This plugin can be used to generate an analog TV signal mostly used in amateur radio. It is limited to black and white images as only the luminance (256 levels) is supported.
There is no sound either. You coud imagine using any of the plugins supporting audio to create a mixed signal. This is not working well however for various reasons. It is better to use two physical transmitters and two physical receivers.
In practice 4 MS/s with about 300 points per line is the lowest sample rate that produces a standard image quality. Lower sample rates and line definition produce low quality images that may still be acceptable for experiments. The plugin offers to go as low as 32 lines and 8 FPS for NBTV experiments. NBTV stands for Narrow Band TeleVision see: [Wikipedia article](https://en.wikipedia.org/wiki/Narrow-bandwidth_television) and [NBTV.org](http://www.nbtv.org/)
Use the wheels to adjust the frequency shift in Hz from the center frequency of reception. Left click on a digit sets the cursor position at this digit. Right click on a digit sets all digits on the right to zero. This effectively floors value at the digit position.
The left button can be used to force the rational decimator even when the source and channel sample rates agree. This allows to use the FIR filter of the decimator in any case.
The middle figure is the sample rate in kS/s used in the channel which may differ of the source plugin output sample rate if the rational decimator is engaged. This sample rate is calculated as the closest 10 S/s multiple to the source sample rate to fit an integer number of line points. The number of line points is the full line including synchronization. This number is the sample rate divided by the line frequency. The line frequency is calculated as the nominal number of lines multiplied by the FPS.
Use this button to toggle mute for this channel. The radio waves on the icon are toggled on (active) and off (muted) accordingly. Default is channel active.
- FM: Frequency modulation. Excursion is a percentage of the bandwidth available given the channel sample rate. This percentage is controlled by button (2). e.g. at 25% for 4 MS/s sample rate this is 1 MHz (±0.5 MHz)
Use this button to control FM deviation in FM modulation mode. This is a percentage of total available channel bandwidth. e.g for the sample rate of 2997 kS/s of the screenshot and a percentage of 19% this yields a full deviation of 2997 × 0.19 = 569.43 kHz that is ±284.715 kHz
☞ You can adjust this value and see the result for yourseelf. A good starting point is half of the signal bandwidth.
This slider is effective only on SSB and vestigial modes (USB, LSB, VUSB, VLSB). This slider controls the cutoff frequency of the FFT filter in the opposite sideband to the main in band sideband. That is:
<h3>A.5: Modulated signal level before filtering stages</h3>
This button controls the scaling from the +1/-1 modulated signal level to the -32768/+32768 2 bytes samples. This is useful to control the saturation of the FFT or FIR filters. Looking at the output spectrum you can precisely control the limit above which distorsion appears.
This controls the number of full frames per second. Choice is between 30, 25, 20, 16, 12, 10, 8, 5, 2 and 1 frames per second.
☞ Perception of continuous motion is said to be acceptable down to 16 FPS. Down to 8 FPS fluidity is still acceptable. The 5 to 1 FPS modes can be used when you want to transmit images with only few movements or where motion is not important such as fixed webcams. Low FPS will allow for more lines and therefore definition in the same bandwidth.
- PAL625: this is the PAL 625 lines standard with 25 FPS. Since only black and white (luminance) is supported this corresponds to any of the B,G,I or L PAL standards
- PAL525: this is the PAL 525 lines standard with 30 FPS. This corresponds to the PAL M standard.
- PAL405: this loosely corresponds to the British 405 lines system and is similar to PAL for synchronization. This mode has only 7 black lines.
- ShI: this is an experimental mode that uses the least possible vertical sync lines as possible. That is one line for a long synchronization pulse and one line at a higher level (0.7) to reset the vertical sync condition. Thus only 2 lines are consumed for vertical sync and the rest is left to the image. In this mode the frames are interleaved
- ShNI: this is the same as above but with non interleaved frames.
- HSkip: this is the horizontal sync skip technique for vertical synchronization. This has been in use in the first TV experiments with a small number of lines. This method just skips one horizontal synchronization pluse to mark the last or the first line (here it is the last). This method does not use any full line for vertical sync and all lines can be used for the image thus it suits the modes with a small number of lines. With more lines however the risk of missing pulses gets higher in adverse conditions because the pulses get shorter and may get swallowed by a stray pulse or a stray pulse can be taken for a valid one. In this case two images might get out of sync instead of just two lines. In practice this is suitable up to 90~120 lines.
☞ Interleaved mode requires an odd number of lines because the system recognizes the even and odd frames depending on a odd or even number of lines respectively for the half images
☞ For non interlaved mode all standards are supposed to work for any number of lines. You may experiment with any and see if it fits your purpose. However it will be easier to obtain good or optimal results in general with the following recommendations:
- Image: still image read from the file selected with button (13). If no image is selected an uniform image is sent with the luminance adjusted with button (10)
- Video: video file read from the file selected with button (14). If no image is selected an uniform image is sent with the luminance adjusted with button (10). Buttons (15) and (16) control the play.
- Camera: video signal from a webcam or supported video source connected to the system. If no source is selected an uniform image is sent with the luminance adjusted with button (10). Button (21) selects the camera source. Button (20) plays or stops the camera on a still image.
The button toggles the display of an overlay text on a still image, or a video signal from a file or a camera. Note that for still images you will have to toggle off/on this button to take any change of text or text brightness into account. The brightness level of the text is selected with the luminance adjust button (10). The number of characters is limited to 12.
Clicking on this button will open a file dialog to let you choose an image file for still image display. When the dialog is closed and the choice is validated the name of the file will appear on the space at the right of the button.
Clicking on this button will open a file dialog to let you choose a video file for video play. When the dialog is closed and the choice is validated the name of the file will appear on the space at the right of the button.
Use this button to toggle on/off the video file play. When play stops the current image is displayed as a still image. When video is stopped the button is dark and a play (►) icon is displayed on the button. When video runs the button is lit and a pause (▋▋) icon is displayed on the button.
This slider can be used to randomly set the currennt position in the file when file play is in pause state (button 16). When video plays the slider moves according to the current position.
Use this button to toggle on/off the camera play. When play stops the current image is displayed as a still image. When camera is stopped the button is dark and a play (►) icon is displayed on the button. When camera runs the button is lit and a pause (▋▋) icon is displayed on the button.
On Linux systems when the play button is engaged for the first time the FPS of the camera is scanned which can take some time (100 frames are read). A message box appears while the operation is running.
Use this combo to select the camera source when more than one is available. the number corresponds to the index of the camera during the camera scan at the startup of the plugin instance. A maximum of 4 cameras are scanned in whichever order presented by the system.
This is the camera FPS. On Windows there is no dynamic FPS check and a fixed 5 FPS is set for each camera. On Linux 90% of the calculated FPS is divided by the number of scanned cameras to give the final FPS. This is an attempt to avoid congestion when multiple cameras are available however this was only tested with two cameras.