter each symbol, generate M_FAC filtered output samples for each symbol.
Efficient polyphase filter techniques used as tx_filter_memory is sparse
*/
for(i=0; i<M_FAC; i++) {
for(c=0; c<Nc+1; c++) {
/* filter real sample of symbol for carrier c */
acc = 0.0;
for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC)
acc += M_FAC * tx_filter_memory[c][j].real * gt_alpha5_root[k];
tx_baseband[c][i].real = acc;
/* filter imag sample of symbol for carrier c */
acc = 0.0;
for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC)
acc += M_FAC * tx_filter_memory[c][j].imag * gt_alpha5_root[k];
tx_baseband[c][i].imag = acc;
}
}
/* shift memory, inserting zeros at end */
for(i=0; i<NSYM-1; i++)
for(c=0; c<Nc+1; c++)
tx_filter_memory[c][i] = tx_filter_memory[c][i+1];
for(c=0; c<Nc+1; c++) {
tx_filter_memory[c][NSYM-1].real = 0.0;
tx_filter_memory[c][NSYM-1].imag = 0.0;
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: tx_filter_and_upconvert()
AUTHOR......: David Rowe
DATE CREATED: 13 August 2014
Given Nc symbols construct M_FAC samples (1 symbol) of Nc+1 filtered
and upconverted symbols.
\*---------------------------------------------------------------------------*/
void tx_filter_and_upconvert(COMP tx_fdm[], int Nc, COMP tx_symbols[],
COMP tx_filter_memory[NC+1][NSYM],
COMP phase_tx[], COMP freq[],
COMP *fbb_phase, COMP fbb_rect)
{
int c;
int i,j,k;
float acc;
COMP gain;
COMP tx_baseband;
COMP two = {2.0, 0.0};
float mag;
gain.real = sqrtf(2.0)/2.0;
gain.imag = 0.0;
for(i=0; i<M_FAC; i++) {
tx_fdm[i].real = 0.0;
tx_fdm[i].imag = 0.0;
}
for(c=0; c<Nc+1; c++)
tx_filter_memory[c][NSYM-1] = cmult(tx_symbols[c], gain);
/*
tx filter each symbol, generate M_FAC filtered output samples for
each symbol, which we then freq shift and sum with other
carriers. Efficient polyphase filter techniques used as
tx_filter_memory is sparse
*/
for(c=0; c<Nc+1; c++) {
for(i=0; i<M_FAC; i++) {
/* filter real sample of symbol for carrier c */
acc = 0.0;
for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC)
acc += M_FAC * tx_filter_memory[c][j].real * gt_alpha5_root[k];
tx_baseband.real = acc;
/* filter imag sample of symbol for carrier c */
acc = 0.0;
for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC)
acc += M_FAC * tx_filter_memory[c][j].imag * gt_alpha5_root[k];
tx_baseband.imag = acc;
/* freq shift and sum */
phase_tx[c] = cmult(phase_tx[c], freq[c]);
tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband, phase_tx[c]));
}
}
/* shift whole thing up to carrier freq */
for (i=0; i<M_FAC; i++) {
*fbb_phase = cmult(*fbb_phase, fbb_rect);
tx_fdm[i] = cmult(tx_fdm[i], *fbb_phase);
}
/*
Scale such that total Carrier power C of real(tx_fdm) = Nc. This
excludes the power of the pilot tone.
We return the complex (single sided) signal to make frequency
shifting for the purpose of testing easier
*/
for (i=0; i<M_FAC; i++)
tx_fdm[i] = cmult(two, tx_fdm[i]);
/* normalise digital oscillators as the magnitude can drift over time */
for (c=0; c<Nc+1; c++) {
mag = cabsolute(phase_tx[c]);
phase_tx[c].real /= mag;
phase_tx[c].imag /= mag;
}
mag = cabsolute(*fbb_phase);
fbb_phase->real /= mag;
fbb_phase->imag /= mag;
/* shift memory, inserting zeros at end */
for(i=0; i<NSYM-1; i++)
for(c=0; c<Nc+1; c++)
tx_filter_memory[c][i] = tx_filter_memory[c][i+1];
for(c=0; c<Nc+1; c++) {
tx_filter_memory[c][NSYM-1].real = 0.0;
tx_filter_memory[c][NSYM-1].imag = 0.0;
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdm_upconvert()
AUTHOR......: David Rowe
DATE CREATED: 17/4/2012
Construct FDM signal by frequency shifting each filtered symbol
stream. Returns complex signal so we can apply frequency offsets
easily.
\*---------------------------------------------------------------------------*/
void fdm_upconvert(COMP tx_fdm[], int Nc, COMP tx_baseband[NC+1][M_FAC], COMP phase_tx[], COMP freq[],
COMP *fbb_phase, COMP fbb_rect)
{
int i,c;
COMP two = {2.0, 0.0};
float mag;
for(i=0; i<M_FAC; i++) {
tx_fdm[i].real = 0.0;
tx_fdm[i].imag = 0.0;
}
for (c=0; c<=Nc; c++)
for (i=0; i<M_FAC; i++) {
phase_tx[c] = cmult(phase_tx[c], freq[c]);
tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband[c][i], phase_tx[c]));
}
/* shift whole thing up to carrier freq */
for (i=0; i<M_FAC; i++) {
*fbb_phase = cmult(*fbb_phase, fbb_rect);
tx_fdm[i] = cmult(tx_fdm[i], *fbb_phase);
}
/*
Scale such that total Carrier power C of real(tx_fdm) = Nc. This
excludes the power of the pilot tone.
We return the complex (single sided) signal to make frequency
shifting for the purpose of testing easier
*/
for (i=0; i<M_FAC; i++)
tx_fdm[i] = cmult(two, tx_fdm[i]);
/* normalise digital oscilators as the magnitude can drift over time */
for (c=0; c<Nc+1; c++) {
mag = cabsolute(phase_tx[c]);
phase_tx[c].real /= mag;
phase_tx[c].imag /= mag;
}
mag = cabsolute(*fbb_phase);
fbb_phase->real /= mag;
fbb_phase->imag /= mag;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_mod()
AUTHOR......: David Rowe
DATE CREATED: 26/4/2012
FDMDV modulator, take a frame of FDMDV_BITS_PER_FRAME bits and
generates a frame of FDMDV_SAMPLES_PER_FRAME modulated symbols.
Sync bit is returned to aid alignment of your next frame.
The sync_bit value returned will be used for the _next_ frame.
The output signal is complex to support single sided frequency
shifting, for example when testing frequency offsets in channel
simulation.
\*---------------------------------------------------------------------------*/
void fdmdv_mod(struct FDMDV *fdmdv, COMP tx_fdm[], int tx_bits[], int *sync_bit)
{
COMP tx_symbols[NC+1];
PROFILE_VAR(mod_start, tx_filter_and_upconvert_start);
PROFILE_SAMPLE(mod_start);
bits_to_dqpsk_symbols(tx_symbols, fdmdv->Nc, fdmdv->prev_tx_symbols, tx_bits, &fdmdv->tx_pilot_bit, fdmdv->old_qpsk_mapping);
memcpy(fdmdv->prev_tx_symbols, tx_symbols, sizeof(COMP)*(fdmdv->Nc+1));
PROFILE_SAMPLE_AND_LOG(tx_filter_and_upconvert_start, mod_start, " bits_to_dqpsk_symbols");
tx_filter_and_upconvert(tx_fdm, fdmdv->Nc, tx_symbols, fdmdv->tx_filter_memory,
fdmdv->phase_tx, fdmdv->freq, &fdmdv->fbb_phase_tx, fdmdv->fbb_rect);
PROFILE_SAMPLE_AND_LOG2(tx_filter_and_upconvert_start, " tx_filter_and_upconvert");
*sync_bit = fdmdv->tx_pilot_bit;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: generate_pilot_fdm()
AUTHOR......: David Rowe
DATE CREATED: 19/4/2012
Generate M_FAC samples of DBPSK pilot signal for Freq offset estimation.
\*---------------------------------------------------------------------------*/
void generate_pilot_fdm(COMP *pilot_fdm, int *bit, float *symbol,
float *filter_mem, COMP *phase, COMP *freq)
{
int i,j,k;
float tx_baseband[M_FAC];
/* +1 -1 +1 -1 DBPSK sync carrier, once filtered becomes (roughly)
two spectral lines at +/- RS/2 */
if (*bit)
*symbol = -*symbol;
if (*bit)
*bit = 0;
else
*bit = 1;
/* filter DPSK symbol to create M_FAC baseband samples */
filter_mem[NFILTER-1] = (sqrtf(2)/2) * *symbol;
for(i=0; i<M_FAC; i++) {
tx_baseband[i] = 0.0;
for(j=M_FAC-1,k=M_FAC-i-1; j<NFILTER; j+=M_FAC,k+=M_FAC)
tx_baseband[i] += M_FAC * filter_mem[j] * gt_alpha5_root[k];
}
/* shift memory, inserting zeros at end */
for(i=0; i<NFILTER-M_FAC; i++)
filter_mem[i] = filter_mem[i+M_FAC];
for(i=NFILTER-M_FAC; i<NFILTER; i++)
filter_mem[i] = 0.0;
/* upconvert */
for(i=0; i<M_FAC; i++) {
*phase = cmult(*phase, *freq);
pilot_fdm[i].real = sqrtf(2)*2*tx_baseband[i] * phase->real;
pilot_fdm[i].imag = sqrtf(2)*2*tx_baseband[i] * phase->imag;
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: generate_pilot_lut()
AUTHOR......: David Rowe
DATE CREATED: 19/4/2012
Generate a 4M sample vector of DBPSK pilot signal. As the pilot signal
is periodic in 4M samples we can then use this vector as a look up table
for pilot signal generation in the demod.
\*---------------------------------------------------------------------------*/
void generate_pilot_lut(COMP pilot_lut[], COMP *pilot_freq)
{
int pilot_rx_bit = 0;
float pilot_symbol = sqrtf(2.0);
COMP pilot_phase = {1.0, 0.0};
float pilot_filter_mem[NFILTER];
COMP pilot[M_FAC];
int i,f;
for(i=0; i<NFILTER; i++)
pilot_filter_mem[i] = 0.0;
/* discard first 4 symbols as filter memory is filling, just keep
last four symbols */
for(f=0; f<8; f++) {
generate_pilot_fdm(pilot, &pilot_rx_bit, &pilot_symbol, pilot_filter_mem, &pilot_phase, pilot_freq);
if (f >= 4)
memcpy(&pilot_lut[M_FAC*(f-4)], pilot, M_FAC*sizeof(COMP));
}
// create complex conjugate since we need this and only this later on
for (f=0;f<4*M_FAC;f++)
{
pilot_lut[f] = cconj(pilot_lut[f]);
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: lpf_peak_pick()
AUTHOR......: David Rowe
DATE CREATED: 20/4/2012
LPF and peak pick part of freq est, put in a function as we call it twice.
\*---------------------------------------------------------------------------*/
void lpf_peak_pick(float *foff, float *max, COMP pilot_baseband[],
COMP pilot_lpf[], codec2_fft_cfg fft_pilot_cfg, COMP S[], int nin,
int do_fft)
{
int i,j,k;
int mpilot;
float mag, imax;
int ix;
float r;
/* LPF cutoff 200Hz, so we can handle max +/- 200 Hz freq offset */
for(i=0; i<NPILOTLPF-nin; i++)
pilot_lpf[i] = pilot_lpf[nin+i];
for(i=NPILOTLPF-nin, j=NPILOTBASEBAND-nin; i<NPILOTLPF; i++,j++) {
pilot_lpf[i].real = 0.0; pilot_lpf[i].imag = 0.0;
// STM32F4 hand optimized, this alone makes it go done from 1.6 to 1.17ms
// switching pilot_coeff to RAM (by removing const in pilot_coeff.h) would save
// another 0.11 ms at the expense of NPILOTCOEFF * 4 bytes == 120 bytes RAM
if (NPILOTCOEFF%5 == 0)
{
for(k=0; k<NPILOTCOEFF; k+=5)
{
COMP i0 = fcmult(pilot_coeff[k], pilot_baseband[j-NPILOTCOEFF+1+k]);
COMP i1 = fcmult(pilot_coeff[k+1], pilot_baseband[j-NPILOTCOEFF+1+k+1]);
COMP i2 = fcmult(pilot_coeff[k+2], pilot_baseband[j-NPILOTCOEFF+1+k+2]);
COMP i3 = fcmult(pilot_coeff[k+3], pilot_baseband[j-NPILOTCOEFF+1+k+3]);
COMP i4 = fcmult(pilot_coeff[k+4], pilot_baseband[j-NPILOTCOEFF+1+k+4]);
pilot_lpf[i] = cadd(cadd(cadd(cadd(cadd(pilot_lpf[i], i0),i1),i2),i3),i4);
}
}
else
{
for(k=0; k<NPILOTCOEFF; k++)
{
pilot_lpf[i] = cadd(pilot_lpf[i], fcmult(pilot_coeff[k], pilot_baseband[j-NPILOTCOEFF+1+k]));
}
}
}
/* We only need to do FFTs if we are out of sync. Making them optional saves CPU in sync, which is when
we need to run the codec */
imax = 0.0;
*foff = 0.0;
for(i=0; i<MPILOTFFT; i++) {
S[i].real = 0.0;
S[i].imag = 0.0;
}
if (do_fft) {
/* decimate to improve DFT resolution, window and DFT */
mpilot = FS/(2*200); /* calc decimation rate given new sample rate is twice LPF freq */
for(i=0,j=0; i<NPILOTLPF; i+=mpilot,j++) {
S[j] = fcmult(hanning[i], pilot_lpf[i]);
}
codec2_fft_inplace(fft_pilot_cfg, S);
/* peak pick and convert to Hz */
imax = 0.0;
ix = 0;
for(i=0; i<MPILOTFFT; i++) {
mag = S[i].real*S[i].real + S[i].imag*S[i].imag;
if (mag > imax) {
imax = mag;
ix = i;
}
}
r = 2.0*200.0/MPILOTFFT; /* maps FFT bin to frequency in Hz */
if (ix >= MPILOTFFT/2)
*foff = (ix - MPILOTFFT)*r;
else
*foff = (ix)*r;
}
*max = imax;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: rx_est_freq_offset()
AUTHOR......: David Rowe
DATE CREATED: 19/4/2012
Estimate frequency offset of FDM signal using BPSK pilot. Note that
this algorithm is quite sensitive to pilot tone level wrt other
carriers, so test variations to the pilot amplitude carefully.
\*---------------------------------------------------------------------------*/
float rx_est_freq_offset(struct FDMDV *f, COMP rx_fdm[], int nin, int do_fft)
{
int i;
#ifndef FDV_ARM_MATH
int j;
#endif
COMP pilot[M_FAC+M_FAC/P];
COMP prev_pilot[M_FAC+M_FAC/P];
float foff, foff1, foff2;
float max1, max2;
assert(nin <= M_FAC+M_FAC/P);
/* get pilot samples used for correlation/down conversion of rx signal */
for (i=0; i<nin; i++) {
pilot[i] = f->pilot_lut[f->pilot_lut_index];
f->pilot_lut_index++;
if (f->pilot_lut_index >= 4*M_FAC)
f->pilot_lut_index = 0;
prev_pilot[i] = f->pilot_lut[f->prev_pilot_lut_index];
f->prev_pilot_lut_index++;
if (f->prev_pilot_lut_index >= 4*M_FAC)
f->prev_pilot_lut_index = 0;
}
/*
Down convert latest M_FAC samples of pilot by multiplying by ideal
BPSK pilot signal we have generated locally. The peak of the
resulting signal is sensitive to the time shift between the
received and local version of the pilot, so we do it twice at
different time shifts and choose the maximum.
*/
for(i=0; i<NPILOTBASEBAND-nin; i++) {
f->pilot_baseband1[i] = f->pilot_baseband1[i+nin];
f->pilot_baseband2[i] = f->pilot_baseband2[i+nin];
}
#ifndef FDV_ARM_MATH
for(i=0,j=NPILOTBASEBAND-nin; i<nin; i++,j++) {
f->pilot_baseband1[j] = cmult(rx_fdm[i], pilot[i]);
f->pilot_baseband2[j] = cmult(rx_fdm[i], prev_pilot[i]);
}
#else
// TODO: Maybe a handwritten mult taking advantage of rx_fdm[0] being
// used twice would be faster but this is for sure faster than
// the implementation above in any case.
arm_cmplx_mult_cmplx_f32(&rx_fdm[0].real,&pilot[0].real,&f->pilot_baseband1[NPILOTBASEBAND-nin].real,nin);
arm_cmplx_mult_cmplx_f32(&rx_fdm[0].real,&prev_pilot[0].real,&f->pilot_baseband2[NPILOTBASEBAND-nin].real,nin);
#endif
lpf_peak_pick(&foff1, &max1, f->pilot_baseband1, f->pilot_lpf1, f->fft_pilot_cfg, f->S1, nin, do_fft);
lpf_peak_pick(&foff2, &max2, f->pilot_baseband2, f->pilot_lpf2, f->fft_pilot_cfg, f->S2, nin, do_fft);
if (max1 > max2)
foff = foff1;
else
foff = foff2;
return foff;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_freq_shift()
AUTHOR......: David Rowe
DATE CREATED: 26/4/2012
Frequency shift modem signal. The use of complex input and output allows
single sided frequency shifting (no images).
\*---------------------------------------------------------------------------*/
void fdmdv_freq_shift(COMP rx_fdm_fcorr[], COMP rx_fdm[], float foff,
COMP *foff_phase_rect, int nin)
{
COMP foff_rect;
float mag;
int i;
foff_rect.real = COSF(2.0*PI*foff/FS);
foff_rect.imag = SINF(2.0*PI*foff/FS);
for(i=0; i<nin; i++) {
*foff_phase_rect = cmult(*foff_phase_rect, foff_rect);
rx_fdm_fcorr[i] = cmult(rx_fdm[i], *foff_phase_rect);
}
/* normalise digital oscilator as the magnitude can drfift over time */
mag = cabsolute(*foff_phase_rect);
foff_phase_rect->real /= mag;
foff_phase_rect->imag /= mag;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdm_downconvert
AUTHOR......: David Rowe
DATE CREATED: 22/4/2012
Frequency shift each modem carrier down to Nc+1 baseband signals.
\*---------------------------------------------------------------------------*/
void fdm_downconvert(COMP rx_baseband[NC+1][M_FAC+M_FAC/P], int Nc, COMP rx_fdm[], COMP phase_rx[], COMP freq[], int nin)
{
int i,c;
float mag;
/* maximum number of input samples to demod */
assert(nin <= (M_FAC+M_FAC/P));
/* downconvert */
for (c=0; c<Nc+1; c++)
for (i=0; i<nin; i++) {
phase_rx[c] = cmult(phase_rx[c], freq[c]);
rx_baseband[c][i] = cmult(rx_fdm[i], cconj(phase_rx[c]));
}
/* normalise digital oscilators as the magnitude can drift over time */
for (c=0; c<Nc+1; c++) {
mag = cabsolute(phase_rx[c]);
phase_rx[c].real /= mag;
phase_rx[c].imag /= mag;
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: rx_filter()
AUTHOR......: David Rowe
DATE CREATED: 22/4/2012
Receive filter each baseband signal at oversample rate P. Filtering at
rate P lowers CPU compared to rate M_FAC.
Depending on the number of input samples to the demod nin, we
produce P-1, P (usually), or P+1 filtered samples at rate P. nin is
occasionally adjusted to compensate for timing slips due to
different tx and rx sample clocks.
\*---------------------------------------------------------------------------*/
void rx_filter(COMP rx_filt[NC+1][P+1], int Nc, COMP rx_baseband[NC+1][M_FAC+M_FAC/P], COMP rx_filter_memory[NC+1][NFILTER], int nin)
{
int c, i,j,k,l;
int n=M_FAC/P;
/* rx filter each symbol, generate P filtered output samples for
each symbol. Note we keep filter memory at rate M_FAC, it's just
the filter output at rate P */
for(i=0, j=0; i<nin; i+=n,j++) {
/* latest input sample */
for(c=0; c<Nc+1; c++)
for(k=NFILTER-n,l=i; k<NFILTER; k++,l++)
rx_filter_memory[c][k] = rx_baseband[c][l];
/* convolution (filtering) */
for(c=0; c<Nc+1; c++) {
rx_filt[c][j].real = 0.0; rx_filt[c][j].imag = 0.0;
for(k=0; k<NFILTER; k++)
rx_filt[c][j] = cadd(rx_filt[c][j], fcmult(gt_alpha5_root[k], rx_filter_memory[c][k]));
}
/* make room for next input sample */
for(c=0; c<Nc+1; c++)
for(k=0,l=n; k<NFILTER-n; k++,l++)
rx_filter_memory[c][k] = rx_filter_memory[c][l];
}
assert(j <= (P+1)); /* check for any over runs */
}
/*---------------------------------------------------------------------------*\
FUNCTION....: rxdec_filter()
AUTHOR......: David Rowe
DATE CREATED: 31 July 2014
+/- 1000Hz low pass filter, allows us to filter at rate Q to save CPU load.
\*---------------------------------------------------------------------------*/
void rxdec_filter(COMP rx_fdm_filter[], COMP rx_fdm[], COMP rxdec_lpf_mem[], int nin) {
int i,j,k,st;
for(i=0; i<NRXDECMEM-nin; i++)
rxdec_lpf_mem[i] = rxdec_lpf_mem[i+nin];
for(i=0, j=NRXDECMEM-nin; i<nin; i++,j++)
rxdec_lpf_mem[j] = rx_fdm[i];
st = NRXDECMEM - nin - NRXDEC + 1;
for(i=0; i<nin; i++) {
rx_fdm_filter[i].real = 0.0;
for(k=0; k<NRXDEC; k++)
rx_fdm_filter[i].real += rxdec_lpf_mem[st+i+k].real * rxdec_coeff[k];
rx_fdm_filter[i].imag = 0.0;
for(k=0; k<NRXDEC; k++)
rx_fdm_filter[i].imag += rxdec_lpf_mem[st+i+k].imag * rxdec_coeff[k];
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fir_filter2()
AUTHOR......: Danilo Beuche
DATE CREATED: August 2016
Ths version submitted by Danilo for the STM32F4 platform. The idea
is to avoid reading the same value from the STM32F4 "slow" flash
twice. 2-4ms of savings per frame were measured by Danilo and the mcHF
team.
\*---------------------------------------------------------------------------*/
static void fir_filter2(float acc[2], float mem[], const float coeff[], const unsigned int dec_rate) {
acc[0] = 0.0;
acc[1] = 0.0;
float c1,c2,c3,c4,c5,m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,a1,a2;
float* inpCmplx = &mem[0];
const float* coeffPtr = &coeff[0];
int m;
// this manual loop unrolling gives significant boost on STM32 machines
// reduction from avg 3.2ms to 2.4ms in tfdmv.c test
// 5 was the sweet spot, with 6 it took longer again
// and should not harm other, more powerful machines
// no significant difference in output, only rounding (which was to be expected)
// TODO: try to move coeffs to RAM and check if it makes a significant difference
if (NFILTER%(dec_rate*5) == 0) {
for(m=0; m<NFILTER; m+=dec_rate*5) {
c1 = *coeffPtr;
m1 = inpCmplx[0];
m2 = inpCmplx[1];
inpCmplx+= dec_rate*2;
coeffPtr+= dec_rate;
c2 = *coeffPtr;
m3 = inpCmplx[0];
m4 = inpCmplx[1];
inpCmplx+= dec_rate*2;
coeffPtr+= dec_rate;
c3 = *coeffPtr;
m5 = inpCmplx[0];
m6 = inpCmplx[1];
inpCmplx+= dec_rate*2;
coeffPtr+= dec_rate;
c4 = *coeffPtr;
m7 = inpCmplx[0];
m8 = inpCmplx[1];
inpCmplx+= dec_rate*2;
coeffPtr+= dec_rate;
c5 = *coeffPtr;
m9 = inpCmplx[0];
m10 = inpCmplx[1];
inpCmplx+= dec_rate*2;
coeffPtr+= dec_rate;
a1 = c1 * m1 + c2 * m3 + c3 * m5 + c4 * m7 + c5 * m9;
a2 = c1 * m2 + c2 * m4 + c3 * m6 + c4 * m8 + c5 * m10;
acc[0] += a1;
acc[1] += a2;
}
}
else
{
for(m=0; m<NFILTER; m+=dec_rate) {
c1 = *coeffPtr;
m1 = inpCmplx[0];
m2 = inpCmplx[1];
inpCmplx+= dec_rate*2;
coeffPtr+= dec_rate;
a1 = c1 * m1;
a2 = c1 * m2;
acc[0] += a1;
acc[1] += a2;
}
}
acc[0] *= dec_rate;
acc[1] *= dec_rate;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: down_convert_and_rx_filter()
AUTHOR......: David Rowe
DATE CREATED: 30/6/2014
Combined down convert and rx filter, more memory efficient but less
intuitive design.
Depending on the number of input samples to the demod nin, we
produce P-1, P (usually), or P+1 filtered samples at rate P. nin is
occasionally adjusted to compensate for timing slips due to
different tx and rx sample clocks.
\*---------------------------------------------------------------------------*/
/*
TODO: [ ] windback phase calculated once at init time
*/
void down_convert_and_rx_filter(COMP rx_filt[NC+1][P+1], int Nc, COMP rx_fdm[],
COMP rx_fdm_mem[], COMP phase_rx[], COMP freq[],
float freq_pol[], int nin, int dec_rate)
{
int i,k,c,st,Nval;
float windback_phase, mag;
COMP windback_phase_rect;
COMP rx_baseband[NRX_FDM_MEM];
COMP f_rect;
//PROFILE_VAR(windback_start, downconvert_start, filter_start);
/* update memory of rx_fdm */
#if 0
for(i=0; i<NRX_FDM_MEM-nin; i++)
rx_fdm_mem[i] = rx_fdm_mem[i+nin];
for(i=NFILTER+M_FAC-nin, k=0; i<NFILTER+M_FAC; i++, k++)
rx_fdm_mem[i] = rx_fdm[k];
#else
// this gives only 40uS gain on STM32 but now that we have, we keep it
memmove(&rx_fdm_mem[0],&rx_fdm_mem[nin],(NRX_FDM_MEM-nin)*sizeof(COMP));
memcpy(&rx_fdm_mem[NRX_FDM_MEM-nin],&rx_fdm[0],nin*sizeof(COMP));
#endif
for(c=0; c<Nc+1; c++) {
/*
So we have rx_fdm_mem, a baseband array of samples at
rate Fs Hz, including the last nin samples at the end. To
filter each symbol we require the baseband samples for all Nsym
symbols that we filter over. So we need to downconvert the
entire rx_fdm_mem array. To downconvert these we need the LO
phase referenced to the start of the rx_fdm_mem array.
<--------------- Nrx_filt_mem ------->
nin
|--------------------------|---------|
1 |
phase_rx(c)
This means winding phase(c) back from this point
to ensure phase continuity.
*/
//PROFILE_SAMPLE(windback_start);
windback_phase = -freq_pol[c]*NFILTER;
windback_phase_rect.real = COSF(windback_phase);
windback_phase_rect.imag = SINF(windback_phase);
phase_rx[c] = cmult(phase_rx[c],windback_phase_rect);
//PROFILE_SAMPLE_AND_LOG(downconvert_start, windback_start, " windback");
/* down convert all samples in buffer */
st = NRX_FDM_MEM-1; /* end of buffer */
st -= nin-1; /* first new sample */
st -= NFILTER; /* first sample used in filtering */
/* freq shift per dec_rate step is dec_rate times original shift */
f_rect = freq[c];
for(i=0; i<dec_rate-1; i++)
f_rect = cmult(f_rect,freq[c]);
for(i=st; i<NRX_FDM_MEM; i+=dec_rate) {
phase_rx[c] = cmult(phase_rx[c], f_rect);
rx_baseband[i] = cmult(rx_fdm_mem[i],cconj(phase_rx[c]));
}
//PROFILE_SAMPLE_AND_LOG(filter_start, downconvert_start, " downconvert");
/* now we can filter this carrier's P symbols */
Nval=M_FAC/P;
for(i=0, k=0; i<nin; i+=Nval, k++) {
#ifdef ORIG
rx_filt[c][k].real = 0.0; rx_filt[c][k].imag = 0.0;
for(m=0; m<NFILTER; m++)
rx_filt[c][k] = cadd(rx_filt[c][k], fcmult(gt_alpha5_root[m], rx_baseband[st+i+m]));
#else
// rx_filt[c][k].real = fir_filter(&rx_baseband[st+i].real, (float*)gt_alpha5_root, dec_rate);
// rx_filt[c][k].imag = fir_filter(&rx_baseband[st+i].imag, (float*)gt_alpha5_root, dec_rate);
fir_filter2(&rx_filt[c][k].real,&rx_baseband[st+i].real, gt_alpha5_root, dec_rate);
#endif
}
//PROFILE_SAMPLE_AND_LOG2(filter_start, " filter");
/* normalise digital oscilators as the magnitude can drift over time */
mag = cabsolute(phase_rx[c]);
phase_rx[c].real /= mag;
phase_rx[c].imag /= mag;
//printf("phase_rx[%d] = %f %f\n", c, phase_rx[c].real, phase_rx[c].imag);
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: rx_est_timing()
AUTHOR......: David Rowe
DATE CREATED: 23/4/2012
Estimate optimum timing offset, re-filter receive symbols at optimum
timing estimate.
\*---------------------------------------------------------------------------*/
float rx_est_timing(COMP rx_symbols[],
int Nc,
COMP rx_filt[NC+1][P+1],
COMP rx_filter_mem_timing[NC+1][NT*P],
float env[],
int nin,
int m)
{
int c,i,j;
int adjust;
COMP x, phase, freq;
float rx_timing, fract, norm_rx_timing;
int low_sample, high_sample;
/*
nin adjust
--------------------------------
120 -1 (one less rate P sample)
160 0 (nominal)
200 1 (one more rate P sample)
*/
adjust = P - nin*P/m;
/* update buffer of NT rate P filtered symbols */
for(c=0; c<Nc+1; c++)
for(i=0,j=P-adjust; i<(NT-1)*P+adjust; i++,j++)
rx_filter_mem_timing[c][i] = rx_filter_mem_timing[c][j];
for(c=0; c<Nc+1; c++)
for(i=(NT-1)*P+adjust,j=0; i<NT*P; i++,j++)
rx_filter_mem_timing[c][i] = rx_filt[c][j];
/* sum envelopes of all carriers */
for(i=0; i<NT*P; i++) {
env[i] = 0.0;
for(c=0; c<Nc+1; c++)
env[i] += cabsolute(rx_filter_mem_timing[c][i]);
}
/* The envelope has a frequency component at the symbol rate. The
phase of this frequency component indicates the timing. So work
out single DFT at frequency 2*pi/P */
x.real = 0.0; x.imag = 0.0;
freq.real = COSF(2*PI/P);
freq.imag = SINF(2*PI/P);
phase.real = 1.0;
phase.imag = 0.0;
for(i=0; i<NT*P; i++) {
x = cadd(x, fcmult(env[i], phase));
phase = cmult(phase, freq);
}
/* Map phase to estimated optimum timing instant at rate P. The
P/4 part was adjusted by experiment, I know not why.... */
norm_rx_timing = atan2f(x.imag, x.real)/(2*PI);
assert(fabsf(norm_rx_timing) < 1.0);
//fprintf(stderr,"%f %f norm_rx_timing: %f\n", x.real, x.imag, norm_rx_timing);
rx_timing = norm_rx_timing*P + P/4;
if (rx_timing > P)
rx_timing -= P;
if (rx_timing < -P)
rx_timing += P;
/* rx_filter_mem_timing contains Nt*P samples (Nt symbols at rate
P), where Nt is odd. Lets use linear interpolation to resample
in the centre of the timing estimation window .*/
rx_timing += floorf(NT/2.0)*P;
low_sample = floorf(rx_timing);
fract = rx_timing - low_sample;
high_sample = ceilf(rx_timing);
//printf("rx_timing: %f low_sample: %d high_sample: %d fract: %f\n", rx_timing, low_sample, high_sample, fract);
for(c=0; c<Nc+1; c++) {
rx_symbols[c] = cadd(fcmult(1.0-fract, rx_filter_mem_timing[c][low_sample-1]), fcmult(fract, rx_filter_mem_timing[c][high_sample-1]));
//rx_symbols[c] = rx_filter_mem_timing[c][high_sample];
}
/* This value will be +/- half a symbol so will wrap around at +/-
M/2 or +/- 80 samples with M=160 */
return norm_rx_timing*m;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: qpsk_to_bits()
AUTHOR......: David Rowe
DATE CREATED: 24/4/2012
Convert DQPSK symbols back to an array of bits, extracts sync bit
from DBPSK pilot, and also uses pilot to estimate fine frequency
error.
\*---------------------------------------------------------------------------*/
float qpsk_to_bits(int rx_bits[], int *sync_bit, int Nc, COMP phase_difference[], COMP prev_rx_symbols[],
COMP rx_symbols[], int old_qpsk_mapping)
{
int c;
COMP d;
int msb=0, lsb=0;
float ferr, norm;
/* Extra 45 degree clockwise lets us use real and imag axis as
decision boundaries. "norm" makes sure the phase subtraction
from the previous symbol doesn't affect the amplitude, which
leads to sensible scatter plots */
for(c=0; c<Nc; c++) {
norm = 1.0/(cabsolute(prev_rx_symbols[c])+1E-6);
phase_difference[c] = cmult(cmult(rx_symbols[c], fcmult(norm,cconj(prev_rx_symbols[c]))), pi_on_4);
}
/* map (Nc,1) DQPSK symbols back into an (1,Nc*Nb) array of bits */
for (c=0; c<Nc; c++) {
d = phase_difference[c];
if ((d.real >= 0) && (d.imag >= 0)) {
msb = 0; lsb = 0;
}
if ((d.real < 0) && (d.imag >= 0)) {
msb = 0; lsb = 1;
}
if ((d.real < 0) && (d.imag < 0)) {
if (old_qpsk_mapping) {
msb = 1; lsb = 0;
} else {
msb = 1; lsb = 1;
}
}
if ((d.real >= 0) && (d.imag < 0)) {
if (old_qpsk_mapping) {
msb = 1; lsb = 1;
} else {
msb = 1; lsb = 0;
}
}
rx_bits[2*c] = msb;
rx_bits[2*c+1] = lsb;
}
/* Extract DBPSK encoded Sync bit and fine freq offset estimate */
norm = 1.0/(cabsolute(prev_rx_symbols[Nc])+1E-6);
phase_difference[Nc] = cmult(rx_symbols[Nc], fcmult(norm, cconj(prev_rx_symbols[Nc])));
if (phase_difference[Nc].real < 0) {
*sync_bit = 1;
ferr = phase_difference[Nc].imag*norm; /* make f_err magnitude insensitive */
}
else {
*sync_bit = 0;
ferr = -phase_difference[Nc].imag*norm;
}
/* pilot carrier gets an extra pi/4 rotation to make it consistent
with other carriers, as we need it for snr_update and scatter
diagram */
phase_difference[Nc] = cmult(phase_difference[Nc], pi_on_4);
return ferr;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: snr_update()
AUTHOR......: David Rowe
DATE CREATED: 17 May 2012
Given phase differences update estimates of signal and noise levels.
\*---------------------------------------------------------------------------*/
void snr_update(float sig_est[], float noise_est[], int Nc, COMP phase_difference[])
{
float s[NC+1];
COMP refl_symbols[NC+1];
float n[NC+1];
int c;
/* mag of each symbol is distance from origin, this gives us a
vector of mags, one for each carrier. */
for(c=0; c<Nc+1; c++)
s[c] = cabsolute(phase_difference[c]);
/* signal mag estimate for each carrier is a smoothed version of
instantaneous magntitude, this gives us a vector of smoothed
mag estimates, one for each carrier. */
for(c=0; c<Nc+1; c++)
sig_est[c] = SNR_COEFF*sig_est[c] + (1.0 - SNR_COEFF)*s[c];
/* noise mag estimate is distance of current symbol from average
location of that symbol. We reflect all symbols into the first
quadrant for convenience. */
for(c=0; c<Nc+1; c++) {
refl_symbols[c].real = fabsf(phase_difference[c].real);
refl_symbols[c].imag = fabsf(phase_difference[c].imag);
n[c] = cabsolute(cadd(fcmult(sig_est[c], pi_on_4), cneg(refl_symbols[c])));
}
/* noise mag estimate for each carrier is a smoothed version of
instantaneous noise mag, this gives us a vector of smoothed
noise power estimates, one for each carrier. */
for(c=0; c<Nc+1; c++)
noise_est[c] = SNR_COEFF*noise_est[c] + (1 - SNR_COEFF)*n[c];
}
// returns number of shorts in error_pattern[], one short per error
int fdmdv_error_pattern_size(struct FDMDV *f) {
return f->ntest_bits;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_put_test_bits()
AUTHOR......: David Rowe
DATE CREATED: 24/4/2012
Accepts nbits from rx and attempts to sync with test_bits sequence.
If sync OK measures bit errors.
\*---------------------------------------------------------------------------*/
void fdmdv_put_test_bits(struct FDMDV *f, int *sync, short error_pattern[],
int *bit_errors, int *ntest_bits, int rx_bits[])
{
int i,j;
float ber;
int bits_per_frame = fdmdv_bits_per_frame(f);
/* Append to our memory */
for(i=0,j=bits_per_frame; i<f->ntest_bits-bits_per_frame; i++,j++)
f->rx_test_bits_mem[i] = f->rx_test_bits_mem[j];
for(i=f->ntest_bits-bits_per_frame,j=0; i<f->ntest_bits; i++,j++)
f->rx_test_bits_mem[i] = rx_bits[j];
/* see how many bit errors we get when checked against test sequence */
*bit_errors = 0;
for(i=0; i<f->ntest_bits; i++) {
error_pattern[i] = test_bits[i] ^ f->rx_test_bits_mem[i];
*bit_errors += error_pattern[i];
//printf("%d %d %d %d\n", i, test_bits[i], f->rx_test_bits_mem[i], test_bits[i] ^ f->rx_test_bits_mem[i]);
}
/* if less than a thresh we are aligned and in sync with test sequence */
ber = (float)*bit_errors/f->ntest_bits;
*sync = 0;
if (ber < 0.2)
*sync = 1;
*ntest_bits = f->ntest_bits;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: freq_state(()
AUTHOR......: David Rowe
DATE CREATED: 24/4/2012
Freq offset state machine. Moves between coarse and fine states
based on BPSK pilot sequence. Freq offset estimator occasionally
makes mistakes when used continuously. So we use it until we have
acquired the BPSK pilot, then switch to a more robust "fine"
tracking algorithm. If we lose sync we switch back to coarse mode
for fast re-acquisition of large frequency offsets.
The sync state is also useful for higher layers to determine when
there is valid FDMDV data for decoding. We want to reliably and
quickly get into sync, stay in sync even on fading channels, and
fall out of sync quickly if tx stops or it's a false sync.
In multipath fading channels the BPSK sync carrier may be pushed
down in the noise, despite other carriers being at full strength.
We want to avoid loss of sync in these cases.
\*---------------------------------------------------------------------------*/
int freq_state(int *reliable_sync_bit, int sync_bit, int *state, int *timer, int *sync_mem)
{
int next_state, sync, unique_word, i, corr;
/* look for 6 symbols (120ms) 101010 of sync sequence */
unique_word = 0;
for(i=0; i<NSYNC_MEM-1; i++)
sync_mem[i] = sync_mem[i+1];
sync_mem[i] = 1 - 2*sync_bit;
corr = 0;
for(i=0; i<NSYNC_MEM; i++)
corr += sync_mem[i]*sync_uw[i];
if (abs(corr) == NSYNC_MEM)
unique_word = 1;
*reliable_sync_bit = (corr == NSYNC_MEM);
/* iterate state machine */
next_state = *state;
switch(*state) {
case 0:
if (unique_word) {
next_state = 1;
*timer = 0;
}
break;
case 1: /* tentative sync state */
if (unique_word) {
(*timer)++;
if (*timer == 25) /* sync has been good for 500ms */
next_state = 2;
}
else
next_state = 0; /* quickly fall out of sync */
break;
case 2: /* good sync state */
if (unique_word == 0) {
*timer = 0;
next_state = 3;
}
break;
case 3: /* tentative bad state, but could be a fade */
if (unique_word)
next_state = 2;
else {
(*timer)++;
if (*timer == 50) /* wait for 1000ms in case sync comes back */
next_state = 0;
}
break;
}
//printf("state: %d next_state: %d uw: %d timer: %d\n", *state, next_state, unique_word, *timer);
*state = next_state;
if (*state)
sync = 1;
else
sync = 0;
return sync;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_demod()
AUTHOR......: David Rowe
DATE CREATED: 26/4/2012
FDMDV demodulator, take an array of FDMDV_SAMPLES_PER_FRAME
modulated samples, returns an array of FDMDV_BITS_PER_FRAME bits,
plus the sync bit.
The input signal is complex to support single sided frequency shifting
before the demod input (e.g. fdmdv2 click to tune feature).
The number of input samples nin will normally be M_FAC ==
FDMDV_SAMPLES_PER_FRAME. However to adjust for differences in
transmit and receive sample clocks nin will occasionally be M_FAC-M_FAC/P,
or M_FAC+M_FAC/P.
\*---------------------------------------------------------------------------*/
void fdmdv_demod(struct FDMDV *fdmdv, int rx_bits[],
int *reliable_sync_bit, COMP rx_fdm[], int *nin)
{
float foff_coarse, foff_fine;
COMP rx_fdm_fcorr[M_FAC+M_FAC/P];
COMP rx_fdm_filter[M_FAC+M_FAC/P];
COMP rx_fdm_bb[M_FAC+M_FAC/P];
COMP rx_filt[NC+1][P+1];
COMP rx_symbols[NC+1];
float env[NT*P];
int sync_bit;
PROFILE_VAR(demod_start, fdmdv_freq_shift_start, down_convert_and_rx_filter_start);
PROFILE_VAR(rx_est_timing_start, qpsk_to_bits_start, snr_update_start, freq_state_start);
/* shift down to complex baseband */
fdmdv_freq_shift(rx_fdm_bb, rx_fdm, -FDMDV_FCENTRE, &fdmdv->fbb_phase_rx, *nin);
/* freq offset estimation and correction */
PROFILE_SAMPLE(demod_start);
foff_coarse = rx_est_freq_offset(fdmdv, rx_fdm_bb, *nin, !fdmdv->sync);
PROFILE_SAMPLE_AND_LOG(fdmdv_freq_shift_start, demod_start, " rx_est_freq_offset");
if (fdmdv->sync == 0)
fdmdv->foff = foff_coarse;
fdmdv_freq_shift(rx_fdm_fcorr, rx_fdm_bb, -fdmdv->foff, &fdmdv->foff_phase_rect, *nin);
PROFILE_SAMPLE_AND_LOG(down_convert_and_rx_filter_start, fdmdv_freq_shift_start, " fdmdv_freq_shift");
/* baseband processing */
rxdec_filter(rx_fdm_filter, rx_fdm_fcorr, fdmdv->rxdec_lpf_mem, *nin);
down_convert_and_rx_filter(rx_filt, fdmdv->Nc, rx_fdm_filter, fdmdv->rx_fdm_mem, fdmdv->phase_rx, fdmdv->freq,
fdmdv->freq_pol, *nin, M_FAC/Q);
PROFILE_SAMPLE_AND_LOG(rx_est_timing_start, down_convert_and_rx_filter_start, " down_convert_and_rx_filter");
fdmdv->rx_timing = rx_est_timing(rx_symbols, fdmdv->Nc, rx_filt, fdmdv->rx_filter_mem_timing, env, *nin, M_FAC);
PROFILE_SAMPLE_AND_LOG(qpsk_to_bits_start, rx_est_timing_start, " rx_est_timing");
/* Adjust number of input samples to keep timing within bounds */
*nin = M_FAC;
if (fdmdv->rx_timing > M_FAC/P)
*nin += M_FAC/P;
if (fdmdv->rx_timing < -M_FAC/P)
*nin -= M_FAC/P;
foff_fine = qpsk_to_bits(rx_bits, &sync_bit, fdmdv->Nc, fdmdv->phase_difference, fdmdv->prev_rx_symbols, rx_symbols,
fdmdv->old_qpsk_mapping);
memcpy(fdmdv->prev_rx_symbols, rx_symbols, sizeof(COMP)*(fdmdv->Nc+1));
PROFILE_SAMPLE_AND_LOG(snr_update_start, qpsk_to_bits_start, " qpsk_to_bits");
snr_update(fdmdv->sig_est, fdmdv->noise_est, fdmdv->Nc, fdmdv->phase_difference);
PROFILE_SAMPLE_AND_LOG(freq_state_start, snr_update_start, " snr_update");
/* freq offset estimation state machine */
fdmdv->sync = freq_state(reliable_sync_bit, sync_bit, &fdmdv->fest_state, &fdmdv->timer, fdmdv->sync_mem);
PROFILE_SAMPLE_AND_LOG2(freq_state_start, " freq_state");
fdmdv->foff -= TRACK_COEFF*foff_fine;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: calc_snr()
AUTHOR......: David Rowe
DATE CREATED: 17 May 2012
Calculate current SNR estimate (3000Hz noise BW)
\*---------------------------------------------------------------------------*/
float calc_snr(int Nc, float sig_est[], float noise_est[])
{
float S, SdB;
float mean, N50, N50dB, N3000dB;
float snr_dB;
int c;
S = 0.0;
for(c=0; c<Nc+1; c++)
S += powf(sig_est[c], 2.0);
SdB = 10.0*log10f(S+1E-12);
/* Average noise mag across all carriers and square to get an
average noise power. This is an estimate of the noise power in
Rs = 50Hz of BW (note for raised root cosine filters Rs is the
noise BW of the filter) */
mean = 0.0;
for(c=0; c<Nc+1; c++)
mean += noise_est[c];
mean /= (Nc+1);
N50 = powf(mean, 2.0);
N50dB = 10.0*log10f(N50+1E-12);
/* Now multiply by (3000 Hz)/(50 Hz) to find the total noise power
in 3000 Hz */
N3000dB = N50dB + 10.0*log10f(3000.0/RS);
snr_dB = SdB - N3000dB;
return snr_dB;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_get_demod_stats()
AUTHOR......: David Rowe
DATE CREATED: 1 May 2012
Fills stats structure with a bunch of demod information.
\*---------------------------------------------------------------------------*/
void fdmdv_get_demod_stats(struct FDMDV *fdmdv, struct MODEM_STATS *stats)
{
int c;
assert(fdmdv->Nc <= MODEM_STATS_NC_MAX);
stats->Nc = fdmdv->Nc;
stats->snr_est = calc_snr(fdmdv->Nc, fdmdv->sig_est, fdmdv->noise_est);
stats->sync = fdmdv->sync;
stats->foff = fdmdv->foff;
stats->rx_timing = fdmdv->rx_timing;
stats->clock_offset = 0.0; /* TODO - implement clock offset estimation */
stats->nr = 1;
for(c=0; c<fdmdv->Nc+1; c++) {
stats->rx_symbols[0][c] = fdmdv->phase_difference[c];
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_8_to_16()
AUTHOR......: David Rowe
DATE CREATED: 9 May 2012
Changes the sample rate of a signal from 8 to 16 kHz. Support function for
SM1000.
\*---------------------------------------------------------------------------*/
void fdmdv_8_to_16(float out16k[], float in8k[], int n)
{
int i,k,l;
float acc;
/* make sure n is an integer multiple of the oversampling rate, ow
this function breaks */
assert((n % FDMDV_OS) == 0);
/* this version unrolled for specific FDMDV_OS */
assert(FDMDV_OS == 2);
for(i=0; i<n; i++) {
acc = 0.0;
for(k=0,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++)
acc += fdmdv_os_filter[k]*in8k[i-l];
out16k[i*FDMDV_OS] = FDMDV_OS*acc;
acc = 0.0;
for(k=1,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++)
acc += fdmdv_os_filter[k]*in8k[i-l];
out16k[i*FDMDV_OS+1] = FDMDV_OS*acc;
}
/* update filter memory */
for(i=-(FDMDV_OS_TAPS_8K); i<0; i++)
in8k[i] = in8k[i + n];
}
void fdmdv_8_to_16_short(short out16k[], short in8k[], int n)
{
int i,k,l;
float acc;
/* make sure n is an integer multiple of the oversampling rate, ow
this function breaks */
assert((n % FDMDV_OS) == 0);
/* this version unrolled for specific FDMDV_OS */
assert(FDMDV_OS == 2);
for(i=0; i<n; i++) {
acc = 0.0;
for(k=0,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++)
acc += fdmdv_os_filter[k]*(float)in8k[i-l];
out16k[i*FDMDV_OS] = FDMDV_OS*acc;
acc = 0.0;
for(k=1,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++)
acc += fdmdv_os_filter[k]*(float)in8k[i-l];
out16k[i*FDMDV_OS+1] = FDMDV_OS*acc;
}
/* update filter memory */
for(i=-(FDMDV_OS_TAPS_8K); i<0; i++)
in8k[i] = in8k[i + n];
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_16_to_8()
AUTHOR......: David Rowe
DATE CREATED: 9 May 2012
Changes the sample rate of a signal from 16 to 8 kHz.
n is the number of samples at the 8 kHz rate, there are FDMDV_OS*n
samples at the 16 kHz rate. As above however a memory of
FDMDV_OS_TAPS samples is reqd for in16k[] (see t16_8.c unit test as example).
Low pass filter the 16 kHz signal at 4 kHz using the same filter as
the upsampler, then just output every FDMDV_OS-th filtered sample.
\*---------------------------------------------------------------------------*/
void fdmdv_16_to_8(float out8k[], float in16k[], int n)
{
float acc;
int i,j,k;
for(i=0, k=0; k<n; i+=FDMDV_OS, k++) {
acc = 0.0;
for(j=0; j<FDMDV_OS_TAPS_16K; j++)
acc += fdmdv_os_filter[j]*in16k[i-j];
out8k[k] = acc;
}
/* update filter memory */
for(i=-FDMDV_OS_TAPS_16K; i<0; i++)
in16k[i] = in16k[i + n*FDMDV_OS];
}
void fdmdv_16_to_8_short(short out8k[], short in16k[], int n)
{
float acc;
int i,j,k;
for(i=0, k=0; k<n; i+=FDMDV_OS, k++) {
acc = 0.0;
for(j=0; j<FDMDV_OS_TAPS_16K; j++)
acc += fdmdv_os_filter[j]*(float)in16k[i-j];
out8k[k] = acc;
}
/* update filter memory */
for(i=-FDMDV_OS_TAPS_16K; i<0; i++)
in16k[i] = in16k[i + n*FDMDV_OS];
}
/*---------------------------------------------------------------------------*\
Function used during development to test if magnitude of digital
oscillators was drifting. It was!
\*---------------------------------------------------------------------------*/
void fdmdv_dump_osc_mags(struct FDMDV *f)
{
int i;
fprintf(stderr, "phase_tx[]:\n");
for(i=0; i<=f->Nc; i++)
fprintf(stderr," %1.3f", (double)cabsolute(f->phase_tx[i]));
fprintf(stderr,"\nfreq[]:\n");
for(i=0; i<=f->Nc; i++)
fprintf(stderr," %1.3f", (double)cabsolute(f->freq[i]));
fprintf(stderr,"\nfoff_phase_rect: %1.3f", (double)cabsolute(f->foff_phase_rect));
fprintf(stderr,"\nphase_rx[]:\n");
for(i=0; i<=f->Nc; i++)
fprintf(stderr," %1.3f", (double)cabsolute(f->phase_rx[i]));
fprintf(stderr, "\n\n");
}
/*---------------------------------------------------------------------------*\
FUNCTION....: randn()
AUTHOR......: David Rowe
DATE CREATED: 2 August 2014
Simple approximation to normal (gaussian) random number generator
with 0 mean and unit variance.
\*---------------------------------------------------------------------------*/
#define RANDN_IT 12 /* This magic number of iterations gives us a
unit variance. I think beacuse var =
(b-a)^2/12 for one uniform random variable, so
for a sum of n random variables it's
n(b-a)^2/12, or for b=1, a = 0, n=12, we get
var = 12(1-0)^2/12 = 1 */
static float randn() {
int i;
float rn = 0.0;
for(i=0; i<RANDN_IT; i++)
rn += (float)rand()/RAND_MAX;
rn -= (float)RANDN_IT/2.0;
return rn;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_simulate_channel()
AUTHOR......: David Rowe
DATE CREATED: 10 July 2014
Simple channel simulation function to aid in testing. Target SNR
uses noise measured in a 3 kHz bandwidth.
Doesn't use fdmdv states so can be called from anywhere, e.g. non
fdmdv applications.
TODO: Measured SNR is coming out a few dB higher than target_snr, this
needs to be fixed.
\*---------------------------------------------------------------------------*/
void fdmdv_simulate_channel(float *sig_pwr_av, COMP samples[], int nin, float target_snr)
{
float sig_pwr, target_snr_linear, noise_pwr, noise_pwr_1Hz, noise_pwr_4000Hz, noise_gain;
int i;
/* estimate signal power */
sig_pwr = 0.0;
for(i=0; i<nin; i++)
sig_pwr += samples[i].real*samples[i].real + samples[i].imag*samples[i].imag;
sig_pwr /= nin;
*sig_pwr_av = 0.9**sig_pwr_av + 0.1*sig_pwr;
/* det noise to meet target SNR */
target_snr_linear = powf(10.0, target_snr/10.0);
noise_pwr = *sig_pwr_av/target_snr_linear; /* noise pwr in a 3000 Hz BW */
noise_pwr_1Hz = noise_pwr/3000.0; /* noise pwr in a 1 Hz bandwidth */
noise_pwr_4000Hz = noise_pwr_1Hz*4000.0; /* noise pwr in a 4000 Hz BW, which
due to fs=8000 Hz in our simulation noise BW */
noise_gain = sqrtf(0.5*noise_pwr_4000Hz); /* split noise pwr between real and imag sides */
for(i=0; i<nin; i++) {
samples[i].real += noise_gain*randn();
samples[i].imag += noise_gain*randn();
}
/*
fprintf(stderr, "sig_pwr: %f f->sig_pwr_av: %e target_snr_linear: %f noise_pwr_4000Hz: %e noise_gain: %e\n",
sig_pwr, f->sig_pwr_av, target_snr_linear, noise_pwr_4000Hz, noise_gain);
*/
}
} // FreeDV