mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-25 18:10:22 -04:00 
			
		
		
		
	
		
			
	
	
		
			457 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			457 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | ///////////////////////////////////////////////////////////////////////////////////
 | ||
|  | // Copyright (C) 2017-2019 Edouard Griffiths, F4EXB                              //
 | ||
|  | //                                                                               //
 | ||
|  | // This program is free software; you can redistribute it and/or modify          //
 | ||
|  | // it under the terms of the GNU General Public License as published by          //
 | ||
|  | // the Free Software Foundation as version 3 of the License, or                  //
 | ||
|  | // (at your option) any later version.                                           //
 | ||
|  | //                                                                               //
 | ||
|  | // This program is distributed in the hope that it will be useful,               //
 | ||
|  | // but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | ||
|  | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | ||
|  | // GNU General Public License V3 for more details.                               //
 | ||
|  | //                                                                               //
 | ||
|  | // You should have received a copy of the GNU General Public License             //
 | ||
|  | // along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | ||
|  | ///////////////////////////////////////////////////////////////////////////////////
 | ||
|  | 
 | ||
|  | #include <QDebug>
 | ||
|  | 
 | ||
|  | #include "dsp/dspcommands.h"
 | ||
|  | #include "dsp/basebandsamplesink.h"
 | ||
|  | #include "util/db.h"
 | ||
|  | 
 | ||
|  | #include "udpsourcesource.h"
 | ||
|  | #include "udpsourcemsg.h"
 | ||
|  | 
 | ||
|  | UDPSourceSource::UDPSourceSource() : | ||
|  |     m_channelSampleRate(48000), | ||
|  |     m_channelFrequencyOffset(0), | ||
|  |     m_squelch(1e-6), | ||
|  |     m_spectrumSink(nullptr), | ||
|  |     m_spectrumEnabled(false), | ||
|  |     m_spectrumChunkSize(2160), | ||
|  |     m_spectrumChunkCounter(0), | ||
|  |     m_magsq(1e-10), | ||
|  |     m_movingAverage(16, 1e-10), | ||
|  |     m_inMovingAverage(480, 1e-10), | ||
|  |     m_sampleRateSum(0), | ||
|  |     m_sampleRateAvgCounter(0), | ||
|  |     m_levelCalcCount(0), | ||
|  |     m_peakLevel(0.0f), | ||
|  |     m_levelSum(0.0f), | ||
|  |     m_levelNbSamples(480), | ||
|  |     m_squelchOpen(false), | ||
|  |     m_squelchOpenCount(0), | ||
|  |     m_squelchCloseCount(0), | ||
|  |     m_squelchThreshold(4800), | ||
|  |     m_modPhasor(0.0f), | ||
|  |     m_SSBFilterBufferIndex(0) | ||
|  | { | ||
|  |     m_SSBFilter = new fftfilt(m_settings.m_lowCutoff / m_settings.m_inputSampleRate, m_settings.m_rfBandwidth / m_settings.m_inputSampleRate, m_ssbFftLen); | ||
|  |     m_SSBFilterBuffer = new Complex[m_ssbFftLen>>1]; // filter returns data exactly half of its size
 | ||
|  |     m_magsq = 0.0; | ||
|  | 
 | ||
|  |     m_udpHandler.start(); | ||
|  | 
 | ||
|  |     applySettings(m_settings, true); | ||
|  |     applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); | ||
|  | } | ||
|  | 
 | ||
|  | UDPSourceSource::~UDPSourceSource() | ||
|  | { | ||
|  |     m_udpHandler.stop(); | ||
|  |     delete m_SSBFilter; | ||
|  |     delete[] m_SSBFilterBuffer; | ||
|  | } | ||
|  | 
 | ||
|  | void UDPSourceSource::setUDPFeedbackMessageQueue(MessageQueue *messageQueue) | ||
|  | { | ||
|  |     m_udpHandler.setFeedbackMessageQueue(messageQueue); | ||
|  | } | ||
|  | 
 | ||
|  | void UDPSourceSource::pull(SampleVector::iterator begin, unsigned int nbSamples) | ||
|  | { | ||
|  |     std::for_each( | ||
|  |         begin, | ||
|  |         begin + nbSamples, | ||
|  |         [this](Sample& s) { | ||
|  |             pullOne(s); | ||
|  |         } | ||
|  |     ); | ||
|  | } | ||
|  | 
 | ||
|  | void UDPSourceSource::pullOne(Sample& sample) | ||
|  | { | ||
|  |     if (m_settings.m_channelMute) | ||
|  |     { | ||
|  |         sample.m_real = 0.0f; | ||
|  |         sample.m_imag = 0.0f; | ||
|  |         initSquelch(false); | ||
|  |         return; | ||
|  |     } | ||
|  | 
 | ||
|  |     Complex ci; | ||
|  | 
 | ||
|  |     if (m_interpolatorDistance > 1.0f) // decimate
 | ||
|  |     { | ||
|  |         modulateSample(); | ||
|  | 
 | ||
|  |         while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci)) | ||
|  |         { | ||
|  |             modulateSample(); | ||
|  |         } | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |         if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci)) | ||
|  |         { | ||
|  |             modulateSample(); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     m_interpolatorDistanceRemain += m_interpolatorDistance; | ||
|  | 
 | ||
|  |     ci *= m_carrierNco.nextIQ(); // shift to carrier frequency
 | ||
|  |     double magsq = ci.real() * ci.real() + ci.imag() * ci.imag(); | ||
|  |     magsq /= (SDR_TX_SCALED*SDR_TX_SCALED); | ||
|  |     m_movingAverage.feed(magsq); | ||
|  |     m_magsq = m_movingAverage.average(); | ||
|  | 
 | ||
|  |     sample.m_real = (FixReal) ci.real(); | ||
|  |     sample.m_imag = (FixReal) ci.imag(); | ||
|  | } | ||
|  | 
 | ||
|  | void UDPSourceSource::modulateSample() | ||
|  | { | ||
|  |     if (m_settings.m_sampleFormat == UDPSourceSettings::FormatSnLE) // Linear I/Q transponding
 | ||
|  |     { | ||
|  |         Sample s; | ||
|  | 
 | ||
|  |         m_udpHandler.readSample(s); | ||
|  | 
 | ||
|  |         uint64_t magsq = s.m_real * s.m_real + s.m_imag * s.m_imag; | ||
|  |         m_inMovingAverage.feed(magsq/(SDR_TX_SCALED*SDR_TX_SCALED)); | ||
|  |         m_inMagsq = m_inMovingAverage.average(); | ||
|  | 
 | ||
|  |         calculateSquelch(m_inMagsq); | ||
|  | 
 | ||
|  |         if (m_squelchOpen) | ||
|  |         { | ||
|  |             m_modSample.real(s.m_real * m_settings.m_gainOut); | ||
|  |             m_modSample.imag(s.m_imag * m_settings.m_gainOut); | ||
|  |             calculateLevel(m_modSample); | ||
|  |         } | ||
|  |         else | ||
|  |         { | ||
|  |             m_modSample.real(0.0f); | ||
|  |             m_modSample.imag(0.0f); | ||
|  |         } | ||
|  |     } | ||
|  |     else if (m_settings.m_sampleFormat == UDPSourceSettings::FormatNFM) | ||
|  |     { | ||
|  |         qint16 t; | ||
|  |         readMonoSample(t); | ||
|  | 
 | ||
|  |         m_inMovingAverage.feed((t*t)/1073741824.0); | ||
|  |         m_inMagsq = m_inMovingAverage.average(); | ||
|  | 
 | ||
|  |         calculateSquelch(m_inMagsq); | ||
|  | 
 | ||
|  |         if (m_squelchOpen) | ||
|  |         { | ||
|  |             m_modPhasor += (m_settings.m_fmDeviation / m_settings.m_inputSampleRate) * (t / SDR_TX_SCALEF) * M_PI * 2.0f; | ||
|  |             m_modSample.real(cos(m_modPhasor) * 0.3162292f * SDR_TX_SCALEF * m_settings.m_gainOut); | ||
|  |             m_modSample.imag(sin(m_modPhasor) * 0.3162292f * SDR_TX_SCALEF * m_settings.m_gainOut); | ||
|  |             calculateLevel(m_modSample); | ||
|  |         } | ||
|  |         else | ||
|  |         { | ||
|  |             m_modSample.real(0.0f); | ||
|  |             m_modSample.imag(0.0f); | ||
|  |         } | ||
|  |     } | ||
|  |     else if (m_settings.m_sampleFormat == UDPSourceSettings::FormatAM) | ||
|  |     { | ||
|  |         qint16 t; | ||
|  |         readMonoSample(t); | ||
|  |         m_inMovingAverage.feed((t*t)/(SDR_TX_SCALED*SDR_TX_SCALED)); | ||
|  |         m_inMagsq = m_inMovingAverage.average(); | ||
|  | 
 | ||
|  |         calculateSquelch(m_inMagsq); | ||
|  | 
 | ||
|  |         if (m_squelchOpen) | ||
|  |         { | ||
|  |             m_modSample.real(((t / SDR_TX_SCALEF)*m_settings.m_amModFactor*m_settings.m_gainOut + 1.0f) * (SDR_TX_SCALEF/2)); // modulate and scale zero frequency carrier
 | ||
|  |             m_modSample.imag(0.0f); | ||
|  |             calculateLevel(m_modSample); | ||
|  |         } | ||
|  |         else | ||
|  |         { | ||
|  |             m_modSample.real(0.0f); | ||
|  |             m_modSample.imag(0.0f); | ||
|  |         } | ||
|  |     } | ||
|  |     else if ((m_settings.m_sampleFormat == UDPSourceSettings::FormatLSB) || (m_settings.m_sampleFormat == UDPSourceSettings::FormatUSB)) | ||
|  |     { | ||
|  |         qint16 t; | ||
|  |         Complex c, ci; | ||
|  |         fftfilt::cmplx *filtered; | ||
|  |         int n_out = 0; | ||
|  | 
 | ||
|  |         readMonoSample(t); | ||
|  |         m_inMovingAverage.feed((t*t)/(SDR_TX_SCALED*SDR_TX_SCALED)); | ||
|  |         m_inMagsq = m_inMovingAverage.average(); | ||
|  | 
 | ||
|  |         calculateSquelch(m_inMagsq); | ||
|  | 
 | ||
|  |         if (m_squelchOpen) | ||
|  |         { | ||
|  |             ci.real((t / SDR_TX_SCALEF) * m_settings.m_gainOut); | ||
|  |             ci.imag(0.0f); | ||
|  | 
 | ||
|  |             n_out = m_SSBFilter->runSSB(ci, &filtered, (m_settings.m_sampleFormat == UDPSourceSettings::FormatUSB)); | ||
|  | 
 | ||
|  |             if (n_out > 0) | ||
|  |             { | ||
|  |                 memcpy((void *) m_SSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex)); | ||
|  |                 m_SSBFilterBufferIndex = 0; | ||
|  |             } | ||
|  | 
 | ||
|  |             c = m_SSBFilterBuffer[m_SSBFilterBufferIndex]; | ||
|  |             m_modSample.real(m_SSBFilterBuffer[m_SSBFilterBufferIndex].real() * SDR_TX_SCALEF); | ||
|  |             m_modSample.imag(m_SSBFilterBuffer[m_SSBFilterBufferIndex].imag() * SDR_TX_SCALEF); | ||
|  |             m_SSBFilterBufferIndex++; | ||
|  | 
 | ||
|  |             calculateLevel(m_modSample); | ||
|  |         } | ||
|  |         else | ||
|  |         { | ||
|  |             m_modSample.real(0.0f); | ||
|  |             m_modSample.imag(0.0f); | ||
|  |         } | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |         m_modSample.real(0.0f); | ||
|  |         m_modSample.imag(0.0f); | ||
|  |         initSquelch(false); | ||
|  |     } | ||
|  | 
 | ||
|  |     if (m_spectrumSink && m_spectrumEnabled && (m_spectrumChunkCounter < m_spectrumChunkSize - 1)) | ||
|  |     { | ||
|  |         Sample s; | ||
|  |         s.m_real = (FixReal) m_modSample.real(); | ||
|  |         s.m_imag = (FixReal) m_modSample.imag(); | ||
|  |         m_sampleBuffer.push_back(s); | ||
|  |         m_spectrumChunkCounter++; | ||
|  |     } | ||
|  |     else if (m_spectrumSink) | ||
|  |     { | ||
|  |         m_spectrumSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), false); | ||
|  |         m_sampleBuffer.clear(); | ||
|  |         m_spectrumChunkCounter = 0; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | void UDPSourceSource::calculateLevel(Real sample) | ||
|  | { | ||
|  |     if (m_levelCalcCount < m_levelNbSamples) | ||
|  |     { | ||
|  |         m_peakLevel = std::max(std::fabs(m_peakLevel), sample); | ||
|  |         m_levelSum += sample * sample; | ||
|  |         m_levelCalcCount++; | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |         m_rmsLevel = m_levelSum > 0.0 ? sqrt(m_levelSum / m_levelNbSamples) : 0.0; | ||
|  |         m_peakLevelOut = m_peakLevel; | ||
|  |         m_peakLevel = 0.0f; | ||
|  |         m_levelSum = 0.0f; | ||
|  |         m_levelCalcCount = 0; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | void UDPSourceSource::calculateLevel(Complex sample) | ||
|  | { | ||
|  |     Real t = std::abs(sample); | ||
|  | 
 | ||
|  |     if (m_levelCalcCount < m_levelNbSamples) | ||
|  |     { | ||
|  |         m_peakLevel = std::max(std::fabs(m_peakLevel), t); | ||
|  |         m_levelSum += (t * t); | ||
|  |         m_levelCalcCount++; | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |         m_rmsLevel = m_levelSum > 0.0 ? sqrt((m_levelSum/(SDR_TX_SCALED*SDR_TX_SCALED)) / m_levelNbSamples) : 0.0; | ||
|  |         m_peakLevelOut = m_peakLevel; | ||
|  |         m_peakLevel = 0.0f; | ||
|  |         m_levelSum = 0.0f; | ||
|  |         m_levelCalcCount = 0; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | void UDPSourceSource::setSpectrumEnabled(bool enabled) | ||
|  | { | ||
|  |     m_spectrumEnabled = enabled; | ||
|  | } | ||
|  | 
 | ||
|  | void UDPSourceSource::resetReadIndex() | ||
|  | { | ||
|  |     m_udpHandler.resetReadIndex(); | ||
|  | } | ||
|  | 
 | ||
|  | void UDPSourceSource::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force) | ||
|  | { | ||
|  |     qDebug() << "UDPSourceSource::applyChannelSettings:" | ||
|  |             << " channelSampleRate: " << channelSampleRate | ||
|  |             << " channelFrequencyOffset: " << channelFrequencyOffset; | ||
|  | 
 | ||
|  |     if ((channelFrequencyOffset != m_channelFrequencyOffset) || | ||
|  |         (channelSampleRate != m_channelSampleRate) || force) | ||
|  |     { | ||
|  |         m_carrierNco.setFreq(channelFrequencyOffset, channelSampleRate); | ||
|  |     } | ||
|  | 
 | ||
|  |     if (((channelSampleRate != m_channelSampleRate) && (!m_settings.m_autoRWBalance)) || force) | ||
|  |     { | ||
|  |         m_interpolatorDistanceRemain = 0; | ||
|  |         m_interpolatorConsumed = false; | ||
|  |         m_interpolatorDistance = (Real) m_settings.m_inputSampleRate / (Real) channelSampleRate; | ||
|  |         m_interpolator.create(48, m_settings.m_inputSampleRate, m_settings.m_rfBandwidth / 2.2, 3.0); | ||
|  |     } | ||
|  | 
 | ||
|  |     m_channelSampleRate = channelSampleRate; | ||
|  |     m_channelFrequencyOffset = channelFrequencyOffset; | ||
|  | } | ||
|  | 
 | ||
|  | void UDPSourceSource::applySettings(const UDPSourceSettings& settings, bool force) | ||
|  | { | ||
|  |     qDebug() << "UDPSourceSource::applySettings:" | ||
|  |             << " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset | ||
|  |             << " m_sampleFormat: " << settings.m_sampleFormat | ||
|  |             << " m_inputSampleRate: " << settings.m_inputSampleRate | ||
|  |             << " m_rfBandwidth: " << settings.m_rfBandwidth | ||
|  |             << " m_lowCutoff: " << settings.m_lowCutoff | ||
|  |             << " m_fmDeviation: " << settings.m_fmDeviation | ||
|  |             << " m_amModFactor: " << settings.m_amModFactor | ||
|  |             << " m_udpAddressStr: " << settings.m_udpAddress | ||
|  |             << " m_udpPort: " << settings.m_udpPort | ||
|  |             << " m_channelMute: " << settings.m_channelMute | ||
|  |             << " m_gainIn: " << settings.m_gainIn | ||
|  |             << " m_gainOut: " << settings.m_gainOut | ||
|  |             << " m_squelchGate: " << settings.m_squelchGate | ||
|  |             << " m_squelch: " << settings.m_squelch << "dB" | ||
|  |             << " m_squelchEnabled: " << settings.m_squelchEnabled | ||
|  |             << " m_autoRWBalance: " << settings.m_autoRWBalance | ||
|  |             << " m_stereoInput: " << settings.m_stereoInput | ||
|  |             << " force: " << force; | ||
|  | 
 | ||
|  |     if((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || | ||
|  |        (settings.m_lowCutoff != m_settings.m_lowCutoff) || | ||
|  |        (settings.m_inputSampleRate != m_settings.m_inputSampleRate) || force) | ||
|  |     { | ||
|  |         m_interpolatorDistanceRemain = 0; | ||
|  |         m_interpolatorConsumed = false; | ||
|  |         m_interpolatorDistance = (Real) settings.m_inputSampleRate / (Real) m_channelSampleRate; | ||
|  |         m_interpolator.create(48, settings.m_inputSampleRate, settings.m_rfBandwidth / 2.2, 3.0); | ||
|  |         m_actualInputSampleRate = settings.m_inputSampleRate; | ||
|  |         m_udpHandler.resetReadIndex(); | ||
|  |         m_sampleRateSum = 0.0; | ||
|  |         m_sampleRateAvgCounter = 0; | ||
|  |         m_spectrumChunkSize = settings.m_inputSampleRate * 0.05; // 50 ms chunk
 | ||
|  |         m_spectrumChunkCounter = 0; | ||
|  |         m_levelNbSamples = settings.m_inputSampleRate * 0.01; // every 10 ms
 | ||
|  |         m_levelCalcCount = 0; | ||
|  |         m_peakLevel = 0.0f; | ||
|  |         m_levelSum = 0.0f; | ||
|  |         m_udpHandler.resizeBuffer(settings.m_inputSampleRate); | ||
|  |         m_inMovingAverage.resize(settings.m_inputSampleRate * 0.01, 1e-10); // 10 ms
 | ||
|  |         m_squelchThreshold = settings.m_inputSampleRate * settings.m_squelchGate; | ||
|  |         initSquelch(m_squelchOpen); | ||
|  |         m_SSBFilter->create_filter(settings.m_lowCutoff / settings.m_inputSampleRate, settings.m_rfBandwidth / settings.m_inputSampleRate); | ||
|  |     } | ||
|  | 
 | ||
|  |     if ((settings.m_squelch != m_settings.m_squelch) || force) | ||
|  |     { | ||
|  |         m_squelch = CalcDb::powerFromdB(settings.m_squelch); | ||
|  |     } | ||
|  | 
 | ||
|  |     if ((settings.m_squelchGate != m_settings.m_squelchGate) || force) | ||
|  |     { | ||
|  |         m_squelchThreshold = m_channelSampleRate * settings.m_squelchGate; | ||
|  |         initSquelch(m_squelchOpen); | ||
|  |     } | ||
|  | 
 | ||
|  |     if ((settings.m_udpAddress != m_settings.m_udpAddress) || | ||
|  |         (settings.m_udpPort != m_settings.m_udpPort) || force) | ||
|  |     { | ||
|  |         m_udpHandler.configureUDPLink(settings.m_udpAddress, settings.m_udpPort); | ||
|  |     } | ||
|  | 
 | ||
|  |     if ((settings.m_channelMute != m_settings.m_channelMute) || force) | ||
|  |     { | ||
|  |         if (!settings.m_channelMute) { | ||
|  |             m_udpHandler.resetReadIndex(); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     if ((settings.m_autoRWBalance != m_settings.m_autoRWBalance) || force) | ||
|  |     { | ||
|  |         m_udpHandler.setAutoRWBalance(settings.m_autoRWBalance); | ||
|  | 
 | ||
|  |         if (!settings.m_autoRWBalance) | ||
|  |         { | ||
|  |             m_interpolatorDistanceRemain = 0; | ||
|  |             m_interpolatorConsumed = false; | ||
|  |             m_interpolatorDistance = (Real) settings.m_inputSampleRate / (Real) m_channelSampleRate; | ||
|  |             m_interpolator.create(48, settings.m_inputSampleRate, settings.m_rfBandwidth / 2.2, 3.0); | ||
|  |             m_actualInputSampleRate = settings.m_inputSampleRate; | ||
|  |             m_udpHandler.resetReadIndex(); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     m_settings = settings; | ||
|  | } | ||
|  | 
 | ||
|  | void UDPSourceSource::sampleRateCorrection(float rawDeltaRatio, float correctionFactor) | ||
|  | { | ||
|  |     float newSampleRate = m_actualInputSampleRate + correctionFactor * m_actualInputSampleRate; | ||
|  | 
 | ||
|  |     // exclude values too way out nominal sample rate (20%)
 | ||
|  |     if ((newSampleRate < m_settings.m_inputSampleRate * 1.2) && (newSampleRate >  m_settings.m_inputSampleRate * 0.8)) | ||
|  |     { | ||
|  |         m_actualInputSampleRate = newSampleRate; | ||
|  | 
 | ||
|  |         if ((rawDeltaRatio > -0.05) && (rawDeltaRatio < 0.05)) | ||
|  |         { | ||
|  |             if (m_sampleRateAvgCounter < m_sampleRateAverageItems) | ||
|  |             { | ||
|  |                 m_sampleRateSum += m_actualInputSampleRate; | ||
|  |                 m_sampleRateAvgCounter++; | ||
|  |             } | ||
|  |         } | ||
|  |         else | ||
|  |         { | ||
|  |             m_sampleRateSum = 0.0; | ||
|  |             m_sampleRateAvgCounter = 0; | ||
|  |         } | ||
|  | 
 | ||
|  |         if (m_sampleRateAvgCounter == m_sampleRateAverageItems) | ||
|  |         { | ||
|  |             float avgRate = m_sampleRateSum / m_sampleRateAverageItems; | ||
|  |             qDebug("UDPSourceSource::sampleRateCorrection: corr: %+.6f new rate: %.0f: avg rate: %.0f", | ||
|  |                     correctionFactor, | ||
|  |                     m_actualInputSampleRate, | ||
|  |                     avgRate); | ||
|  |             m_actualInputSampleRate = avgRate; | ||
|  |             m_sampleRateSum = 0.0; | ||
|  |             m_sampleRateAvgCounter = 0; | ||
|  |         } | ||
|  | 
 | ||
|  |         m_interpolatorDistanceRemain = 0; | ||
|  |         m_interpolatorConsumed = false; | ||
|  |         m_interpolatorDistance = (Real) m_actualInputSampleRate / (Real) m_channelSampleRate; | ||
|  |     } | ||
|  | } |