mirror of
https://github.com/f4exb/sdrangel.git
synced 2024-12-23 10:05:46 -05:00
201 lines
5.2 KiB
C++
201 lines
5.2 KiB
C++
|
///////////////////////////////////////////////////////////////////////////////////
|
||
|
// Copyright (C) 2024 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
|
||
|
// //
|
||
|
// This is the code from ft8mon: https://github.com/rtmrtmrtmrtm/ft8mon //
|
||
|
// reformatted and adapted to Qt and SDRangel context //
|
||
|
// //
|
||
|
// This program is free software; you can redistribute it and/or modify //
|
||
|
// it under the terms of the GNU General Public License as published by //
|
||
|
// the Free Software Foundation as version 3 of the License, or //
|
||
|
// (at your option) any later version. //
|
||
|
// //
|
||
|
// This program is distributed in the hope that it will be useful, //
|
||
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
||
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
||
|
// GNU General Public License V3 for more details. //
|
||
|
// //
|
||
|
// You should have received a copy of the GNU General Public License //
|
||
|
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
|
||
|
///////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
#include <math.h>
|
||
|
#include <algorithm>
|
||
|
|
||
|
#include "ft8stats.h"
|
||
|
|
||
|
namespace FT8 {
|
||
|
|
||
|
Stats::Stats(int how, float log_tail, float log_rate) :
|
||
|
sum_(0),
|
||
|
finalized_(false),
|
||
|
how_(how),
|
||
|
log_tail_(log_tail),
|
||
|
log_rate_(log_rate)
|
||
|
{}
|
||
|
|
||
|
void Stats::add(float x)
|
||
|
{
|
||
|
a_.push_back(x);
|
||
|
sum_ += x;
|
||
|
finalized_ = false;
|
||
|
}
|
||
|
|
||
|
void Stats::finalize()
|
||
|
{
|
||
|
finalized_ = true;
|
||
|
|
||
|
int n = a_.size();
|
||
|
mean_ = sum_ / n;
|
||
|
float var = 0;
|
||
|
float bsum = 0;
|
||
|
|
||
|
for (int i = 0; i < n; i++)
|
||
|
{
|
||
|
float y = a_[i] - mean_;
|
||
|
var += y * y;
|
||
|
bsum += fabs(y);
|
||
|
}
|
||
|
|
||
|
var /= n;
|
||
|
stddev_ = sqrt(var);
|
||
|
b_ = bsum / n;
|
||
|
|
||
|
// prepare for binary search to find where values lie
|
||
|
// in the distribution.
|
||
|
if (how_ != 0 && how_ != 5) {
|
||
|
std::sort(a_.begin(), a_.end());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
float Stats::mean()
|
||
|
{
|
||
|
if (!finalized_) {
|
||
|
finalize();
|
||
|
}
|
||
|
|
||
|
return mean_;
|
||
|
}
|
||
|
|
||
|
float Stats::stddev()
|
||
|
{
|
||
|
if (!finalized_) {
|
||
|
finalize();
|
||
|
}
|
||
|
|
||
|
return stddev_;
|
||
|
}
|
||
|
|
||
|
// fraction of distribution that's less than x.
|
||
|
// assumes normal distribution.
|
||
|
// this is PHI(x), or the CDF at x,
|
||
|
// or the integral from -infinity
|
||
|
// to x of the PDF.
|
||
|
float Stats::gaussian_problt(float x)
|
||
|
{
|
||
|
float SDs = (x - mean()) / stddev();
|
||
|
float frac = 0.5 * (1.0 + erf(SDs / sqrt(2.0)));
|
||
|
return frac;
|
||
|
}
|
||
|
|
||
|
// https://en.wikipedia.org/wiki/Laplace_distribution
|
||
|
// m and b from page 116 of Mark Owen's Practical Signal Processing.
|
||
|
float Stats::laplace_problt(float x)
|
||
|
{
|
||
|
float m = mean();
|
||
|
float cdf;
|
||
|
|
||
|
if (x < m) {
|
||
|
cdf = 0.5 * exp((x - m) / b_);
|
||
|
} else {
|
||
|
cdf = 1.0 - 0.5 * exp(-(x - m) / b_);
|
||
|
}
|
||
|
|
||
|
return cdf;
|
||
|
}
|
||
|
|
||
|
// look into the actual distribution.
|
||
|
float Stats::problt(float x)
|
||
|
{
|
||
|
if (!finalized_) {
|
||
|
finalize();
|
||
|
}
|
||
|
|
||
|
if (how_ == 0) {
|
||
|
return gaussian_problt(x);
|
||
|
}
|
||
|
|
||
|
if (how_ == 5) {
|
||
|
return laplace_problt(x);
|
||
|
}
|
||
|
|
||
|
// binary search.
|
||
|
auto it = std::lower_bound(a_.begin(), a_.end(), x);
|
||
|
int i = it - a_.begin();
|
||
|
int n = a_.size();
|
||
|
|
||
|
if (how_ == 1)
|
||
|
{
|
||
|
// index into the distribution.
|
||
|
// works poorly for values that are off the ends
|
||
|
// of the distribution, since those are all
|
||
|
// mapped to 0.0 or 1.0, regardless of magnitude.
|
||
|
return i / (float)n;
|
||
|
}
|
||
|
|
||
|
if (how_ == 2)
|
||
|
{
|
||
|
// use a kind of logistic regression for
|
||
|
// values near the edges of the distribution.
|
||
|
if (i < log_tail_ * n)
|
||
|
{
|
||
|
float x0 = a_[(int)(log_tail_ * n)];
|
||
|
float y = 1.0 / (1.0 + exp(-log_rate_ * (x - x0)));
|
||
|
// y is 0..0.5
|
||
|
y /= 5;
|
||
|
return y;
|
||
|
}
|
||
|
else if (i > (1 - log_tail_) * n)
|
||
|
{
|
||
|
float x0 = a_[(int)((1 - log_tail_) * n)];
|
||
|
float y = 1.0 / (1.0 + exp(-log_rate_ * (x - x0)));
|
||
|
// y is 0.5..1
|
||
|
// we want (1-log_tail)..1
|
||
|
y -= 0.5;
|
||
|
y *= 2;
|
||
|
y *= log_tail_;
|
||
|
y += (1 - log_tail_);
|
||
|
return y;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return i / (float)n;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (how_ == 3)
|
||
|
{
|
||
|
// gaussian for values near the edge of the distribution.
|
||
|
if (i < log_tail_ * n) {
|
||
|
return gaussian_problt(x);
|
||
|
} else if (i > (1 - log_tail_) * n) {
|
||
|
return gaussian_problt(x);
|
||
|
} else {
|
||
|
return i / (float)n;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (how_ == 4)
|
||
|
{
|
||
|
// gaussian for values outside the distribution.
|
||
|
if (x < a_[0] || x > a_.back()) {
|
||
|
return gaussian_problt(x);
|
||
|
} else {
|
||
|
return i / (float)n;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
} // namespace FT8
|