2019-11-23 01:39:57 -05:00
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
# include <stdio.h>
# include <complex.h>
# include <QTime>
# include <QDebug>
# include "util/stepfunctions.h"
# include "util/db.h"
# include "audio/audiooutput.h"
# include "dsp/dspengine.h"
# include "dsp/dspcommands.h"
# include "dsp/devicesamplemimo.h"
# include "device/deviceapi.h"
# include "nfmdemodreport.h"
# include "nfmdemodsink.h"
const double NFMDemodSink : : afSqTones [ ] = { 1000.0 , 6000.0 } ; // {1200.0, 8000.0};
const double NFMDemodSink : : afSqTones_lowrate [ ] = { 1000.0 , 3500.0 } ;
NFMDemodSink : : NFMDemodSink ( ) :
m_channelSampleRate ( 48000 ) ,
m_channelFrequencyOffset ( 0 ) ,
m_audioSampleRate ( 48000 ) ,
m_audioBufferFill ( 0 ) ,
m_audioFifo ( 48000 ) ,
m_ctcssIndex ( 0 ) ,
m_sampleCount ( 0 ) ,
m_squelchCount ( 0 ) ,
m_squelchGate ( 4800 ) ,
m_squelchLevel ( - 990 ) ,
m_squelchOpen ( false ) ,
m_afSquelchOpen ( false ) ,
m_magsq ( 0.0f ) ,
m_magsqSum ( 0.0f ) ,
m_magsqPeak ( 0.0f ) ,
m_magsqCount ( 0 ) ,
m_afSquelch ( ) ,
m_squelchDelayLine ( 24000 ) ,
m_messageQueueToGUI ( nullptr )
{
m_agcLevel = 1.0 ;
m_audioBuffer . resize ( 1 < < 14 ) ;
applySettings ( m_settings , true ) ;
applyChannelSettings ( m_channelSampleRate , m_channelFrequencyOffset , true ) ;
}
NFMDemodSink : : ~ NFMDemodSink ( )
{
}
void NFMDemodSink : : feed ( const SampleVector : : const_iterator & begin , const SampleVector : : const_iterator & end )
{
Complex ci ;
for ( SampleVector : : const_iterator it = begin ; it ! = end ; + + it )
{
Complex c ( it - > real ( ) , it - > imag ( ) ) ;
c * = m_nco . nextIQ ( ) ;
if ( m_interpolatorDistance < 1.0f ) // interpolate
{
while ( ! m_interpolator . interpolate ( & m_interpolatorDistanceRemain , c , & ci ) )
{
processOneSample ( ci ) ;
m_interpolatorDistanceRemain + = m_interpolatorDistance ;
}
}
else // decimate
{
if ( m_interpolator . decimate ( & m_interpolatorDistanceRemain , c , & ci ) )
{
processOneSample ( ci ) ;
m_interpolatorDistanceRemain + = m_interpolatorDistance ;
}
}
}
}
void NFMDemodSink : : processOneSample ( Complex & ci )
{
qint16 sample ;
double magsqRaw ; // = ci.real()*ci.real() + c.imag()*c.imag();
Real deviation ;
Real demod = m_phaseDiscri . phaseDiscriminatorDelta ( ci , magsqRaw , deviation ) ;
Real magsq = magsqRaw / ( SDR_RX_SCALED * SDR_RX_SCALED ) ;
m_movingAverage ( magsq ) ;
m_magsqSum + = magsq ;
if ( magsq > m_magsqPeak )
{
m_magsqPeak = magsq ;
}
m_magsqCount + + ;
m_sampleCount + + ;
// AF processing
if ( m_settings . m_deltaSquelch )
{
if ( m_afSquelch . analyze ( demod * m_discriCompensation ) )
{
m_afSquelchOpen = m_afSquelch . evaluate ( ) ; // ? m_squelchGate + m_squelchDecay : 0;
if ( ! m_afSquelchOpen ) {
m_squelchDelayLine . zeroBack ( m_audioSampleRate / 10 ) ; // zero out evaluation period
}
}
if ( m_afSquelchOpen )
{
m_squelchDelayLine . write ( demod * m_discriCompensation ) ;
if ( m_squelchCount < 2 * m_squelchGate ) {
m_squelchCount + + ;
}
}
else
{
m_squelchDelayLine . write ( 0 ) ;
if ( m_squelchCount > 0 ) {
m_squelchCount - - ;
}
}
}
else
{
if ( ( Real ) m_movingAverage < m_squelchLevel )
{
m_squelchDelayLine . write ( 0 ) ;
if ( m_squelchCount > 0 ) {
m_squelchCount - - ;
}
}
else
{
m_squelchDelayLine . write ( demod * m_discriCompensation ) ;
if ( m_squelchCount < 2 * m_squelchGate ) {
m_squelchCount + + ;
}
}
}
m_squelchOpen = ( m_squelchCount > m_squelchGate ) ;
if ( m_settings . m_audioMute )
{
sample = 0 ;
}
else
{
if ( m_squelchOpen )
{
if ( m_settings . m_ctcssOn )
{
Real ctcss_sample = m_ctcssLowpass . filter ( demod * m_discriCompensation ) ;
if ( ( m_sampleCount & 7 ) = = 7 ) // decimate 48k -> 6k
{
if ( m_ctcssDetector . analyze ( & ctcss_sample ) )
{
int maxToneIndex ;
if ( m_ctcssDetector . getDetectedTone ( maxToneIndex ) )
{
if ( maxToneIndex + 1 ! = m_ctcssIndex )
{
if ( getMessageQueueToGUI ( ) )
{
NFMDemodReport : : MsgReportCTCSSFreq * msg = NFMDemodReport : : MsgReportCTCSSFreq : : create ( m_ctcssDetector . getToneSet ( ) [ maxToneIndex ] ) ;
getMessageQueueToGUI ( ) - > push ( msg ) ;
}
m_ctcssIndex = maxToneIndex + 1 ;
}
}
else
{
if ( m_ctcssIndex ! = 0 )
{
if ( getMessageQueueToGUI ( ) )
{
NFMDemodReport : : MsgReportCTCSSFreq * msg = NFMDemodReport : : MsgReportCTCSSFreq : : create ( 0 ) ;
getMessageQueueToGUI ( ) - > push ( msg ) ;
}
m_ctcssIndex = 0 ;
}
}
}
}
}
if ( m_settings . m_ctcssOn & & m_ctcssIndexSelected & & ( m_ctcssIndexSelected ! = m_ctcssIndex ) )
{
sample = 0 ;
}
else
{
if ( m_settings . m_highPass ) {
sample = m_bandpass . filter ( m_squelchDelayLine . readBack ( m_squelchGate ) ) * m_settings . m_volume ;
} else {
sample = m_lowpass . filter ( m_squelchDelayLine . readBack ( m_squelchGate ) ) * m_settings . m_volume * 301.0f ;
}
}
}
else
{
if ( m_ctcssIndex ! = 0 )
{
if ( getMessageQueueToGUI ( ) )
{
NFMDemodReport : : MsgReportCTCSSFreq * msg = NFMDemodReport : : MsgReportCTCSSFreq : : create ( 0 ) ;
getMessageQueueToGUI ( ) - > push ( msg ) ;
}
m_ctcssIndex = 0 ;
}
sample = 0 ;
}
}
m_audioBuffer [ m_audioBufferFill ] . l = sample ;
m_audioBuffer [ m_audioBufferFill ] . r = sample ;
+ + m_audioBufferFill ;
if ( m_audioBufferFill > = m_audioBuffer . size ( ) )
{
uint res = m_audioFifo . write ( ( const quint8 * ) & m_audioBuffer [ 0 ] , m_audioBufferFill ) ;
if ( res ! = m_audioBufferFill )
{
qDebug ( " NFMDemodSink::feed: %u/%u audio samples written " , res , m_audioBufferFill ) ;
qDebug ( " NFMDemodSink::feed: m_audioSampleRate: %u m_channelSampleRate: %d " , m_audioSampleRate , m_channelSampleRate ) ;
}
m_audioBufferFill = 0 ;
}
}
void NFMDemodSink : : applyChannelSettings ( int channelSampleRate , int channelFrequencyOffset , bool force )
{
qDebug ( ) < < " NFMDemodSink::applyChannelSettings: "
< < " channelSampleRate: " < < channelSampleRate
< < " channelFrequencyOffset: " < < channelFrequencyOffset ;
if ( ( channelFrequencyOffset ! = m_channelFrequencyOffset ) | |
( channelSampleRate ! = m_channelSampleRate ) | | force )
{
m_nco . setFreq ( - channelFrequencyOffset , channelSampleRate ) ;
}
if ( ( channelSampleRate ! = m_channelSampleRate ) | | force )
{
m_interpolator . create ( 16 , channelSampleRate , m_settings . m_rfBandwidth / 2.2 ) ;
m_interpolatorDistanceRemain = 0 ;
m_interpolatorDistance = ( Real ) channelSampleRate / ( Real ) m_audioSampleRate ;
}
m_channelSampleRate = channelSampleRate ;
m_channelFrequencyOffset = channelFrequencyOffset ;
}
void NFMDemodSink : : applySettings ( const NFMDemodSettings & settings , bool force )
{
qDebug ( ) < < " NFMDemodSink::applySettings: "
< < " m_inputFrequencyOffset: " < < settings . m_inputFrequencyOffset
< < " m_rfBandwidth: " < < settings . m_rfBandwidth
< < " m_afBandwidth: " < < settings . m_afBandwidth
< < " m_fmDeviation: " < < settings . m_fmDeviation
< < " m_volume: " < < settings . m_volume
< < " m_squelchGate: " < < settings . m_squelchGate
< < " m_deltaSquelch: " < < settings . m_deltaSquelch
< < " m_squelch: " < < settings . m_squelch
< < " m_ctcssIndex: " < < settings . m_ctcssIndex
< < " m_ctcssOn: " < < settings . m_ctcssOn
< < " m_highPass: " < < settings . m_highPass
< < " m_audioMute: " < < settings . m_audioMute
< < " m_audioDeviceName: " < < settings . m_audioDeviceName
< < " force: " < < force ;
if ( ( settings . m_rfBandwidth ! = m_settings . m_rfBandwidth ) | | force )
{
m_interpolator . create ( 16 , m_channelSampleRate , settings . m_rfBandwidth / 2.2 ) ;
m_interpolatorDistanceRemain = 0 ;
m_interpolatorDistance = ( Real ) m_channelSampleRate / ( Real ) m_audioSampleRate ;
}
if ( ( settings . m_fmDeviation ! = m_settings . m_fmDeviation ) | | force )
{
m_phaseDiscri . setFMScaling ( ( 8.0f * m_audioSampleRate ) / static_cast < float > ( settings . m_fmDeviation ) ) ; // integrate 4x factor
}
if ( ( settings . m_afBandwidth ! = m_settings . m_afBandwidth ) | | force )
{
m_bandpass . create ( 301 , m_audioSampleRate , 300.0 , settings . m_afBandwidth ) ;
m_lowpass . create ( 301 , m_audioSampleRate , settings . m_afBandwidth ) ;
}
if ( ( settings . m_squelchGate ! = m_settings . m_squelchGate ) | | force )
{
m_squelchGate = ( m_audioSampleRate / 100 ) * settings . m_squelchGate ; // gate is given in 10s of ms at 48000 Hz audio sample rate
m_squelchCount = 0 ; // reset squelch open counter
}
if ( ( settings . m_squelch ! = m_settings . m_squelch ) | |
( settings . m_deltaSquelch ! = m_settings . m_deltaSquelch ) | | force )
{
if ( settings . m_deltaSquelch )
{ // input is a value in negative centis
m_squelchLevel = ( - settings . m_squelch ) / 100.0 ;
m_afSquelch . setThreshold ( m_squelchLevel ) ;
m_afSquelch . reset ( ) ;
}
else
{ // input is a value in deci-Bels
m_squelchLevel = std : : pow ( 10.0 , settings . m_squelch / 10.0 ) ;
m_movingAverage . reset ( ) ;
}
m_squelchCount = 0 ; // reset squelch open counter
}
if ( ( settings . m_ctcssIndex ! = m_settings . m_ctcssIndex ) | | force ) {
setSelectedCtcssIndex ( settings . m_ctcssIndex ) ;
}
m_settings = settings ;
}
void NFMDemodSink : : applyAudioSampleRate ( unsigned int sampleRate )
{
2020-08-01 04:09:39 -04:00
if ( sampleRate < 0 )
{
qWarning ( " NFMDemodSink::applyAudioSampleRate: invalid sample rate: %d " , sampleRate ) ;
return ;
}
2019-11-23 01:39:57 -05:00
qDebug ( " NFMDemodSink::applyAudioSampleRate: %u m_channelSampleRate: %d " , sampleRate , m_channelSampleRate ) ;
m_ctcssLowpass . create ( 301 , sampleRate , 250.0 ) ;
m_bandpass . create ( 301 , sampleRate , 300.0 , m_settings . m_afBandwidth ) ;
m_lowpass . create ( 301 , sampleRate , m_settings . m_afBandwidth ) ;
m_squelchGate = ( sampleRate / 100 ) * m_settings . m_squelchGate ; // gate is given in 10s of ms at 48000 Hz audio sample rate
m_squelchCount = 0 ; // reset squelch open counter
m_ctcssDetector . setCoefficients ( sampleRate / 16 , sampleRate / 8.0f ) ; // 0.5s / 2 Hz resolution
if ( sampleRate < 16000 ) {
m_afSquelch . setCoefficients ( sampleRate / 2000 , 600 , sampleRate , 200 , 0 , afSqTones_lowrate ) ; // 0.5ms test period, 300ms average span, audio SR, 100ms attack, no decay
} else {
m_afSquelch . setCoefficients ( sampleRate / 2000 , 600 , sampleRate , 200 , 0 , afSqTones ) ; // 0.5ms test period, 300ms average span, audio SR, 100ms attack, no decay
}
m_discriCompensation = ( sampleRate / 48000.0f ) ;
m_discriCompensation * = sqrt ( m_discriCompensation ) ;
m_phaseDiscri . setFMScaling ( sampleRate / static_cast < float > ( m_settings . m_fmDeviation ) ) ;
m_audioFifo . setSize ( sampleRate ) ;
m_squelchDelayLine . resize ( sampleRate / 2 ) ;
m_audioSampleRate = sampleRate ;
}