1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-29 11:18:56 -05:00
sdrangel/wdsp/eq.cpp

861 lines
27 KiB
C++
Raw Normal View History

2024-06-16 05:31:13 -04:00
/* eq.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2016, 2017 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "eq.hpp"
#include "firmin.hpp"
#include "fir.hpp"
#include "RXA.hpp"
#include "TXA.hpp"
namespace WDSP {
int EQP::fEQcompare (const void * a, const void * b)
{
if (*(double*)a < *(double*)b)
return -1;
else if (*(double*)a == *(double*)b)
return 0;
else
return 1;
}
double* EQP::eq_impulse (int N, int nfreqs, double* F, double* G, double samplerate, double scale, int ctfmode, int wintype)
{
double* fp = new double[nfreqs + 2]; // (double *) malloc0 ((nfreqs + 2) * sizeof (double));
double* gp = new double[nfreqs + 2]; // (double *) malloc0 ((nfreqs + 2) * sizeof (double));
double* A = new double[N / 2 + 1]; // (double *) malloc0 ((N / 2 + 1) * sizeof (double));
double* sary = new double[2 * nfreqs]; // (double *) malloc0 (2 * nfreqs * sizeof (double));
double gpreamp, f, frac;
double* impulse;
int i, j, mid;
fp[0] = 0.0;
fp[nfreqs + 1] = 1.0;
gpreamp = G[0];
for (i = 1; i <= nfreqs; i++)
{
fp[i] = 2.0 * F[i] / samplerate;
if (fp[i] < 0.0) fp[i] = 0.0;
if (fp[i] > 1.0) fp[i] = 1.0;
gp[i] = G[i];
}
for (i = 1, j = 0; i <= nfreqs; i++, j+=2)
{
sary[j + 0] = fp[i];
sary[j + 1] = gp[i];
}
qsort (sary, nfreqs, 2 * sizeof (double), fEQcompare);
for (i = 1, j = 0; i <= nfreqs; i++, j+=2)
{
fp[i] = sary[j + 0];
gp[i] = sary[j + 1];
}
gp[0] = gp[1];
gp[nfreqs + 1] = gp[nfreqs];
mid = N / 2;
j = 0;
if (N & 1)
{
for (i = 0; i <= mid; i++)
{
f = (double)i / (double)mid;
while (f > fp[j + 1]) j++;
frac = (f - fp[j]) / (fp[j + 1] - fp[j]);
A[i] = pow (10.0, 0.05 * (frac * gp[j + 1] + (1.0 - frac) * gp[j] + gpreamp)) * scale;
}
}
else
{
for (i = 0; i < mid; i++)
{
f = ((double)i + 0.5) / (double)mid;
while (f > fp[j + 1]) j++;
frac = (f - fp[j]) / (fp[j + 1] - fp[j]);
A[i] = pow (10.0, 0.05 * (frac * gp[j + 1] + (1.0 - frac) * gp[j] + gpreamp)) * scale;
}
}
if (ctfmode == 0)
{
int k, low, high;
double lowmag, highmag, flow4, fhigh4;
if (N & 1)
{
low = (int)(fp[1] * mid);
high = (int)(fp[nfreqs] * mid + 0.5);
lowmag = A[low];
highmag = A[high];
flow4 = pow((double)low / (double)mid, 4.0);
fhigh4 = pow((double)high / (double)mid, 4.0);
k = low;
while (--k >= 0)
{
f = (double)k / (double)mid;
lowmag *= (f * f * f * f) / flow4;
if (lowmag < 1.0e-100) lowmag = 1.0e-100;
A[k] = lowmag;
}
k = high;
while (++k <= mid)
{
f = (double)k / (double)mid;
highmag *= fhigh4 / (f * f * f * f);
if (highmag < 1.0e-100) highmag = 1.0e-100;
A[k] = highmag;
}
}
else
{
low = (int)(fp[1] * mid - 0.5);
high = (int)(fp[nfreqs] * mid - 0.5);
lowmag = A[low];
highmag = A[high];
flow4 = pow((double)low / (double)mid, 4.0);
fhigh4 = pow((double)high / (double)mid, 4.0);
k = low;
while (--k >= 0)
{
f = (double)k / (double)mid;
lowmag *= (f * f * f * f) / flow4;
if (lowmag < 1.0e-100) lowmag = 1.0e-100;
A[k] = lowmag;
}
k = high;
while (++k < mid)
{
f = (double)k / (double)mid;
highmag *= fhigh4 / (f * f * f * f);
if (highmag < 1.0e-100) highmag = 1.0e-100;
A[k] = highmag;
}
}
}
if (N & 1)
impulse = FIR::fir_fsamp_odd(N, A, 1, 1.0, wintype);
else
impulse = FIR::fir_fsamp(N, A, 1, 1.0, wintype);
// print_impulse("eq.txt", N, impulse, 1, 0);
delete[] (sary);
delete[] (A);
delete[] (gp);
delete[] (fp);
return impulse;
}
/********************************************************************************************************
* *
* Partitioned Overlap-Save Equalizer *
* *
********************************************************************************************************/
EQP* EQP::create_eqp (
int run,
int size,
int nc,
int mp,
double *in,
double *out,
int nfreqs,
double* F,
double* G,
int ctfmode,
int wintype,
int samplerate
)
{
// NOTE: 'nc' must be >= 'size'
EQP *a = new EQP;
double* impulse;
a->run = run;
a->size = size;
a->nc = nc;
a->mp = mp;
a->in = in;
a->out = out;
a->nfreqs = nfreqs;
a->F = new double[a->nfreqs + 1]; // (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->G = new double[a->nfreqs + 1]; // (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
memcpy (a->F, F, (nfreqs + 1) * sizeof (double));
memcpy (a->G, G, (nfreqs + 1) * sizeof (double));
a->ctfmode = ctfmode;
a->wintype = wintype;
a->samplerate = (double)samplerate;
impulse = eq_impulse (a->nc, a->nfreqs, a->F, a->G, a->samplerate, 1.0 / (2.0 * a->size), a->ctfmode, a->wintype);
a->p = FIRCORE::create_fircore (a->size, a->in, a->out, a->nc, a->mp, impulse);
delete[] (impulse);
return a;
}
void EQP::destroy_eqp (EQP *a)
{
FIRCORE::destroy_fircore (a->p);
delete (a);
}
void EQP::flush_eqp (EQP *a)
{
FIRCORE::flush_fircore (a->p);
}
void EQP::xeqp (EQP *a)
{
if (a->run)
FIRCORE::xfircore (a->p);
else
memcpy (a->out, a->in, a->size * sizeof (dcomplex));
}
void EQP::setBuffers_eqp (EQP *a, double* in, double* out)
{
a->in = in;
a->out = out;
FIRCORE::setBuffers_fircore (a->p, a->in, a->out);
}
void EQP::setSamplerate_eqp (EQP *a, int rate)
{
double* impulse;
a->samplerate = rate;
impulse = eq_impulse (a->nc, a->nfreqs, a->F, a->G, a->samplerate, 1.0 / (2.0 * a->size), a->ctfmode, a->wintype);
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
void EQP::setSize_eqp (EQP *a, int size)
{
double* impulse;
a->size = size;
FIRCORE::setSize_fircore (a->p, a->size);
impulse = eq_impulse (a->nc, a->nfreqs, a->F, a->G, a->samplerate, 1.0 / (2.0 * a->size), a->ctfmode, a->wintype);
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
/********************************************************************************************************
* *
* Partitioned Overlap-Save Equalizer: RXA Properties *
* *
********************************************************************************************************/
void EQP::SetEQRun (RXA& rxa, int run)
{
rxa.csDSP.lock();
rxa.eqp.p->run = run;
rxa.csDSP.unlock();
}
void EQP::SetEQNC (RXA& rxa, int nc)
{
EQP *a;
double* impulse;
rxa.csDSP.lock();
a = rxa.eqp.p;
if (a->nc != nc)
{
a->nc = nc;
impulse = eq_impulse (a->nc, a->nfreqs, a->F, a->G, a->samplerate, 1.0 / (2.0 * a->size), a->ctfmode, a->wintype);
FIRCORE::setNc_fircore (a->p, a->nc, impulse);
delete[] (impulse);
}
rxa.csDSP.unlock();
}
void EQP::SetEQMP (RXA& rxa, int mp)
{
EQP *a;
a = rxa.eqp.p;
if (a->mp != mp)
{
a->mp = mp;
FIRCORE::setMp_fircore (a->p, a->mp);
}
}
void EQP::SetEQProfile (RXA& rxa, int nfreqs, double* F, double* G)
{
EQP *a;
double* impulse;
a = rxa.eqp.p;
delete[] (a->G);
delete[] (a->F);
a->nfreqs = nfreqs;
a->F = new double[a->nfreqs + 1]; // (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->G = new double[a->nfreqs + 1]; // (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
memcpy (a->F, F, (nfreqs + 1) * sizeof (double));
memcpy (a->G, G, (nfreqs + 1) * sizeof (double));
impulse = eq_impulse (a->nc, a->nfreqs, a->F, a->G,
a->samplerate, 1.0 / (2.0 * a->size), a->ctfmode, a->wintype);
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
void EQP::SetEQCtfmode (RXA& rxa, int mode)
{
EQP *a;
double* impulse;
a = rxa.eqp.p;
a->ctfmode = mode;
impulse = eq_impulse (a->nc, a->nfreqs, a->F, a->G, a->samplerate, 1.0 / (2.0 * a->size), a->ctfmode, a->wintype);
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
void EQP::SetEQWintype (RXA& rxa, int wintype)
{
EQP *a;
double* impulse;
a = rxa.eqp.p;
a->wintype = wintype;
impulse = eq_impulse (a->nc, a->nfreqs, a->F, a->G, a->samplerate, 1.0 / (2.0 * a->size), a->ctfmode, a->wintype);
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
void EQP::SetGrphEQ (RXA& rxa, int *rxeq)
{ // three band equalizer (legacy compatibility)
EQP *a;
double* impulse;
a = rxa.eqp.p;
delete[] (a->G);
delete[] (a->F);
a->nfreqs = 4;
a->F = new double[a->nfreqs + 1]; // (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->G = new double[a->nfreqs + 1]; // (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->F[1] = 150.0;
a->F[2] = 400.0;
a->F[3] = 1500.0;
a->F[4] = 6000.0;
a->G[0] = (double)rxeq[0];
a->G[1] = (double)rxeq[1];
a->G[2] = (double)rxeq[1];
a->G[3] = (double)rxeq[2];
a->G[4] = (double)rxeq[3];
a->ctfmode = 0;
impulse = eq_impulse (a->nc, a->nfreqs, a->F, a->G, a->samplerate, 1.0 / (2.0 * a->size), a->ctfmode, a->wintype);
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
void EQP::SetGrphEQ10 (RXA& rxa, int *rxeq)
{ // ten band equalizer (legacy compatibility)
EQP *a;
double* impulse;
int i;
a = rxa.eqp.p;
delete[] (a->G);
delete[] (a->F);
a->nfreqs = 10;
a->F = new double[a->nfreqs + 1]; // (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->G = new double[a->nfreqs + 1]; // (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->F[1] = 32.0;
a->F[2] = 63.0;
a->F[3] = 125.0;
a->F[4] = 250.0;
a->F[5] = 500.0;
a->F[6] = 1000.0;
a->F[7] = 2000.0;
a->F[8] = 4000.0;
a->F[9] = 8000.0;
a->F[10] = 16000.0;
for (i = 0; i <= a->nfreqs; i++)
a->G[i] = (double)rxeq[i];
a->ctfmode = 0;
impulse = eq_impulse (a->nc, a->nfreqs, a->F, a->G, a->samplerate, 1.0 / (2.0 * a->size), a->ctfmode, a->wintype);
// print_impulse ("rxeq.txt", a->nc, impulse, 1, 0);
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
/********************************************************************************************************
* *
* Partitioned Overlap-Save Equalizer: TXA Properties *
* *
********************************************************************************************************/
void EQP::SetEQRun (TXA& txa, int run)
{
txa.csDSP.lock();
txa.eqp.p->run = run;
txa.csDSP.unlock();
}
void EQP::SetEQNC (TXA& txa, int nc)
{
EQP *a;
double* impulse;
txa.csDSP.lock();
a = txa.eqp.p;
if (a->nc != nc)
{
a->nc = nc;
impulse = eq_impulse (a->nc, a->nfreqs, a->F, a->G, a->samplerate, 1.0 / (2.0 * a->size), a->ctfmode, a->wintype);
FIRCORE::setNc_fircore (a->p, a->nc, impulse);
delete[] (impulse);
}
txa.csDSP.unlock();
}
void EQP::SetEQMP (TXA& txa, int mp)
{
EQP *a;
a = txa.eqp.p;
if (a->mp != mp)
{
a->mp = mp;
FIRCORE::setMp_fircore (a->p, a->mp);
}
}
void EQP::SetEQProfile (TXA& txa, int nfreqs, double* F, double* G)
{
EQP *a;
double* impulse;
a = txa.eqp.p;
delete[] (a->G);
delete[] (a->F);
a->nfreqs = nfreqs;
a->F = new double[a->nfreqs + 1]; // (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->G = new double[a->nfreqs + 1]; // (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
memcpy (a->F, F, (nfreqs + 1) * sizeof (double));
memcpy (a->G, G, (nfreqs + 1) * sizeof (double));
impulse = eq_impulse (a->nc, a->nfreqs, a->F, a->G, a->samplerate, 1.0 / (2.0 * a->size), a->ctfmode, a->wintype);
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
void EQP::SetEQCtfmode (TXA& txa, int mode)
{
EQP *a;
double* impulse;
a = txa.eqp.p;
a->ctfmode = mode;
impulse = eq_impulse (a->nc, a->nfreqs, a->F, a->G, a->samplerate, 1.0 / (2.0 * a->size), a->ctfmode, a->wintype);
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
void EQP::SetEQWintype (TXA& txa, int wintype)
{
EQP *a;
double* impulse;
a = txa.eqp.p;
a->wintype = wintype;
impulse = eq_impulse (a->nc, a->nfreqs, a->F, a->G, a->samplerate, 1.0 / (2.0 * a->size), a->ctfmode, a->wintype);
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
void EQP::SetGrphEQ (TXA& txa, int *txeq)
{ // three band equalizer (legacy compatibility)
EQP *a;
double* impulse;
a = txa.eqp.p;
delete[] (a->G);
delete[] (a->F);
a->nfreqs = 4;
a->F = new double[a->nfreqs + 1]; // (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->G = new double[a->nfreqs + 1]; // (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->F[1] = 150.0;
a->F[2] = 400.0;
a->F[3] = 1500.0;
a->F[4] = 6000.0;
a->G[0] = (double)txeq[0];
a->G[1] = (double)txeq[1];
a->G[2] = (double)txeq[1];
a->G[3] = (double)txeq[2];
a->G[4] = (double)txeq[3];
a->ctfmode = 0;
impulse = eq_impulse (a->nc, a->nfreqs, a->F, a->G, a->samplerate, 1.0 / (2.0 * a->size), a->ctfmode, a->wintype);
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
void EQP::SetGrphEQ10 (TXA& txa, int *txeq)
{ // ten band equalizer (legacy compatibility)
EQP *a;
double* impulse;
int i;
a = txa.eqp.p;
delete[] (a->G);
delete[] (a->F);
a->nfreqs = 10;
a->F = new double[a->nfreqs + 1]; // (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->G = new double[a->nfreqs + 1]; // (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->F[1] = 32.0;
a->F[2] = 63.0;
a->F[3] = 125.0;
a->F[4] = 250.0;
a->F[5] = 500.0;
a->F[6] = 1000.0;
a->F[7] = 2000.0;
a->F[8] = 4000.0;
a->F[9] = 8000.0;
a->F[10] = 16000.0;
for (i = 0; i <= a->nfreqs; i++)
a->G[i] = (double)txeq[i];
a->ctfmode = 0;
impulse = eq_impulse (a->nc, a->nfreqs, a->F, a->G, a->samplerate, 1.0 / (2.0 * a->size), a->ctfmode, a->wintype);
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
/********************************************************************************************************
* *
* Overlap-Save Equalizer *
* *
********************************************************************************************************/
double* EQP::eq_mults (int size, int nfreqs, double* F, double* G, double samplerate, double scale, int ctfmode, int wintype)
{
double* impulse = eq_impulse (size + 1, nfreqs, F, G, samplerate, scale, ctfmode, wintype);
double* mults = FIR::fftcv_mults(2 * size, impulse);
delete[] (impulse);
return mults;
}
void EQ::calc_eq (EQ *a)
{
a->scale = 1.0 / (double)(2 * a->size);
a->infilt = new double[2 * a->size * 2]; // (double *)malloc0(2 * a->size * sizeof(complex));
a->product = new double[2 * a->size * 2]; // (double *)malloc0(2 * a->size * sizeof(complex));
a->CFor = fftw_plan_dft_1d(2 * a->size, (fftw_complex *)a->infilt, (fftw_complex *)a->product, FFTW_FORWARD, FFTW_PATIENT);
a->CRev = fftw_plan_dft_1d(2 * a->size, (fftw_complex *)a->product, (fftw_complex *)a->out, FFTW_BACKWARD, FFTW_PATIENT);
a->mults = EQP::eq_mults(a->size, a->nfreqs, a->F, a->G, a->samplerate, a->scale, a->ctfmode, a->wintype);
}
void EQ::decalc_eq (EQ *a)
{
fftw_destroy_plan(a->CRev);
fftw_destroy_plan(a->CFor);
delete[] (a->mults);
delete[] (a->product);
delete[] (a->infilt);
}
EQ* EQ::create_eq (int run, int size, double *in, double *out, int nfreqs, double* F, double* G, int ctfmode, int wintype, int samplerate)
{
EQ *a = new EQ;
a->run = run;
a->size = size;
a->in = in;
a->out = out;
a->nfreqs = nfreqs;
a->F = new double[a->nfreqs + 1]; // (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->G = new double[a->nfreqs + 1]; // (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
memcpy (a->F, F, (nfreqs + 1) * sizeof (double));
memcpy (a->G, G, (nfreqs + 1) * sizeof (double));
a->ctfmode = ctfmode;
a->wintype = wintype;
a->samplerate = (double)samplerate;
calc_eq (a);
return a;
}
void EQ::destroy_eq (EQ *a)
{
decalc_eq (a);
delete[] (a->G);
delete[] (a->F);
delete[] (a);
}
void EQ::flush_eq (EQ *a)
{
memset (a->infilt, 0, 2 * a->size * sizeof (dcomplex));
}
void EQ::xeq (EQ *a)
{
int i;
double I, Q;
if (a->run)
{
memcpy (&(a->infilt[2 * a->size]), a->in, a->size * sizeof (dcomplex));
fftw_execute (a->CFor);
for (i = 0; i < 2 * a->size; i++)
{
I = a->product[2 * i + 0];
Q = a->product[2 * i + 1];
a->product[2 * i + 0] = I * a->mults[2 * i + 0] - Q * a->mults[2 * i + 1];
a->product[2 * i + 1] = I * a->mults[2 * i + 1] + Q * a->mults[2 * i + 0];
}
fftw_execute (a->CRev);
memcpy (a->infilt, &(a->infilt[2 * a->size]), a->size * sizeof(dcomplex));
}
else if (a->in != a->out)
memcpy (a->out, a->in, a->size * sizeof (dcomplex));
}
void EQ::setBuffers_eq (EQ *a, double* in, double* out)
{
decalc_eq (a);
a->in = in;
a->out = out;
calc_eq (a);
}
void EQ::setSamplerate_eq (EQ *a, int rate)
{
decalc_eq (a);
a->samplerate = rate;
calc_eq (a);
}
void EQ::setSize_eq (EQ *a, int size)
{
decalc_eq (a);
a->size = size;
calc_eq (a);
}
/********************************************************************************************************
* *
* Overlap-Save Equalizer: RXA Properties *
* *
********************************************************************************************************/
/* // UNCOMMENT properties when a pointer is in place in rxa
PORT
void SetRXAEQRun (int channel, int run)
{
ch.csDSP.lock();
rxa.eq.p->run = run;
ch.csDSP.unlock();
}
PORT
void SetRXAEQProfile (int channel, int nfreqs, double* F, double* G)
{
EQ a;
ch.csDSP.lock();
a = rxa.eq.p;
delete[] (a->G);
delete[] (a->F);
a->nfreqs = nfreqs;
a->F = (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->G = (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
memcpy (a->F, F, (nfreqs + 1) * sizeof (double));
memcpy (a->G, G, (nfreqs + 1) * sizeof (double));
delete[] (a->mults);
a->mults = eq_mults (a->size, a->nfreqs, a->F, a->G, a->samplerate, a->scale, a->ctfmode, a->wintype);
ch.csDSP.unlock();
}
PORT
void SetRXAEQCtfmode (int channel, int mode)
{
EQ a;
ch.csDSP.lock();
a = rxa.eq.p;
a->ctfmode = mode;
delete[] (a->mults);
a->mults = eq_mults (a->size, a->nfreqs, a->F, a->G, a->samplerate, a->scale, a->ctfmode, a->wintype);
ch.csDSP.unlock();
}
PORT
void SetRXAEQWintype (int channel, int wintype)
{
EQ a;
ch.csDSP.lock();
a = rxa.eq.p;
a->wintype = wintype;
delete[] (a->mults);
a->mults = eq_mults (a->size, a->nfreqs, a->F, a->G, a->samplerate, a->scale, a->ctfmode, a->wintype);
ch.csDSP.unlock();
}
PORT
void SetRXAGrphEQ (int channel, int *rxeq)
{ // three band equalizer (legacy compatibility)
EQ a;
ch.csDSP.lock();
a = rxa.eq.p;
delete[] (a->G);
delete[] (a->F);
a->nfreqs = 4;
a->F = (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->G = (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->F[1] = 150.0;
a->F[2] = 400.0;
a->F[3] = 1500.0;
a->F[4] = 6000.0;
a->G[0] = (double)rxeq[0];
a->G[1] = (double)rxeq[1];
a->G[2] = (double)rxeq[1];
a->G[3] = (double)rxeq[2];
a->G[4] = (double)rxeq[3];
a->ctfmode = 0;
delete[] (a->mults);
a->mults = eq_mults (a->size, a->nfreqs, a->F, a->G, a->samplerate, a->scale, a->ctfmode, a->wintype);
ch.csDSP.unlock();
}
PORT
void SetRXAGrphEQ10 (int channel, int *rxeq)
{ // ten band equalizer (legacy compatibility)
EQ a;
int i;
ch.csDSP.lock();
a = rxa.eq.p;
delete[] (a->G);
delete[] (a->F);
a->nfreqs = 10;
a->F = (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->G = (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->F[1] = 32.0;
a->F[2] = 63.0;
a->F[3] = 125.0;
a->F[4] = 250.0;
a->F[5] = 500.0;
a->F[6] = 1000.0;
a->F[7] = 2000.0;
a->F[8] = 4000.0;
a->F[9] = 8000.0;
a->F[10] = 16000.0;
for (i = 0; i <= a->nfreqs; i++)
a->G[i] = (double)rxeq[i];
a->ctfmode = 0;
delete[] (a->mults);
a->mults = eq_mults (a->size, a->nfreqs, a->F, a->G, a->samplerate, a->scale, a->ctfmode, a->wintype);
ch.csDSP.unlock();
}
*/
/********************************************************************************************************
* *
* Overlap-Save Equalizer: TXA Properties *
* *
********************************************************************************************************/
/* // UNCOMMENT properties when a pointer is in place in rxa
PORT
void SetTXAEQRun (int channel, int run)
{
ch.csDSP.lock();
txa.eq.p->run = run;
ch.csDSP.unlock();
}
PORT
void SetTXAEQProfile (int channel, int nfreqs, double* F, double* G)
{
EQ a;
ch.csDSP.lock();
a = txa.eq.p;
delete[] (a->G);
delete[] (a->F);
a->nfreqs = nfreqs;
a->F = (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->G = (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
memcpy (a->F, F, (nfreqs + 1) * sizeof (double));
memcpy (a->G, G, (nfreqs + 1) * sizeof (double));
delete[] (a->mults);
a->mults = eq_mults (a->size, a->nfreqs, a->F, a->G, a->samplerate, a->scale, a->ctfmode, a->wintype);
ch.csDSP.unlock();
}
PORT
void SetTXAEQCtfmode (int channel, int mode)
{
EQ a;
ch.csDSP.lock();
a = txa.eq.p;
a->ctfmode = mode;
delete[] (a->mults);
a->mults = eq_mults (a->size, a->nfreqs, a->F, a->G, a->samplerate, a->scale, a->ctfmode, a->wintype);
ch.csDSP.unlock();
}
PORT
void SetTXAEQMethod (int channel, int wintype)
{
EQ a;
ch.csDSP.lock();
a = txa.eq.p;
a->wintype = wintype;
delete[] (a->mults);
a->mults = eq_mults (a->size, a->nfreqs, a->F, a->G, a->samplerate, a->scale, a->ctfmode, a->wintype);
ch.csDSP.unlock();
}
PORT
void SetTXAGrphEQ (int channel, int *txeq)
{ // three band equalizer (legacy compatibility)
EQ a;
ch.csDSP.lock();
a = txa.eq.p;
delete[] (a->G);
delete[] (a->F);
a->nfreqs = 4;
a->F = (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->G = (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->F[1] = 150.0;
a->F[2] = 400.0;
a->F[3] = 1500.0;
a->F[4] = 6000.0;
a->G[0] = (double)txeq[0];
a->G[1] = (double)txeq[1];
a->G[2] = (double)txeq[1];
a->G[3] = (double)txeq[2];
a->G[4] = (double)txeq[3];
a->ctfmode = 0;
delete[] (a->mults);
a->mults = eq_mults (a->size, a->nfreqs, a->F, a->G, a->samplerate, a->scale, a->ctfmode, a->wintype);
ch.csDSP.unlock();
}
PORT
void SetTXAGrphEQ10 (int channel, int *txeq)
{ // ten band equalizer (legacy compatibility)
EQ a;
int i;
ch.csDSP.lock();
a = txa.eq.p;
delete[] (a->G);
delete[] (a->F);
a->nfreqs = 10;
a->F = (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->G = (double *) malloc0 ((a->nfreqs + 1) * sizeof (double));
a->F[1] = 32.0;
a->F[2] = 63.0;
a->F[3] = 125.0;
a->F[4] = 250.0;
a->F[5] = 500.0;
a->F[6] = 1000.0;
a->F[7] = 2000.0;
a->F[8] = 4000.0;
a->F[9] = 8000.0;
a->F[10] = 16000.0;
for (i = 0; i <= a->nfreqs; i++)
a->G[i] = (double)txeq[i];
a->ctfmode = 0;
delete[] (a->mults);
a->mults = eq_mults (a->size, a->nfreqs, a->F, a->G, a->samplerate, a->scale, a->ctfmode, a->wintype);
ch.csDSP.unlock();
}
*/
} // namespace WDSP