sdrangel/plugins/channelrx/chanalyzerng/chanalyzerng.cpp

425 lines
14 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "chanalyzerng.h"
#include <QTime>
#include <QDebug>
#include <stdio.h>
#include "device/devicesourceapi.h"
#include "audio/audiooutput.h"
#include "dsp/threadedbasebandsamplesink.h"
#include "dsp/downchannelizer.h"
MESSAGE_CLASS_DEFINITION(ChannelAnalyzerNG::MsgConfigureChannelAnalyzer, Message)
2018-05-18 23:03:56 -04:00
MESSAGE_CLASS_DEFINITION(ChannelAnalyzerNG::MsgConfigureChannelAnalyzerOld, Message)
MESSAGE_CLASS_DEFINITION(ChannelAnalyzerNG::MsgConfigureChannelizer, Message)
MESSAGE_CLASS_DEFINITION(ChannelAnalyzerNG::MsgReportChannelSampleRateChanged, Message)
const QString ChannelAnalyzerNG::m_channelIdURI = "sdrangel.channel.chanalyzerng";
const QString ChannelAnalyzerNG::m_channelId = "ChannelAnalyzerNG";
ChannelAnalyzerNG::ChannelAnalyzerNG(DeviceSourceAPI *deviceAPI) :
ChannelSinkAPI(m_channelIdURI),
m_deviceAPI(deviceAPI),
m_sampleSink(0),
m_settingsMutex(QMutex::Recursive)
{
setObjectName(m_channelId);
m_undersampleCount = 0;
m_sum = 0;
m_usb = true;
m_magsq = 0;
m_useInterpolator = false;
m_interpolatorDistance = 1.0f;
m_interpolatorDistanceRemain = 0.0f;
SSBFilter = new fftfilt(m_config.m_LowCutoff / m_config.m_inputSampleRate, m_config.m_Bandwidth / m_config.m_inputSampleRate, ssbFftLen);
DSBFilter = new fftfilt(m_config.m_Bandwidth / m_config.m_inputSampleRate, 2*ssbFftLen);
//m_pll.computeCoefficients(0.05f, 0.707f, 1000.0f); // bandwidth, damping factor, loop gain
m_pll.computeCoefficients(0.002f, 0.5f, 10.0f); // bandwidth, damping factor, loop gain
m_fll.setSampleRate(48000);
apply(true);
m_channelizer = new DownChannelizer(this);
m_threadedChannelizer = new ThreadedBasebandSampleSink(m_channelizer, this);
m_deviceAPI->addThreadedSink(m_threadedChannelizer);
m_deviceAPI->addChannelAPI(this);
}
ChannelAnalyzerNG::~ChannelAnalyzerNG()
{
m_deviceAPI->removeChannelAPI(this);
m_deviceAPI->removeThreadedSink(m_threadedChannelizer);
delete m_threadedChannelizer;
delete m_channelizer;
delete SSBFilter;
delete DSBFilter;
}
void ChannelAnalyzerNG::configure(MessageQueue* messageQueue,
int channelSampleRate,
Real Bandwidth,
Real LowCutoff,
int spanLog2,
bool ssb,
bool pll,
2018-05-17 03:09:57 -04:00
bool fll,
unsigned int pllPskOrder)
{
2018-05-18 23:03:56 -04:00
Message* cmd = MsgConfigureChannelAnalyzerOld::create(channelSampleRate, Bandwidth, LowCutoff, spanLog2, ssb, pll, fll, pllPskOrder);
messageQueue->push(cmd);
}
void ChannelAnalyzerNG::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool positiveOnly __attribute__((unused)))
{
fftfilt::cmplx *sideband = 0;
Complex ci;
m_settingsMutex.lock();
for(SampleVector::const_iterator it = begin; it < end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if (m_useInterpolator)
{
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci, sideband);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
else
{
processOneSample(c, sideband);
}
}
if(m_sampleSink != 0)
{
m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), m_running.m_ssb); // m_ssb = positive only
}
m_sampleBuffer.clear();
m_settingsMutex.unlock();
}
void ChannelAnalyzerNG::start()
{
}
void ChannelAnalyzerNG::stop()
{
}
bool ChannelAnalyzerNG::handleMessage(const Message& cmd)
{
qDebug() << "ChannelAnalyzerNG::handleMessage: " << cmd.getIdentifier();
if (DownChannelizer::MsgChannelizerNotification::match(cmd))
{
DownChannelizer::MsgChannelizerNotification& notif = (DownChannelizer::MsgChannelizerNotification&) cmd;
m_config.m_inputSampleRate = notif.getSampleRate();
m_config.m_frequency = notif.getFrequencyOffset();
qDebug() << "ChannelAnalyzerNG::handleMessage: MsgChannelizerNotification:"
<< " m_sampleRate: " << m_config.m_inputSampleRate
<< " frequencyOffset: " << m_config.m_frequency;
apply();
if (getMessageQueueToGUI())
{
MsgReportChannelSampleRateChanged *msg = MsgReportChannelSampleRateChanged::create();
getMessageQueueToGUI()->push(msg);
}
return true;
}
else if (MsgConfigureChannelizer::match(cmd))
{
MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd;
m_channelizer->configure(m_channelizer->getInputMessageQueue(),
cfg.getSampleRate(),
cfg.getCenterFrequency());
return true;
}
2018-05-18 23:03:56 -04:00
else if (MsgConfigureChannelAnalyzerOld::match(cmd))
{
2018-05-18 23:03:56 -04:00
MsgConfigureChannelAnalyzerOld& cfg = (MsgConfigureChannelAnalyzerOld&) cmd;
m_config.m_channelSampleRate = cfg.getChannelSampleRate();
m_config.m_Bandwidth = cfg.getBandwidth();
m_config.m_LowCutoff = cfg.getLoCutoff();
m_config.m_spanLog2 = cfg.getSpanLog2();
m_config.m_ssb = cfg.getSSB();
m_config.m_pll = cfg.getPLL();
2018-05-17 03:09:57 -04:00
m_config.m_fll = cfg.getFLL();
m_config.m_pllPskOrder = cfg.getPLLPSKOrder();
qDebug() << "ChannelAnalyzerNG::handleMessage: MsgConfigureChannelAnalyzer:"
<< " m_channelSampleRate: " << m_config.m_channelSampleRate
<< " m_Bandwidth: " << m_config.m_Bandwidth
<< " m_LowCutoff: " << m_config.m_LowCutoff
<< " m_spanLog2: " << m_config.m_spanLog2
<< " m_ssb: " << m_config.m_ssb
<< " m_pll: " << m_config.m_pll
2018-05-17 03:09:57 -04:00
<< " m_fll: " << m_config.m_fll
<< " m_pllPskOrder: " << m_config.m_pllPskOrder;
apply();
return true;
}
else
{
if (m_sampleSink != 0)
{
return m_sampleSink->handleMessage(cmd);
}
else
{
return false;
}
}
}
void ChannelAnalyzerNG::apply(bool force)
{
if ((m_running.m_frequency != m_config.m_frequency) ||
(m_running.m_inputSampleRate != m_config.m_inputSampleRate) ||
force)
{
m_nco.setFreq(-m_config.m_frequency, m_config.m_inputSampleRate);
}
if ((m_running.m_inputSampleRate != m_config.m_inputSampleRate) ||
(m_running.m_channelSampleRate != m_config.m_channelSampleRate) ||
force)
{
m_settingsMutex.lock();
m_interpolator.create(16, m_config.m_inputSampleRate, m_config.m_inputSampleRate / 2.2);
m_interpolatorDistanceRemain = 0.0f;
m_interpolatorDistance = (Real) m_config.m_inputSampleRate / (Real) m_config.m_channelSampleRate;
m_useInterpolator = (m_config.m_inputSampleRate != m_config.m_channelSampleRate); // optim
m_settingsMutex.unlock();
}
if ((m_running.m_channelSampleRate != m_config.m_channelSampleRate) ||
(m_running.m_Bandwidth != m_config.m_Bandwidth) ||
(m_running.m_LowCutoff != m_config.m_LowCutoff) ||
force)
{
float bandwidth = m_config.m_Bandwidth;
float lowCutoff = m_config.m_LowCutoff;
if (bandwidth < 0)
{
bandwidth = -bandwidth;
lowCutoff = -lowCutoff;
m_usb = false;
}
else
{
m_usb = true;
}
if (bandwidth < 100.0f)
{
bandwidth = 100.0f;
lowCutoff = 0;
}
m_settingsMutex.lock();
SSBFilter->create_filter(lowCutoff / m_config.m_channelSampleRate, bandwidth / m_config.m_channelSampleRate);
DSBFilter->create_dsb_filter(bandwidth / m_config.m_channelSampleRate);
m_settingsMutex.unlock();
}
if ((m_running.m_channelSampleRate != m_config.m_channelSampleRate) ||
(m_running.m_spanLog2 != m_config.m_spanLog2) || force)
{
2018-05-17 03:09:57 -04:00
int sampleRate = m_running.m_channelSampleRate / (1<<m_running.m_spanLog2);
m_pll.setSampleRate(sampleRate);
m_fll.setSampleRate(sampleRate);
}
if (m_running.m_pll != m_config.m_pll || force)
{
if (m_config.m_pll)
{
m_pll.reset();
m_fll.reset();
}
}
2018-05-17 03:09:57 -04:00
if (m_running.m_fll != m_config.m_fll || force)
{
if (m_config.m_fll) {
m_fll.reset();
}
}
if (m_running.m_pllPskOrder != m_config.m_pllPskOrder || force)
{
2018-05-17 03:09:57 -04:00
if (m_config.m_pllPskOrder < 5) {
m_pll.setPskOrder(m_config.m_pllPskOrder);
}
}
m_running.m_frequency = m_config.m_frequency;
m_running.m_channelSampleRate = m_config.m_channelSampleRate;
m_running.m_inputSampleRate = m_config.m_inputSampleRate;
m_running.m_Bandwidth = m_config.m_Bandwidth;
m_running.m_LowCutoff = m_config.m_LowCutoff;
//m_settingsMutex.lock();
m_running.m_spanLog2 = m_config.m_spanLog2;
m_running.m_ssb = m_config.m_ssb;
m_running.m_pll = m_config.m_pll;
m_running.m_fll = m_config.m_fll;
m_running.m_pllPskOrder = m_config.m_pllPskOrder;
//m_settingsMutex.unlock();
}
2018-05-18 23:03:56 -04:00
void ChannelAnalyzerNG::applyChannelSettings(int inputSampleRate, int inputFrequencyOffset, bool force)
{
qDebug() << "ChannelAnalyzerNG::applyChannelSettings:"
<< " inputSampleRate: " << inputSampleRate
<< " inputFrequencyOffset: " << inputFrequencyOffset;
if ((m_inputFrequencyOffset != inputFrequencyOffset) ||
(m_inputSampleRate != inputSampleRate) || force)
{
m_nco.setFreq(-inputFrequencyOffset, inputSampleRate);
}
if ((m_inputSampleRate != inputSampleRate) || force)
{
m_settingsMutex.lock();
m_interpolator.create(16, inputSampleRate, inputSampleRate / 2.2f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) inputSampleRate / (Real) m_settings.m_downSampleRate;
if (!m_settings.m_downSample)
{
setFilters(inputSampleRate, m_settings.m_bandwidth, m_settings.m_lowCutoff);
m_pll.setSampleRate(inputSampleRate / (1<<m_settings.m_spanLog2));
m_fll.setSampleRate(inputSampleRate / (1<<m_settings.m_spanLog2));
}
m_settingsMutex.unlock();
}
m_inputSampleRate = inputSampleRate;
m_inputFrequencyOffset = inputFrequencyOffset;
}
void ChannelAnalyzerNG::setFilters(int sampleRate, float bandwidth, float lowCutoff)
{
if (bandwidth < 0)
{
bandwidth = -bandwidth;
lowCutoff = -lowCutoff;
m_usb = false;
}
else
{
m_usb = true;
}
if (bandwidth < 100.0f)
{
bandwidth = 100.0f;
lowCutoff = 0;
}
SSBFilter->create_filter(lowCutoff / sampleRate, bandwidth / sampleRate);
DSBFilter->create_dsb_filter(bandwidth / sampleRate);
}
void ChannelAnalyzerNG::applySettings(const ChannelAnalyzerNGSettings& settings, bool force)
{
if ((settings.m_downSampleRate != m_settings.m_downSampleRate) || force)
{
m_settingsMutex.lock();
m_interpolator.create(16, m_inputSampleRate, m_inputSampleRate / 2.2);
m_interpolatorDistanceRemain = 0.0f;
m_interpolatorDistance = (Real) m_inputSampleRate / (Real) settings.m_downSampleRate;
m_settingsMutex.unlock();
}
if ((settings.m_downSample != m_settings.m_downSample) || force)
{
int sampleRate = settings.m_downSample ? settings.m_downSampleRate : m_inputSampleRate;
2018-05-18 23:03:56 -04:00
m_settingsMutex.lock();
m_useInterpolator = settings.m_downSample;
setFilters(sampleRate, settings.m_bandwidth, settings.m_lowCutoff);
m_pll.setSampleRate(sampleRate / (1<<settings.m_spanLog2));
m_fll.setSampleRate(sampleRate / (1<<settings.m_spanLog2));
2018-05-18 23:03:56 -04:00
m_settingsMutex.unlock();
}
if ((settings.m_bandwidth != m_settings.m_bandwidth) ||
(settings.m_lowCutoff != m_settings.m_lowCutoff)|| force)
{
m_settingsMutex.lock();
setFilters(settings.m_downSample ? settings.m_downSampleRate : m_inputSampleRate, settings.m_bandwidth, settings.m_lowCutoff);
m_settingsMutex.unlock();
}
if ((settings.m_spanLog2 != m_settings.m_spanLog2) || force)
{
int sampleRate = (settings.m_downSample ? settings.m_downSampleRate : m_inputSampleRate) / (1<<m_running.m_spanLog2);
m_pll.setSampleRate(sampleRate);
m_fll.setSampleRate(sampleRate);
}
if (settings.m_pll != m_settings.m_pll || force)
{
if (settings.m_pll)
{
m_pll.reset();
m_fll.reset();
}
}
if (settings.m_fll != m_settings.m_fll || force)
{
if (settings.m_fll) {
m_fll.reset();
}
}
if (settings.m_pllPskOrder != m_settings.m_pllPskOrder || force)
{
if (settings.m_pllPskOrder < 32) {
m_pll.setPskOrder(settings.m_pllPskOrder);
}
}
m_settings = settings;
}