1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-25 17:28:50 -05:00
sdrangel/sdrbase/util/coordinates.cpp

319 lines
12 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2022 Jon Beniston, M7RCE <jon@beniston.com> //
// Copyright (C) 2011-2020 Cesium Contributors //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "coordinates.h"
#include "units.h"
// Scale cartesian position on to surface of ellipsoid
QVector3D Coordinates::scaleToGeodeticSurface(QVector3D cartesian, QVector3D oneOverRadii, QVector3D oneOverRadiiSquared)
{
float centerToleranceSquared = 0.1;
double x2 = cartesian.x() * cartesian.x() * oneOverRadii.x() * oneOverRadii.x();
double y2 = cartesian.y() * cartesian.y() * oneOverRadii.y() * oneOverRadii.y();
double z2 = cartesian.z() * cartesian.z() * oneOverRadii.z() * oneOverRadii.z();
double squaredNorm = x2 + y2 + z2;
double ratio = sqrt(1.0 / squaredNorm);
QVector3D intersection = cartesian * ratio;
if (squaredNorm < centerToleranceSquared) {
return intersection;
}
QVector3D gradient(
intersection.x() * oneOverRadiiSquared.x() * 2.0,
intersection.y() * oneOverRadiiSquared.y() * 2.0,
intersection.z() * oneOverRadiiSquared.z() * 2.0
);
double lambda = ((1.0 - ratio) * cartesian.length()) / (0.5 * gradient.length());
double correction = 0.0;
double func;
double denominator;
double xMultiplier;
double yMultiplier;
double zMultiplier;
double xMultiplier2;
double yMultiplier2;
double zMultiplier2;
double xMultiplier3;
double yMultiplier3;
double zMultiplier3;
do
{
lambda -= correction;
xMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquared.x());
yMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquared.y());
zMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquared.z());
xMultiplier2 = xMultiplier * xMultiplier;
yMultiplier2 = yMultiplier * yMultiplier;
zMultiplier2 = zMultiplier * zMultiplier;
xMultiplier3 = xMultiplier2 * xMultiplier;
yMultiplier3 = yMultiplier2 * yMultiplier;
zMultiplier3 = zMultiplier2 * zMultiplier;
func = x2 * xMultiplier2 + y2 * yMultiplier2 + z2 * zMultiplier2 - 1.0;
denominator =
x2 * xMultiplier3 * oneOverRadiiSquared.x() +
y2 * yMultiplier3 * oneOverRadiiSquared.y() +
z2 * zMultiplier3 * oneOverRadiiSquared.z();
double derivative = -2.0 * denominator;
correction = func / derivative;
}
while (abs(func) > 0.000000000001);
QVector3D result(
cartesian.x() * xMultiplier,
cartesian.y() * yMultiplier,
cartesian.z() * zMultiplier
);
return result;
}
// QVector3D.normalized doesn't work with small numbers
QVector3D Coordinates::normalized(QVector3D vec)
{
QVector3D result;
float magnitude = vec.length();
result.setX(vec.x() / magnitude);
result.setY(vec.y() / magnitude);
result.setZ(vec.z() / magnitude);
return result;
}
// Convert ECEF position to geodetic coordinates
void Coordinates::ecefToGeodetic(double x, double y, double z, double &latitude, double &longitude, double &height)
{
QVector3D wgs84OneOverRadix(1.0 / 6378137.0,
1.0 / 6378137.0,
1.0 / 6356752.3142451793);
QVector3D wgs84OneOverRadiiSquared(1.0 / (6378137.0 * 6378137.0),
1.0 / (6378137.0 * 6378137.0),
1.0 / (6356752.3142451793 * 6356752.3142451793));
QVector3D cartesian(x, y, z);
QVector3D p = scaleToGeodeticSurface(cartesian, wgs84OneOverRadix, wgs84OneOverRadiiSquared);
QVector3D n = p * wgs84OneOverRadiiSquared;
n = normalized(n);
QVector3D h = cartesian - p;
longitude = atan2(n.y(), n.x());
latitude = asin(n.z());
longitude = Units::radiansToDegrees(longitude);
latitude = Units::radiansToDegrees(latitude);
double t = QVector3D::dotProduct(h, cartesian);
double sign = t >= 0.0 ? 1.0 : 0.0;
height = sign * h.length();
}
// Convert ECEF velocity to speed and heading
void Coordinates::ecefVelToSpeedHeading(double latitude, double longitude,
double velX, double velY, double velZ,
double &speed, double &verticalRate, double &heading)
{
if ((velX == 0.0) && (velY == 0.0) && (velZ == 0.0))
{
speed = 0.0;
heading = 0.0;
verticalRate = 0.0;
return;
}
double latRad = Units::degreesToRadians(latitude);
double lonRad = Units::degreesToRadians(longitude);
double sinLat = sin(latRad);
double cosLat = cos(latRad);
double sinLon = sin(lonRad);
double cosLon = cos(lonRad);
double velEast = -velX * sinLon + velY * cosLon;
double velNorth = -velX * sinLat * cosLon - velY * sinLat * sinLon + velZ * cosLat;
double velUp = velX * cosLat * cosLon + velY * cosLat * sinLon + velZ * sinLat;
speed = sqrt(velNorth * velNorth + velEast * velEast);
verticalRate = velUp;
double headingRad = atan2(velEast, velNorth);
heading = Units::radiansToDegrees(headingRad);
if (heading < 0.0) {
heading += 360.0;
} else if (heading >= 360.0) {
heading -= 360.0;
}
}
// Convert a position specified in longitude, latitude in degrees and height in metres above WGS84 ellipsoid in to
// Earth Centered Earth Fixed frame cartesian coordinates
// See Cesium.Cartesian3.fromDegrees
QVector3D Coordinates::geodeticToECEF(double longitude, double latitude, double height)
{
return geodeticRadiansToECEF(Units::degreesToRadians(longitude), Units::degreesToRadians(latitude), height);
}
// FIXME: QVector3D is only float!
// See Cesium.Cartesian3.fromRadians
QVector3D Coordinates::geodeticRadiansToECEF(double longitude, double latitude, double height)
{
QVector3D wgs84RadiiSquared(6378137.0 * 6378137.0, 6378137.0 * 6378137.0, 6356752.3142451793 * 6356752.3142451793);
double cosLatitude = cos(latitude);
QVector3D n;
n.setX(cosLatitude * cos(longitude));
n.setY(cosLatitude * sin(longitude));
n.setZ(sin(latitude));
n.normalize();
QVector3D k;
k = wgs84RadiiSquared * n;
double gamma = sqrt(QVector3D::dotProduct(n, k));
k = k / gamma;
n = n * height;
return k + n;
}
// Convert heading, pitch and roll in degrees to a quaternoin
// See: Cesium.Quaternion.fromHeadingPitchRoll
QQuaternion Coordinates::fromHeadingPitchRoll(double heading, double pitch, double roll)
{
QVector3D xAxis(1, 0, 0);
QVector3D yAxis(0, 1, 0);
QVector3D zAxis(0, 0, 1);
QQuaternion rollQ = QQuaternion::fromAxisAndAngle(xAxis, roll);
QQuaternion pitchQ = QQuaternion::fromAxisAndAngle(yAxis, -pitch);
QQuaternion headingQ = QQuaternion::fromAxisAndAngle(zAxis, -heading);
QQuaternion temp = rollQ * pitchQ;
return headingQ * temp;
}
// Calculate a transformation matrix from a East, North, Up frame at the given position to Earth Centered Earth Fixed frame
// See: Cesium.Transforms.eastNorthUpToFixedFrame
QMatrix4x4 Coordinates::eastNorthUpToECEF(QVector3D origin)
{
// TODO: Handle special case at centre of earth and poles
QVector3D up = origin.normalized();
QVector3D east(-origin.y(), origin.x(), 0.0);
east.normalize();
QVector3D north = QVector3D::crossProduct(up, east);
QMatrix4x4 result(
east.x(), north.x(), up.x(), origin.x(),
east.y(), north.y(), up.y(), origin.y(),
east.z(), north.z(), up.z(), origin.z(),
0.0, 0.0, 0.0, 1.0
);
return result;
}
// Convert 3x3 rotation matrix to a quaternoin
// Although there is a method for this in Qt: QQuaternion::fromRotationMatrix, it seems to
// result in different signs, so the following is based on Cesium code
QQuaternion Coordinates::fromRotation(QMatrix3x3 mat)
{
QQuaternion q;
double trace = mat(0, 0) + mat(1, 1) + mat(2, 2);
if (trace > 0.0)
{
double root = sqrt(trace + 1.0);
q.setScalar(0.5 * root);
root = 0.5 / root;
q.setX((mat(2,1) - mat(1,2)) * root);
q.setY((mat(0,2) - mat(2,0)) * root);
q.setZ((mat(1,0) - mat(0,1)) * root);
}
else
{
double next[] = {1, 2, 0};
int i = 0;
if (mat(1,1) > mat(0,0)) {
i = 1;
}
if (mat(2,2) > mat(0,0) && mat(2,2) > mat(1,1)) {
i = 2;
}
int j = next[i];
int k = next[j];
double root = sqrt(mat(i,i) - mat(j,j) - mat(k,k) + 1);
double quat[] = {0.0, 0.0, 0.0};
quat[i] = 0.5 * root;
root = 0.5 / root;
q.setScalar((mat(j,k) - mat(k,j)) * root);
quat[j] = (mat(i,j) + mat(j,i)) * root;
quat[k] = (mat(i,k) + mat(k,i)) * root;
q.setX(-quat[0]);
q.setY(-quat[1]);
q.setZ(-quat[2]);
}
return q;
}
// Calculate orientation quaternion for a model (such as an aircraft) based on position and (HPR) heading, pitch and roll (in degrees)
// While Cesium supports specifying orientation as HPR, CZML doesn't currently. See https://github.com/CesiumGS/cesium/issues/5184
// CZML requires the orientation to be in the Earth Centered Earth Fixed (geocentric) reference frame (https://en.wikipedia.org/wiki/Local_tangent_plane_coordinates)
// The orientation therefore depends not only on HPR but also on position
//
// glTF uses a right-handed axis convention; that is, the cross product of right and forward yields up. glTF defines +Y as up, +Z as forward, and -X as right.
// Cesium.Quaternion.fromHeadingPitchRoll Heading is the rotation about the negative z axis. Pitch is the rotation about the negative y axis. Roll is the rotation about the positive x axis.
QQuaternion Coordinates::orientation(double longitude, double latitude, double altitude, double heading, double pitch, double roll)
{
// Forward direction for gltf models in Cesium seems to be Eastward, rather than Northward, so we adjust heading by -90 degrees
heading = -90 + heading;
// Convert position to Earth Centered Earth Fixed (ECEF) frame
QVector3D positionECEF = geodeticToECEF(longitude, latitude, altitude);
// Calculate matrix to transform from East, North, Up (ENU) frame to ECEF frame
QMatrix4x4 enuToECEFTransform = eastNorthUpToECEF(positionECEF);
// Calculate rotation based on HPR in ENU frame
QQuaternion hprENU = fromHeadingPitchRoll(heading, pitch, roll);
// Transform rotation from ENU to ECEF
QMatrix3x3 hprENU3 = hprENU.toRotationMatrix();
QMatrix4x4 hprENU4(hprENU3);
QMatrix4x4 transform = enuToECEFTransform * hprENU4;
// Convert from 4x4 matrix to 3x3 matrix then to a quaternion
QQuaternion oq = fromRotation(transform.toGenericMatrix<3,3>());
return oq;
}