1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-21 15:51:47 -05:00

WDSP: more rework

This commit is contained in:
f4exb 2024-08-07 21:14:09 +02:00
parent fe08cd4a78
commit 130d40c218
15 changed files with 866 additions and 907 deletions

View File

@ -277,7 +277,7 @@ TXA::TXA(
1, // wintype
2.0); // gain
compressor = COMPRESSOR::create_compressor (
compressor = new COMPRESSOR(
0, // run - OFF by default
dsp_size, // size
midbuff, // pointer to input buffer
@ -298,7 +298,7 @@ TXA::TXA(
1, // wintype
2.0); // gain
osctrl = OSCTRL::create_osctrl (
osctrl = new OSCTRL(
0, // run
dsp_size, // size
midbuff, // input buffer
@ -368,7 +368,7 @@ TXA::TXA(
0.5); // carrier level
fmmod = FMMOD::create_fmmod (
fmmod = new FMMOD(
0, // run - OFF by default
dsp_size, // size
midbuff, // pointer to input buffer
@ -392,15 +392,14 @@ TXA::TXA(
dsp_rate, // sample rate
0); // mode
uslew = USLEW::create_uslew (
this,
uslew = new USLEW(
&upslew, // pointer to channel upslew flag
dsp_size, // buffer size
midbuff, // input buffer
midbuff, // output buffer
(float) dsp_rate, // sample rate
(double) dsp_rate, // sample rate
0.000, // delay time
0.005f); // upslew time
0.005); // upslew time
alcmeter = new METER(
1, // run
@ -446,17 +445,17 @@ TXA::TXA(
// 256, // pin samples
// 0.9); // alpha
iqc.p0 = iqc.p1 = IQC::create_iqc (
iqc.p0 = iqc.p1 = new IQC(
0, // run
dsp_size, // size
midbuff, // input buffer
midbuff, // output buffer
(float)dsp_rate, // sample rate
(double) dsp_rate, // sample rate
16, // ints
0.005f, // changeover time
0.005, // changeover time
256); // spi
cfir = CFIR::create_cfir(
cfir = new CFIR(
0, // run
dsp_size, // size
std::max(2048, dsp_size), // number of filter coefficients
@ -507,20 +506,20 @@ TXA::~TXA()
// in reverse order, free each item we created
delete outmeter;
delete rsmpout;
CFIR::destroy_cfir(cfir);
IQC::destroy_iqc (iqc.p0);
delete cfir;
delete iqc.p0;
delete sip1;
delete alcmeter;
USLEW::destroy_uslew (uslew);
delete uslew;
delete gen1;
FMMOD::destroy_fmmod (fmmod);
delete fmmod;
delete ammod;
delete alc;
delete compmeter;
delete bp2;
OSCTRL::destroy_osctrl (osctrl);
delete osctrl;
delete bp1;
COMPRESSOR::destroy_compressor (compressor);
delete compressor;
delete bp0;
delete cfcmeter;
delete cfcomp;
@ -554,20 +553,20 @@ void TXA::flush()
cfcomp->flush();
cfcmeter->flush ();
bp0->flush ();
COMPRESSOR::flush_compressor (compressor);
compressor->flush();
bp1->flush ();
OSCTRL::flush_osctrl (osctrl);
osctrl->flush();
bp2->flush ();
compmeter->flush ();
alc->flush ();
ammod->flush();
FMMOD::flush_fmmod (fmmod);
fmmod->flush();
gen1->flush();
USLEW::flush_uslew (uslew);
uslew->flush();
alcmeter->flush ();
sip1->flush();
IQC::flush_iqc (iqc.p0);
CFIR::flush_cfir(cfir);
iqc.p0->flush();
cfir->flush();
rsmpout->flush();
outmeter->flush ();
}
@ -589,21 +588,21 @@ void TXA::execute()
cfcomp->execute(0); // Continuous Frequency Compressor with post-EQ
cfcmeter->execute (); // CFC+PostEQ Meter
bp0->execute (0); // primary bandpass filter
COMPRESSOR::xcompressor (compressor); // COMP compressor
compressor->execute(); // COMP compressor
bp1->execute (0); // aux bandpass (runs if COMP)
OSCTRL::xosctrl (osctrl); // CESSB Overshoot Control
osctrl->execute(); // CESSB Overshoot Control
bp2->execute (0); // aux bandpass (runs if CESSB)
compmeter->execute (); // COMP meter
alc->execute (); // ALC
ammod->execute(); // AM Modulator
preemph->execute(1); // FM pre-emphasis (second option)
FMMOD::xfmmod (fmmod); // FM Modulator
fmmod->execute(); // FM Modulator
gen1->execute(); // output signal generator (TUN and Two-tone)
USLEW::xuslew (uslew); // up-slew for AM, FM, and gens
uslew->execute(uslewCheck()); // up-slew for AM, FM, and gens
alcmeter->execute (); // ALC Meter
sip1->execute(0); // siphon data for display
IQC::xiqc (iqc.p0); // PureSignal correction
CFIR::xcfir(cfir); // compensating FIR filter (used Protocol_2 only)
iqc.p0->execute(); // PureSignal correction
cfir->execute(); // compensating FIR filter (used Protocol_2 only)
rsmpout->execute(); // output resampler
outmeter->execute (); // output meter
}
@ -622,7 +621,7 @@ void TXA::setOutputSamplerate(int out_rate)
{
Unit::setBuffersOutputSamplerate(out_rate);
// cfir - needs to know input rate of firmware CIC
CFIR::setOutRate_cfir (cfir, out_rate);
cfir->setOutRate(out_rate);
// output resampler
rsmpout->setBuffers(midbuff, outbuff);
rsmpout->setOutRate(out_rate);
@ -654,20 +653,20 @@ void TXA::setDSPSamplerate(int dsp_rate)
cfcomp->setSamplerate(dsp_rate);
cfcmeter->setSamplerate (dsp_rate);
bp0->setSamplerate (dsp_rate);
COMPRESSOR::setSamplerate_compressor (compressor, dsp_rate);
compressor->setSamplerate(dsp_rate);
bp1->setSamplerate (dsp_rate);
OSCTRL::setSamplerate_osctrl (osctrl, dsp_rate);
osctrl->setSamplerate(dsp_rate);
bp2->setSamplerate (dsp_rate);
compmeter->setSamplerate (dsp_rate);
alc->setSamplerate (dsp_rate);
ammod->setSamplerate(dsp_rate);
FMMOD::setSamplerate_fmmod (fmmod, dsp_rate);
fmmod->setSamplerate(dsp_rate);
gen1->setSamplerate(dsp_rate);
USLEW::setSamplerate_uslew (uslew, dsp_rate);
uslew->setSamplerate(dsp_rate);
alcmeter->setSamplerate (dsp_rate);
sip1->setSamplerate (dsp_rate);
IQC::setSamplerate_iqc (iqc.p0, dsp_rate);
CFIR::setSamplerate_cfir (cfir, dsp_rate);
iqc.p0->setSamplerate(dsp_rate);
cfir->setSamplerate(dsp_rate);
// output resampler
rsmpout->setBuffers(midbuff, outbuff);
rsmpout->setInRate(dsp_rate);
@ -710,12 +709,12 @@ void TXA::setDSPBuffsize(int dsp_size)
cfcmeter->setSize(dsp_size);
bp0->setBuffers (midbuff, midbuff);
bp0->setSize (dsp_size);
COMPRESSOR::setBuffers_compressor (compressor, midbuff, midbuff);
COMPRESSOR::setSize_compressor (compressor, dsp_size);
compressor->setBuffers(midbuff, midbuff);
compressor->setSize(dsp_size);
bp1->setBuffers (midbuff, midbuff);
bp1->setSize (dsp_size);
OSCTRL::setBuffers_osctrl (osctrl, midbuff, midbuff);
OSCTRL::setSize_osctrl (osctrl, dsp_size);
osctrl->setBuffers(midbuff, midbuff);
osctrl->setSize(dsp_size);
bp2->setBuffers (midbuff, midbuff);
bp2->setSize (dsp_size);
compmeter->setBuffers(midbuff);
@ -724,20 +723,20 @@ void TXA::setDSPBuffsize(int dsp_size)
alc->setSize( dsp_size);
ammod->setBuffers(midbuff, midbuff);
ammod->setSize(dsp_size);
FMMOD::setBuffers_fmmod (fmmod, midbuff, midbuff);
FMMOD::setSize_fmmod (fmmod, dsp_size);
fmmod->setBuffers(midbuff, midbuff);
fmmod->setSize(dsp_size);
gen1->setBuffers(midbuff, midbuff);
gen1->setSize(dsp_size);
USLEW::setBuffers_uslew (uslew, midbuff, midbuff);
USLEW::setSize_uslew (uslew, dsp_size);
uslew->setBuffers(midbuff, midbuff);
uslew->setSize(dsp_size);
alcmeter->setBuffers (midbuff);
alcmeter->setSize(dsp_size);
sip1->setBuffers (midbuff);
sip1->setSize (dsp_size);
IQC::setBuffers_iqc (iqc.p0, midbuff, midbuff);
IQC::setSize_iqc (iqc.p0, dsp_size);
CFIR::setBuffers_cfir (cfir, midbuff, midbuff);
CFIR::setSize_cfir (cfir, dsp_size);
iqc.p0->IQC::setBuffers(midbuff, midbuff);
iqc.p0->IQC::setSize(dsp_size);
cfir->setBuffers(midbuff, midbuff);
cfir->setSize(dsp_size);
// output resampler
rsmpout->setBuffers(midbuff, outbuff);
rsmpout->setSize(dsp_size);
@ -1007,8 +1006,8 @@ void TXA::setNC(int _nc)
setBandpassNC (_nc);
preemph->setNC (_nc);
eqp->setNC (_nc);
FMMOD::SetFMNC (*this, _nc);
CFIR::SetCFIRNC (*this, _nc);
fmmod->setNC (_nc);
cfir->setNC (_nc);
state = oldstate;
}
@ -1017,13 +1016,13 @@ void TXA::setMP(int _mp)
setBandpassMP (_mp);
preemph->setMP (_mp);
eqp->setMP (_mp);
FMMOD::SetFMMP (*this, _mp);
fmmod->setMP (_mp);
}
void TXA::setFMAFFilter(float _low, float _high)
{
preemph->setFreqs (_low, _high);
FMMOD::SetFMAFFreqs(*this, _low, _high);
fmmod->setAFFreqs (_low, _high);
}
void TXA::SetBPSRun (TXA& txa, int _run)
@ -1095,7 +1094,7 @@ void TXA::SetBPSWindow (TXA& txa, int _wintype)
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
delete[] impulse;
}
a = txa.bps2;
@ -1106,9 +1105,95 @@ void TXA::SetBPSWindow (TXA& txa, int _wintype)
delete[] (a->mults);
impulse = FIR::fir_bandpass (a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (float)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
delete[] impulse;
}
}
void TXA::SetCompressorRun (TXA& txa, int _run)
{
if (txa.compressor->run != _run)
{
txa.compressor->run = _run;
txa.setupBPFilters();
}
}
void TXA::SetosctrlRun (TXA& txa, int run)
{
if (txa.osctrl->run != run)
{
txa.osctrl->run = run;
txa.setupBPFilters();
}
}
void TXA::GetiqcValues (TXA& txa, std::vector<double>& cm, std::vector<double>& cc, std::vector<double>& cs)
{
IQC *a;
a = txa.iqc.p0;
cm.resize(a->ints * 4);
cc.resize(a->ints * 4);
cs.resize(a->ints * 4);
std::copy(a->cm[a->cset].begin(), a->cm[a->cset].begin() + a->ints * 4, cm.begin());
std::copy(a->cc[a->cset].begin(), a->cc[a->cset].begin() + a->ints * 4, cc.begin());
std::copy(a->cs[a->cset].begin(), a->cs[a->cset].begin() + a->ints * 4, cs.begin());
}
void TXA::SetiqcValues (TXA& txa, const std::vector<double>& cm, const std::vector<double>& cc, const std::vector<double>& cs)
{
IQC *a;
a = txa.iqc.p0;
a->cset = 1 - a->cset;
std::copy(cm.begin(), cm.begin() + a->ints * 4, a->cm[a->cset].begin());
std::copy(cc.begin(), cc.begin() + a->ints * 4, a->cc[a->cset].begin());
std::copy(cs.begin(), cs.begin() + a->ints * 4, a->cs[a->cset].begin());
a->state = IQC::IQCSTATE::RUN;
}
void TXA::SetiqcSwap (TXA& txa, const std::vector<double>& cm, const std::vector<double>& cc, const std::vector<double>& cs)
{
IQC *a = txa.iqc.p1;
a->cset = 1 - a->cset;
std::copy(cm.begin(), cm.begin() + a->ints * 4, a->cm[a->cset].begin());
std::copy(cc.begin(), cc.begin() + a->ints * 4, a->cc[a->cset].begin());
std::copy(cs.begin(), cs.begin() + a->ints * 4, a->cs[a->cset].begin());
a->busy = 1;
a->state = IQC::IQCSTATE::SWAP;
a->count = 0;
}
void TXA::SetiqcStart (TXA& txa, const std::vector<double>& cm, const std::vector<double>& cc, const std::vector<double>& cs)
{
IQC *a = txa.iqc.p1;
a->cset = 0;
std::copy(cm.begin(), cm.begin() + a->ints * 4, a->cm[a->cset].begin());
std::copy(cc.begin(), cc.begin() + a->ints * 4, a->cc[a->cset].begin());
std::copy(cs.begin(), cs.begin() + a->ints * 4, a->cs[a->cset].begin());
a->busy = 1;
a->state = IQC::IQCSTATE::BEGIN;
a->count = 0;
txa.iqc.p1->run = 1;
}
void TXA::SetiqcEnd (TXA& txa)
{
IQC *a = txa.iqc.p1;
a->busy = 1;
a->state = IQC::IQCSTATE::END;
a->count = 0;
txa.iqc.p1->run = 0;
}
void TXA::GetiqcDogCount (TXA& txa, int* count)
{
IQC *a = txa.iqc.p1;
*count = a->dog.count;
}
void TXA::SetiqcDogCount (TXA& txa, int count)
{
IQC *a = txa.iqc.p1;
a->dog.count = count;
}
} // namespace WDSP

View File

@ -194,6 +194,18 @@ public:
static void SetBPSRun (TXA& txa, int run);
static void SetBPSFreqs (TXA& txa, double low, double high);
static void SetBPSWindow (TXA& txa, int wintype);
// COMPRESSOR
static void SetCompressorRun (TXA& txa, int run);
// OSCTRL
static void SetosctrlRun (TXA& txa, int run);
// IQC
static void GetiqcValues (TXA& txa, std::vector<double>& cm, std::vector<double>& cc, std::vector<double>& cs);
static void SetiqcValues (TXA& txa, const std::vector<double>& cm, const std::vector<double>& cc, const std::vector<double>& cs);
static void SetiqcSwap (TXA& txa, const std::vector<double>& cm, const std::vector<double>& cc, const std::vector<double>& cs);
static void SetiqcStart (TXA& txa, const std::vector<double>& cm, const std::vector<double>& cc, const std::vector<double>& cs);
static void SetiqcEnd (TXA& txa);
static void GetiqcDogCount (TXA& txa, int* count);
static void SetiqcDogCount (TXA& txa, int count);
// Collectives
void setNC(int nc);

View File

@ -32,36 +32,36 @@ warren@wpratt.com
namespace WDSP {
void CFIR::calc_cfir (CFIR *a)
void CFIR::calc()
{
float* impulse;
a->scale = 1.0 / (float)(2 * a->size);
impulse = cfir_impulse (a->nc, a->DD, a->R, a->Pairs, a->runrate, a->cicrate, a->cutoff, a->xtype, a->xbw, 1, a->scale, a->wintype);
a->p = new FIRCORE(a->size, a->in, a->out, a->nc, a->mp, impulse);
delete[] (impulse);
scale = 1.0 / (float)(2 * size);
impulse = cfir_impulse (nc, DD, R, Pairs, runrate, cicrate, cutoff, xtype, xbw, 1, scale, wintype);
p = new FIRCORE(size, in, out, nc, mp, impulse);
delete[] impulse;
}
void CFIR::decalc_cfir (CFIR *a)
void CFIR::decalc()
{
delete (a->p);
delete p;
}
CFIR* CFIR::create_cfir (
int run,
int size,
int nc,
int mp,
float* in,
float* out,
int runrate,
int cicrate,
int DD,
int R,
int Pairs,
double cutoff,
int xtype,
double xbw,
int wintype
CFIR::CFIR(
int _run,
int _size,
int _nc,
int _mp,
float* _in,
float* _out,
int _runrate,
int _cicrate,
int _DD,
int _R,
int _Pairs,
double _cutoff,
int _xtype,
double _xbw,
int _wintype
)
// run: 0 - no action; 1 - operate
// size: number of complex samples in an input buffer to the CFIR filter
@ -77,87 +77,84 @@ CFIR* CFIR::create_cfir (
// xtype: 0 - fourth power transition; 1 - raised cosine transition; 2 - brick wall
// xbw: width of raised cosine transition
{
CFIR *a = new CFIR;
a->run = run;
a->size = size;
a->nc = nc;
a->mp = mp;
a->in = in;
a->out = out;
a->runrate = runrate;
a->cicrate = cicrate;
a->DD = DD;
a->R = R;
a->Pairs = Pairs;
a->cutoff = cutoff;
a->xtype = xtype;
a->xbw = xbw;
a->wintype = wintype;
calc_cfir (a);
return a;
run = _run;
size = _size;
nc = _nc;
mp = _mp;
in = _in;
out = _out;
runrate = _runrate;
cicrate = _cicrate;
DD = _DD;
R = _R;
Pairs = _Pairs;
cutoff = _cutoff;
xtype = _xtype;
xbw = _xbw;
wintype = _wintype;
calc();
}
void CFIR::destroy_cfir (CFIR *a)
CFIR::~CFIR()
{
decalc_cfir (a);
delete (a);
decalc();
}
void CFIR::flush_cfir (CFIR *a)
void CFIR::flush()
{
a->p->flush();
p->flush();
}
void CFIR::xcfir (CFIR *a)
void CFIR::execute()
{
if (a->run)
a->p->execute();
else if (a->in != a->out)
std::copy( a->in, a->in + a->size * 2, a->out);
if (run)
p->execute();
else if (in != out)
std::copy( in, in + size * 2, out);
}
void CFIR::setBuffers_cfir (CFIR *a, float* in, float* out)
void CFIR::setBuffers(float* _in, float* _out)
{
decalc_cfir (a);
a->in = in;
a->out = out;
calc_cfir (a);
decalc();
in = _in;
out = _out;
calc();
}
void CFIR::setSamplerate_cfir (CFIR *a, int rate)
void CFIR::setSamplerate(int rate)
{
decalc_cfir (a);
a->runrate = rate;
calc_cfir (a);
decalc();
runrate = rate;
calc();
}
void CFIR::setSize_cfir (CFIR *a, int size)
void CFIR::setSize(int _size)
{
decalc_cfir (a);
a->size = size;
calc_cfir (a);
decalc();
size = _size;
calc();
}
void CFIR::setOutRate_cfir (CFIR *a, int rate)
void CFIR::setOutRate(int rate)
{
decalc_cfir (a);
a->cicrate = rate;
calc_cfir (a);
decalc();
cicrate = rate;
calc();
}
float* CFIR::cfir_impulse (
int N,
int DD,
int R,
int Pairs,
double runrate,
double cicrate,
double cutoff,
int xtype,
double xbw,
int rtype,
double scale,
int wintype
int _N,
int _DD,
int _R,
int _Pairs,
double _runrate,
double _cicrate,
double _cutoff,
int _xtype,
double _xbw,
int _rtype,
double _scale,
int _wintype
)
{
// N: number of impulse response samples
@ -171,91 +168,93 @@ float* CFIR::cfir_impulse (
// xbw: transition bandwidth for raised cosine
// rtype: 0 for real output, 1 for complex output
// scale: scale factor to be applied to the output
int i, j;
double tmp, local_scale, ri, mag, fn;
int i;
int j;
double tmp;
double local_scale;
double ri;
double mag = 0;
double fn;
float* impulse;
float* A = new float[N]; // (float *) malloc0 (N * sizeof (float));
double ft = cutoff / cicrate; // normalized cutoff frequency
int u_samps = (N + 1) / 2; // number of unique samples, OK for odd or even N
int c_samps = (int)(cutoff / runrate * N) + (N + 1) / 2 - N / 2; // number of unique samples within bandpass, OK for odd or even N
int x_samps = (int)(xbw / runrate * N); // number of unique samples in transition region, OK for odd or even N
double offset = 0.5 - 0.5 * (float)((N + 1) / 2 - N / 2); // sample offset from center, OK for odd or even N
double* xistion = new double[x_samps + 1]; // (float *) malloc0 ((x_samps + 1) * sizeof (float));
double delta = PI / (float)x_samps;
double L = cicrate / runrate;
double phs = 0.0;
std::vector<float> A(_N);
double ft = _cutoff / _cicrate; // normalized cutoff frequency
int u_samps = (_N + 1) / 2; // number of unique samples, OK for odd or even N
int c_samps = (int)(_cutoff / _runrate * _N) + (_N + 1) / 2 - _N / 2; // number of unique samples within bandpass, OK for odd or even N
auto x_samps = (int)(_xbw / _runrate * _N); // number of unique samples in transition region, OK for odd or even N
double offset = 0.5 - 0.5 * (double)((_N + 1) / 2 - _N / 2); // sample offset from center, OK for odd or even N
std::vector<double> xistion(x_samps + 1);
double delta = PI / (double)x_samps;
double L = _cicrate / _runrate;
double _phs = 0.0;
for (i = 0; i <= x_samps; i++)
{
xistion[i] = 0.5 * (cos (phs) + 1.0);
phs += delta;
xistion[i] = 0.5 * (cos (_phs) + 1.0);
_phs += delta;
}
if ((tmp = DD * R * sin (PI * ft / R) / sin (PI * DD * ft)) < 0.0) //normalize by peak gain
if ((tmp = _DD * _R * sin (PI * ft / _R) / sin (PI * _DD * ft)) < 0.0) //normalize by peak gain
tmp = -tmp;
local_scale = scale / pow (tmp, Pairs);
if (xtype == 0)
local_scale = _scale / pow (tmp, _Pairs);
if (_xtype == 0)
{
for (i = 0, ri = offset; i < u_samps; i++, ri += 1.0)
{
fn = ri / (L * (float)N);
fn = ri / (L * (double) _N);
if (fn <= ft)
{
if (fn == 0.0)
tmp = 1.0;
else if ((tmp = DD * R * sin (PI * fn / R) / sin (PI * DD * fn)) < 0.0)
else if ((tmp = _DD * _R * sin (PI * fn / _R) / sin (PI * _DD * fn)) < 0.0)
tmp = -tmp;
mag = pow (tmp, Pairs) * local_scale;
mag = pow (tmp, _Pairs) * local_scale;
}
else
mag *= (ft * ft * ft * ft) / (fn * fn * fn * fn);
A[i] = mag;
A[i] = (float) mag;
}
}
else if (xtype == 1)
else if (_xtype == 1)
{
for (i = 0, ri = offset; i < u_samps; i++, ri += 1.0)
{
fn = ri / (L *(float)N);
fn = ri / (L *(double) _N);
if (i < c_samps)
{
if (fn == 0.0) tmp = 1.0;
else if ((tmp = DD * R * sin (PI * fn / R) / sin (PI * DD * fn)) < 0.0)
else if ((tmp = _DD * _R * sin (PI * fn / _R) / sin (PI * _DD * fn)) < 0.0)
tmp = -tmp;
mag = pow (tmp, Pairs) * local_scale;
A[i] = mag;
mag = pow (tmp, _Pairs) * local_scale;
A[i] = (float) mag;
}
else if ( i >= c_samps && i <= c_samps + x_samps)
A[i] = mag * xistion[i - c_samps];
A[i] = (float) (mag * xistion[i - c_samps]);
else
A[i] = 0.0;
}
}
else if (xtype == 2)
else if (_xtype == 2)
{
for (i = 0, ri = offset; i < u_samps; i++, ri += 1.0)
{
fn = ri / (L * (float)N);
fn = ri / (L * (double) _N);
if (fn <= ft)
{
if (fn == 0.0) tmp = 1.0;
else if ((tmp = DD * R * sin(PI * fn / R) / sin(PI * DD * fn)) < 0.0)
else if ((tmp = _DD * _R * sin(PI * fn / _R) / sin(PI * _DD * fn)) < 0.0)
tmp = -tmp;
mag = pow (tmp, Pairs) * local_scale;
mag = pow (tmp, _Pairs) * local_scale;
}
else
mag = 0.0;
A[i] = mag;
A[i] = (float) mag;
}
}
if (N & 1)
for (i = u_samps, j = 2; i < N; i++, j++)
if (_N & 1)
for (i = u_samps, j = 2; i < _N; i++, j++)
A[i] = A[u_samps - j];
else
for (i = u_samps, j = 1; i < N; i++, j++)
for (i = u_samps, j = 1; i < _N; i++, j++)
A[i] = A[u_samps - j];
impulse = FIR::fir_fsamp (N, A, rtype, 1.0, wintype);
// print_impulse ("cfirImpulse.txt", N, impulse, 1, 0);
delete[] A;
delete[] xistion;
impulse = FIR::fir_fsamp (_N, A.data(), _rtype, 1.0, _wintype);
return impulse;
}
@ -265,22 +264,20 @@ float* CFIR::cfir_impulse (
* *
********************************************************************************************************/
void CFIR::SetCFIRRun (TXA& txa, int run)
void CFIR::setRun(int _run)
{
txa.cfir->run = run;
run = _run;
}
void CFIR::SetCFIRNC(TXA& txa, int nc)
void CFIR::setNC(int _nc)
{
// NOTE: 'nc' must be >= 'size'
CFIR *a;
a = txa.cfir;
if (a->nc != nc)
if (nc != _nc)
{
a->nc = nc;
decalc_cfir(a);
calc_cfir(a);
nc = _nc;
decalc();
calc();
}
}

View File

@ -56,7 +56,7 @@ public:
int wintype;
FIRCORE *p;
static CFIR* create_cfir (
CFIR(
int run,
int size,
int nc,
@ -73,13 +73,16 @@ public:
double xbw,
int wintype
);
static void destroy_cfir (CFIR *a);
static void flush_cfir (CFIR *a);
static void xcfir (CFIR *a);
static void setBuffers_cfir (CFIR *a, float* in, float* out);
static void setSamplerate_cfir (CFIR *a, int rate);
static void setSize_cfir (CFIR *a, int size);
static void setOutRate_cfir (CFIR *a, int rate);
CFIR(const CFIR&) = delete;
CFIR& operator=(CFIR& other) = delete;
~CFIR();
void flush();
void execute();
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
void setOutRate(int rate);
static float* cfir_impulse (
int N,
int DD,
@ -95,12 +98,12 @@ public:
int wintype
);
// TXA Properties
static void SetCFIRRun(TXA& txa, int run);
static void SetCFIRNC(TXA& txa, int nc);
void setRun(int run);
void setNC(int nc);
private:
static void calc_cfir (CFIR *a);
static void decalc_cfir (CFIR *a);
void calc();
void decalc();
};
} // namespace WDSP

View File

@ -34,62 +34,56 @@ in the January 2010 issue of RadCom magazine.
namespace WDSP {
COMPRESSOR* COMPRESSOR::create_compressor (
int run,
int buffsize,
float* inbuff,
float* outbuff,
double gain
)
COMPRESSOR::COMPRESSOR(
int _run,
int _buffsize,
float* _inbuff,
float* _outbuff,
double _gain
) :
run(_run),
buffsize(_buffsize),
inbuff(_inbuff),
outbuff(_outbuff),
gain(_gain)
{}
void COMPRESSOR::flush()
{
auto *a = new COMPRESSOR;
a->run = run;
a->inbuff = inbuff;
a->outbuff = outbuff;
a->buffsize = buffsize;
a->gain = gain;
return a;
// Nothing to do
}
void COMPRESSOR::destroy_compressor (COMPRESSOR *a)
void COMPRESSOR::execute()
{
delete (a);
}
void COMPRESSOR::flush_compressor (COMPRESSOR *)
{
}
void COMPRESSOR::xcompressor (COMPRESSOR *a)
{
float mag;
if (a->run)
for (int i = 0; i < a->buffsize; i++)
double mag;
if (run)
for (int i = 0; i < buffsize; i++)
{
mag = sqrt(a->inbuff[2 * i + 0] * a->inbuff[2 * i + 0] + a->inbuff[2 * i + 1] * a->inbuff[2 * i + 1]);
if (a->gain * mag > 1.0)
a->outbuff[2 * i + 0] = a->inbuff[2 * i + 0] / mag;
mag = sqrt(inbuff[2 * i + 0] * inbuff[2 * i + 0] + inbuff[2 * i + 1] * inbuff[2 * i + 1]);
if (gain * mag > 1.0)
outbuff[2 * i + 0] = (float) (inbuff[2 * i + 0] / mag);
else
a->outbuff[2 * i + 0] = a->inbuff[2 * i + 0] * a->gain;
a->outbuff[2 * i + 1] = 0.0;
outbuff[2 * i + 0] = (float) (inbuff[2 * i + 0] * gain);
outbuff[2 * i + 1] = 0.0;
}
else if (a->inbuff != a->outbuff)
std::copy(a->inbuff, a->inbuff + a->buffsize * 2, a->outbuff);
else if (inbuff != outbuff)
std::copy(inbuff, inbuff + buffsize * 2, outbuff);
}
void COMPRESSOR::setBuffers_compressor (COMPRESSOR *a, float* in, float* out)
void COMPRESSOR::setBuffers(float* _in, float* _out)
{
a->inbuff = in;
a->outbuff = out;
inbuff = _in;
outbuff = _out;
}
void COMPRESSOR::setSamplerate_compressor (COMPRESSOR *, int)
void COMPRESSOR::setSamplerate(int)
{
// Nothing to do
}
void COMPRESSOR::setSize_compressor (COMPRESSOR *a, int size)
void COMPRESSOR::setSize(int _size)
{
a->buffsize = size;
buffsize = _size;
}
/********************************************************************************************************
@ -98,18 +92,9 @@ void COMPRESSOR::setSize_compressor (COMPRESSOR *a, int size)
* *
********************************************************************************************************/
void COMPRESSOR::SetCompressorRun (TXA& txa, int run)
void COMPRESSOR::setGain(float _gain)
{
if (txa.compressor->run != run)
{
txa.compressor->run = run;
txa.setupBPFilters();
}
}
void COMPRESSOR::SetCompressorGain (TXA& txa, float gain)
{
txa.compressor->gain = pow (10.0, gain / 20.0);
gain = pow (10.0, _gain / 20.0);
}
} // namespace WDSP

View File

@ -43,22 +43,24 @@ public:
float *outbuff;
double gain;
static COMPRESSOR* create_compressor (
COMPRESSOR(
int run,
int buffsize,
float* inbuff,
float* outbuff,
double gain
);
static void destroy_compressor (COMPRESSOR *a);
static void flush_compressor (COMPRESSOR *a);
static void xcompressor (COMPRESSOR *a);
static void setBuffers_compressor (COMPRESSOR *a, float* in, float* out);
static void setSamplerate_compressor (COMPRESSOR *a, int rate);
static void setSize_compressor (COMPRESSOR *a, int size);
COMPRESSOR(const COMPRESSOR&) = delete;
COMPRESSOR& operator=(COMPRESSOR& other) = delete;
~COMPRESSOR() = default;
void flush();
void execute();
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
// TXA Properties
static void SetCompressorRun (TXA& txa, int run);
static void SetCompressorGain (TXA& txa, float gain);
void setGain(float gain);
};
} // namespace WDSP

View File

@ -33,130 +33,128 @@ warren@wpratt.com
namespace WDSP {
void FMMOD::calc_fmmod (FMMOD *a)
void FMMOD::calc()
{
// ctcss gen
a->tscale = 1.0 / (1.0 + a->ctcss_level);
a->tphase = 0.0;
a->tdelta = TWOPI * a->ctcss_freq / a->samplerate;
tscale = 1.0 / (1.0 + ctcss_level);
tphase = 0.0;
tdelta = TWOPI * ctcss_freq / samplerate;
// mod
a->sphase = 0.0;
a->sdelta = TWOPI * a->deviation / a->samplerate;
sphase = 0.0;
sdelta = TWOPI * deviation / samplerate;
// bandpass
a->bp_fc = a->deviation + a->f_high;
bp_fc = deviation + f_high;
}
FMMOD* FMMOD::create_fmmod (
int run,
int size,
float* in,
float* out,
int rate,
float dev,
float f_low,
float f_high,
int ctcss_run,
float ctcss_level,
float ctcss_freq,
int bp_run,
int nc,
int mp
FMMOD::FMMOD(
int _run,
int _size,
float* _in,
float* _out,
int _rate,
double _dev,
double _f_low,
double _f_high,
int _ctcss_run,
double _ctcss_level,
double _ctcss_freq,
int _bp_run,
int _nc,
int _mp
)
{
FMMOD *a = new FMMOD;
float* impulse;
a->run = run;
a->size = size;
a->in = in;
a->out = out;
a->samplerate = (float)rate;
a->deviation = dev;
a->f_low = f_low;
a->f_high = f_high;
a->ctcss_run = ctcss_run;
a->ctcss_level = ctcss_level;
a->ctcss_freq = ctcss_freq;
a->bp_run = bp_run;
a->nc = nc;
a->mp = mp;
calc_fmmod (a);
impulse = FIR::fir_bandpass(a->nc, -a->bp_fc, +a->bp_fc, a->samplerate, 0, 1, 1.0 / (2 * a->size));
a->p = new FIRCORE(a->size, a->out, a->out, a->nc, a->mp, impulse);
delete[] (impulse);
return a;
run = _run;
size = _size;
in = _in;
out = _out;
samplerate = (float) _rate;
deviation = _dev;
f_low = _f_low;
f_high = _f_high;
ctcss_run = _ctcss_run;
ctcss_level = _ctcss_level;
ctcss_freq = _ctcss_freq;
bp_run = _bp_run;
nc = _nc;
mp = _mp;
calc();
impulse = FIR::fir_bandpass(nc, -bp_fc, +bp_fc, samplerate, 0, 1, 1.0 / (2 * size));
p = new FIRCORE(size, out, out, nc, mp, impulse);
delete[] impulse;
}
void FMMOD::destroy_fmmod (FMMOD *a)
FMMOD::~FMMOD()
{
delete (a->p);
delete (a);
delete p;
}
void FMMOD::flush_fmmod (FMMOD *a)
void FMMOD::flush()
{
a->tphase = 0.0;
a->sphase = 0.0;
tphase = 0.0;
sphase = 0.0;
}
void FMMOD::xfmmod (FMMOD *a)
void FMMOD::execute()
{
int i;
float dp, magdp, peak;
if (a->run)
double dp;
double magdp;
double peak;
if (run)
{
peak = 0.0;
for (i = 0; i < a->size; i++)
for (int i = 0; i < size; i++)
{
if (a->ctcss_run)
if (ctcss_run)
{
a->tphase += a->tdelta;
if (a->tphase >= TWOPI) a->tphase -= TWOPI;
a->out[2 * i + 0] = a->tscale * (a->in[2 * i + 0] + a->ctcss_level * cos (a->tphase));
tphase += tdelta;
if (tphase >= TWOPI) tphase -= TWOPI;
out[2 * i + 0] = (float) (tscale * (in[2 * i + 0] + ctcss_level * cos (tphase)));
}
dp = a->out[2 * i + 0] * a->sdelta;
a->sphase += dp;
if (a->sphase >= TWOPI) a->sphase -= TWOPI;
if (a->sphase < 0.0 ) a->sphase += TWOPI;
a->out[2 * i + 0] = 0.7071 * cos (a->sphase);
a->out[2 * i + 1] = 0.7071 * sin (a->sphase);
dp = out[2 * i + 0] * sdelta;
sphase += dp;
if (sphase >= TWOPI) sphase -= TWOPI;
if (sphase < 0.0 ) sphase += TWOPI;
out[2 * i + 0] = (float) (0.7071 * cos (sphase));
out[2 * i + 1] = (float) (0.7071 * sin (sphase));
if ((magdp = dp) < 0.0) magdp = - magdp;
if (magdp > peak) peak = magdp;
}
//print_deviation ("peakdev.txt", peak, a->samplerate);
if (a->bp_run)
a->p->execute();
if (bp_run)
p->execute();
}
else if (a->in != a->out)
std::copy( a->in, a->in + a->size * 2, a->out);
else if (in != out)
std::copy( in, in + size * 2, out);
}
void FMMOD::setBuffers_fmmod (FMMOD *a, float* in, float* out)
void FMMOD::setBuffers(float* _in, float* _out)
{
a->in = in;
a->out = out;
calc_fmmod (a);
a->p->setBuffers(a->out, a->out);
in = _in;
out = _out;
calc();
p->setBuffers(out, out);
}
void FMMOD::setSamplerate_fmmod (FMMOD *a, int rate)
void FMMOD::setSamplerate(int _rate)
{
float* impulse;
a->samplerate = rate;
calc_fmmod (a);
impulse = FIR::fir_bandpass(a->nc, -a->bp_fc, +a->bp_fc, a->samplerate, 0, 1, 1.0 / (2 * a->size));
a->p->setImpulse(impulse, 1);
delete[] (impulse);
samplerate = _rate;
calc();
impulse = FIR::fir_bandpass(nc, -bp_fc, +bp_fc, samplerate, 0, 1, 1.0 / (2 * size));
p->setImpulse(impulse, 1);
delete[] impulse;
}
void FMMOD::setSize_fmmod (FMMOD *a, int size)
void FMMOD::setSize(int _size)
{
float* impulse;
a->size = size;
calc_fmmod (a);
a->p->setSize(a->size);
impulse = FIR::fir_bandpass(a->nc, -a->bp_fc, +a->bp_fc, a->samplerate, 0, 1, 1.0 / (2 * a->size));
a->p->setImpulse(impulse, 1);
delete[] (impulse);
size = _size;
calc();
p->setSize(size);
impulse = FIR::fir_bandpass(nc, -bp_fc, +bp_fc, samplerate, 0, 1, 1.0 / (2 * size));
p->setImpulse(impulse, 1);
delete[] impulse;
}
/********************************************************************************************************
@ -165,76 +163,67 @@ void FMMOD::setSize_fmmod (FMMOD *a, int size)
* *
********************************************************************************************************/
void FMMOD::SetFMDeviation (TXA& txa, float deviation)
void FMMOD::setDeviation(float _deviation)
{
FMMOD *a = txa.fmmod;
float bp_fc = a->f_high + deviation;
float* impulse = FIR::fir_bandpass (a->nc, -bp_fc, +bp_fc, a->samplerate, 0, 1, 1.0 / (2 * a->size));
a->p->setImpulse(impulse, 0);
delete[] (impulse);
a->deviation = deviation;
double _bp_fc = f_high + _deviation;
float* impulse = FIR::fir_bandpass (nc, -_bp_fc, +_bp_fc, samplerate, 0, 1, 1.0 / (2 * size));
p->setImpulse(impulse, 0);
delete[] impulse;
deviation = _deviation;
// mod
a->sphase = 0.0;
a->sdelta = TWOPI * a->deviation / a->samplerate;
sphase = 0.0;
sdelta = TWOPI * deviation / samplerate;
// bandpass
a->bp_fc = bp_fc;
a->p->setUpdate();
bp_fc = _bp_fc;
p->setUpdate();
}
void FMMOD::SetCTCSSFreq (TXA& txa, float freq)
void FMMOD::setCTCSSFreq (float _freq)
{
FMMOD *a;
a = txa.fmmod;
a->ctcss_freq = freq;
a->tphase = 0.0;
a->tdelta = TWOPI * a->ctcss_freq / a->samplerate;
ctcss_freq = _freq;
tphase = 0.0;
tdelta = TWOPI * ctcss_freq / samplerate;
}
void FMMOD::SetCTCSSRun (TXA& txa, int run)
void FMMOD::setCTCSSRun (int _run)
{
txa.fmmod->ctcss_run = run;
ctcss_run = _run;
}
void FMMOD::SetFMNC (TXA& txa, int nc)
void FMMOD::setNC(int _nc)
{
FMMOD *a;
float* impulse;
a = txa.fmmod;
if (a->nc != nc)
if (nc != _nc)
{
a->nc = nc;
impulse = FIR::fir_bandpass (a->nc, -a->bp_fc, +a->bp_fc, a->samplerate, 0, 1, 1.0 / (2 * a->size));
a->p->setNc(a->nc, impulse);
delete[] (impulse);
nc = _nc;
impulse = FIR::fir_bandpass (nc, -bp_fc, +bp_fc, samplerate, 0, 1, 1.0 / (2 * size));
p->setNc(nc, impulse);
delete[] impulse;
}
}
void FMMOD::SetFMMP (TXA& txa, int mp)
void FMMOD::setMP(int _mp)
{
FMMOD *a;
a = txa.fmmod;
if (a->mp != mp)
if (mp != _mp)
{
a->mp = mp;
a->p->setMp(a->mp);
mp = _mp;
p->setMp(mp);
}
}
void FMMOD::SetFMAFFreqs (TXA& txa, float low, float high)
void FMMOD::setAFFreqs(float _low, float _high)
{
FMMOD *a;
float* impulse;
a = txa.fmmod;
if (a->f_low != low || a->f_high != high)
if (f_low != _low || f_high != _high)
{
a->f_low = low;
a->f_high = high;
a->bp_fc = a->deviation + a->f_high;
impulse = FIR::fir_bandpass (a->nc, -a->bp_fc, +a->bp_fc, a->samplerate, 0, 1, 1.0 / (2 * a->size));
a->p->setImpulse(impulse, 1);
delete[] (impulse);
f_low = _low;
f_high = _high;
bp_fc = deviation + f_high;
impulse = FIR::fir_bandpass (nc, -bp_fc, +bp_fc, samplerate, 0, 1, 1.0 / (2 * size));
p->setImpulse(impulse, 1);
delete[] impulse;
}
}

View File

@ -42,59 +42,62 @@ public:
int size;
float* in;
float* out;
float samplerate;
float deviation;
float f_low;
float f_high;
double samplerate;
double deviation;
double f_low;
double f_high;
int ctcss_run;
float ctcss_level;
float ctcss_freq;
double ctcss_level;
double ctcss_freq;
// for ctcss gen
float tscale;
float tphase;
float tdelta;
double tscale;
double tphase;
double tdelta;
// mod
float sphase;
float sdelta;
double sphase;
double sdelta;
// bandpass
int bp_run;
float bp_fc;
double bp_fc;
int nc;
int mp;
FIRCORE *p;
static FMMOD* create_fmmod (
FMMOD(
int run,
int size,
float* in,
float* out,
int rate,
float dev,
float f_low,
float f_high,
double dev,
double f_low,
double f_high,
int ctcss_run,
float ctcss_level,
float ctcss_freq,
double ctcss_level,
double ctcss_freq,
int bp_run,
int nc,
int mp
);
static void destroy_fmmod (FMMOD *a);
static void flush_fmmod (FMMOD *a);
static void xfmmod (FMMOD *a);
static void setBuffers_fmmod (FMMOD *a, float* in, float* out);
static void setSamplerate_fmmod (FMMOD *a, int rate);
static void setSize_fmmod (FMMOD *a, int size);
FMMOD(const FMMOD&) = delete;
FMMOD& operator=(const FMMOD& other) = delete;
~FMMOD();
void flush();
void execute();
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
// TXA Properties
static void SetFMDeviation (TXA& txa, float deviation);
static void SetCTCSSFreq (TXA& txa, float freq);
static void SetCTCSSRun (TXA& txa, int run);
static void SetFMMP (TXA& txa, int mp);
static void SetFMNC (TXA& txa, int nc);
static void SetFMAFFreqs (TXA& txa, float low, float high);
void setDeviation(float deviation);
void setCTCSSFreq(float freq);
void setCTCSSRun(int run);
void setMP(int mp);
void setNC(int nc);
void setAFFreqs(float low, float high);
private:
static void calc_fmmod (FMMOD *a);
void calc();
};
} // namespace WDSP

View File

@ -34,278 +34,174 @@ warren@wpratt.com
namespace WDSP {
void IQC::size_iqc (IQC *a)
void IQC::size_iqc()
{
int i;
a->t = new float[a->ints + 1]; // (float *) malloc0 ((a->ints + 1) * sizeof(float));
for (i = 0; i <= a->ints; i++)
a->t[i] = (float)i / (float)a->ints;
t.resize(ints + 1);
for (i = 0; i <= ints; i++)
t[i] = (double)i / (double)ints;
for (i = 0; i < 2; i++)
{
a->cm[i] = new float[a->ints * 4]; // (float *) malloc0 (a->ints * 4 * sizeof(float));
a->cc[i] = new float[a->ints * 4]; // (float *) malloc0 (a->ints * 4 * sizeof(float));
a->cs[i] = new float[a->ints * 4]; // (float *) malloc0 (a->ints * 4 * sizeof(float));
cm[i].resize(ints * 4);
cc[i].resize(ints * 4);
cs[i].resize(ints * 4);
}
a->dog.cpi = new int[a->ints]; // (int *) malloc0 (a->ints * sizeof (int));
a->dog.count = 0;
a->dog.full_ints = 0;
dog.cpi.resize(ints);
dog.count = 0;
dog.full_ints = 0;
}
void IQC::desize_iqc (IQC *a)
void IQC::calc()
{
int i;
delete[] (a->dog.cpi);
for (i = 0; i < 2; i++)
{
delete[] (a->cm[i]);
delete[] (a->cc[i]);
delete[] (a->cs[i]);
}
delete[] (a->t);
}
void IQC::calc_iqc (IQC *a)
{
int i;
float delta, theta;
a->cset = 0;
a->count = 0;
a->state = 0;
a->busy = 0;
a->ntup = (int)(a->tup * a->rate);
a->cup = new float[a->ntup + 1]; // (float *) malloc0 ((a->ntup + 1) * sizeof (float));
delta = PI / (float)a->ntup;
double delta;
double theta;
cset = 0;
count = 0;
state = IQCSTATE::RUN;
busy = 0;
ntup = (int)(tup * rate);
cup.resize(ntup + 1);
delta = PI / (double)ntup;
theta = 0.0;
for (i = 0; i <= a->ntup; i++)
for (int i = 0; i <= ntup; i++)
{
a->cup[i] = 0.5 * (1.0 - cos (theta));
cup[i] = 0.5 * (1.0 - cos (theta));
theta += delta;
}
size_iqc (a);
size_iqc();
}
void IQC::decalc_iqc (IQC *a)
IQC::IQC(
int _run,
int _size,
float* _in,
float* _out,
double _rate,
int _ints,
double _tup,
int _spi
) :
run(_run),
size(_size),
in(_in),
out(_out),
rate(_rate),
ints(_ints),
tup(_tup)
{
desize_iqc (a);
delete[] (a->cup);
dog.spi = _spi;
calc();
}
IQC* IQC::create_iqc (int run, int size, float* in, float* out, float rate, int ints, float tup, int spi)
void IQC::flush()
{
IQC *a = new IQC;
a->run = run;
a->size = size;
a->in = in;
a->out = out;
a->rate = rate;
a->ints = ints;
a->tup = tup;
a->dog.spi = spi;
calc_iqc (a);
return a;
// Nothing to do
}
void IQC::destroy_iqc (IQC *a)
void IQC::execute()
{
decalc_iqc (a);
delete (a);
}
void IQC::flush_iqc (IQC *)
{
}
enum _iqcstate
{
RUN = 0,
BEGIN,
SWAP,
END,
DONE
};
void IQC::xiqc (IQC *a)
{
if (a->run == 1)
if (run == 1)
{
int i, k, cset, mset;
float I, Q, env, dx, ym, yc, ys, PRE0, PRE1;
for (i = 0; i < a->size; i++)
int k;
int icset;
int mset;
double I;
double Q;
double env;
double dx;
double ym;
double yc;
double ys;
double PRE0;
double PRE1;
for (int i = 0; i < size; i++)
{
I = a->in[2 * i + 0];
Q = a->in[2 * i + 1];
I = in[2 * i + 0];
Q = in[2 * i + 1];
env = sqrt (I * I + Q * Q);
if ((k = (int)(env * a->ints)) > a->ints - 1) k = a->ints - 1;
dx = env - a->t[k];
cset = a->cset;
ym = a->cm[cset][4 * k + 0] + dx * (a->cm[cset][4 * k + 1] + dx * (a->cm[cset][4 * k + 2] + dx * a->cm[cset][4 * k + 3]));
yc = a->cc[cset][4 * k + 0] + dx * (a->cc[cset][4 * k + 1] + dx * (a->cc[cset][4 * k + 2] + dx * a->cc[cset][4 * k + 3]));
ys = a->cs[cset][4 * k + 0] + dx * (a->cs[cset][4 * k + 1] + dx * (a->cs[cset][4 * k + 2] + dx * a->cs[cset][4 * k + 3]));
if ((k = (int)(env * ints)) > ints - 1) k = ints - 1;
dx = env - t[k];
icset = cset;
ym = cm[icset][4 * k + 0] + dx * (cm[icset][4 * k + 1] + dx * (cm[icset][4 * k + 2] + dx * cm[icset][4 * k + 3]));
yc = cc[icset][4 * k + 0] + dx * (cc[icset][4 * k + 1] + dx * (cc[icset][4 * k + 2] + dx * cc[icset][4 * k + 3]));
ys = cs[icset][4 * k + 0] + dx * (cs[icset][4 * k + 1] + dx * (cs[icset][4 * k + 2] + dx * cs[icset][4 * k + 3]));
PRE0 = ym * (I * yc - Q * ys);
PRE1 = ym * (I * ys + Q * yc);
switch (a->state)
switch (state)
{
case RUN:
if (a->dog.cpi[k] != a->dog.spi)
if (++a->dog.cpi[k] == a->dog.spi)
a->dog.full_ints++;
if (a->dog.full_ints == a->ints)
case IQCSTATE::RUN:
if ((dog.cpi[k] != dog.spi) && (++dog.cpi[k] == dog.spi))
dog.full_ints++;
if (dog.full_ints == ints)
{
++a->dog.count;
a->dog.full_ints = 0;
memset (a->dog.cpi, 0, a->ints * sizeof (int));
++dog.count;
dog.full_ints = 0;
std::fill(dog.cpi.begin(), dog.cpi.end(), 0);
}
break;
case BEGIN:
PRE0 = (1.0 - a->cup[a->count]) * I + a->cup[a->count] * PRE0;
PRE1 = (1.0 - a->cup[a->count]) * Q + a->cup[a->count] * PRE1;
if (a->count++ == a->ntup)
case IQCSTATE::BEGIN:
PRE0 = (1.0 - cup[count]) * I + cup[count] * PRE0;
PRE1 = (1.0 - cup[count]) * Q + cup[count] * PRE1;
if (count++ == ntup)
{
a->state = RUN;
a->count = 0;
a->busy = 0; // InterlockedBitTestAndReset (&a->busy, 0);
state = IQCSTATE::RUN;
count = 0;
busy = 0;
}
break;
case SWAP:
case IQCSTATE::SWAP:
mset = 1 - cset;
ym = a->cm[mset][4 * k + 0] + dx * (a->cm[mset][4 * k + 1] + dx * (a->cm[mset][4 * k + 2] + dx * a->cm[mset][4 * k + 3]));
yc = a->cc[mset][4 * k + 0] + dx * (a->cc[mset][4 * k + 1] + dx * (a->cc[mset][4 * k + 2] + dx * a->cc[mset][4 * k + 3]));
ys = a->cs[mset][4 * k + 0] + dx * (a->cs[mset][4 * k + 1] + dx * (a->cs[mset][4 * k + 2] + dx * a->cs[mset][4 * k + 3]));
PRE0 = (1.0 - a->cup[a->count]) * ym * (I * yc - Q * ys) + a->cup[a->count] * PRE0;
PRE1 = (1.0 - a->cup[a->count]) * ym * (I * ys + Q * yc) + a->cup[a->count] * PRE1;
if (a->count++ == a->ntup)
ym = cm[mset][4 * k + 0] + dx * (cm[mset][4 * k + 1] + dx * (cm[mset][4 * k + 2] + dx * cm[mset][4 * k + 3]));
yc = cc[mset][4 * k + 0] + dx * (cc[mset][4 * k + 1] + dx * (cc[mset][4 * k + 2] + dx * cc[mset][4 * k + 3]));
ys = cs[mset][4 * k + 0] + dx * (cs[mset][4 * k + 1] + dx * (cs[mset][4 * k + 2] + dx * cs[mset][4 * k + 3]));
PRE0 = (1.0 - cup[count]) * ym * (I * yc - Q * ys) + cup[count] * PRE0;
PRE1 = (1.0 - cup[count]) * ym * (I * ys + Q * yc) + cup[count] * PRE1;
if (count++ == ntup)
{
a->state = RUN;
a->count = 0;
a->busy = 0; // InterlockedBitTestAndReset (&a->busy, 0);
state = IQCSTATE::RUN;
count = 0;
busy = 0;
}
break;
case END:
PRE0 = (1.0 - a->cup[a->count]) * PRE0 + a->cup[a->count] * I;
PRE1 = (1.0 - a->cup[a->count]) * PRE1 + a->cup[a->count] * Q;
if (a->count++ == a->ntup)
case IQCSTATE::END:
PRE0 = (1.0 - cup[count]) * PRE0 + cup[count] * I;
PRE1 = (1.0 - cup[count]) * PRE1 + cup[count] * Q;
if (count++ == ntup)
{
a->state = DONE;
a->count = 0;
a->busy = 0; // InterlockedBitTestAndReset (&a->busy, 0);
state = IQCSTATE::DONE;
count = 0;
busy = 0;
}
break;
case DONE:
case IQCSTATE::DONE:
PRE0 = I;
PRE1 = Q;
break;
}
a->out[2 * i + 0] = PRE0;
a->out[2 * i + 1] = PRE1;
// print_iqc_values("iqc.txt", a->state, env, PRE0, PRE1, ym, yc, ys, 1.1);
out[2 * i + 0] = (float) PRE0;
out[2 * i + 1] = (float) PRE1;
}
}
else if (a->out != a->in)
std::copy( a->in, a->in + a->size * 2, a->out);
else if (out != in)
std::copy( in, in + size * 2, out);
}
void IQC::setBuffers_iqc (IQC *a, float* in, float* out)
void IQC::setBuffers(float* _in, float* _out)
{
a->in = in;
a->out = out;
in = _in;
out = _out;
}
void IQC::setSamplerate_iqc (IQC *a, int rate)
void IQC::setSamplerate(int _rate)
{
decalc_iqc (a);
a->rate = rate;
calc_iqc (a);
rate = _rate;
calc();
}
void IQC::setSize_iqc (IQC *a, int size)
void IQC::setSize(int _size)
{
a->size = size;
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
void IQC::GetiqcValues (TXA& txa, float* cm, float* cc, float* cs)
{
IQC *a;
a = txa.iqc.p0;
memcpy (cm, a->cm[a->cset], a->ints * 4 * sizeof (float));
memcpy (cc, a->cc[a->cset], a->ints * 4 * sizeof (float));
memcpy (cs, a->cs[a->cset], a->ints * 4 * sizeof (float));
}
void IQC::SetiqcValues (TXA& txa, float* cm, float* cc, float* cs)
{
IQC *a;
a = txa.iqc.p0;
a->cset = 1 - a->cset;
memcpy (a->cm[a->cset], cm, a->ints * 4 * sizeof (float));
memcpy (a->cc[a->cset], cc, a->ints * 4 * sizeof (float));
memcpy (a->cs[a->cset], cs, a->ints * 4 * sizeof (float));
a->state = RUN;
}
void IQC::SetiqcSwap (TXA& txa, float* cm, float* cc, float* cs)
{
IQC *a = txa.iqc.p1;
a->cset = 1 - a->cset;
memcpy (a->cm[a->cset], cm, a->ints * 4 * sizeof (float));
memcpy (a->cc[a->cset], cc, a->ints * 4 * sizeof (float));
memcpy (a->cs[a->cset], cs, a->ints * 4 * sizeof (float));
a->busy = 1; // InterlockedBitTestAndSet (&a->busy, 0);
a->state = SWAP;
a->count = 0;
// while (_InterlockedAnd (&a->busy, 1)) Sleep(1);
while (a->busy == 1) {
std::this_thread::sleep_for(std::chrono::seconds(1));
}
}
void IQC::SetiqcStart (TXA& txa, float* cm, float* cc, float* cs)
{
IQC *a = txa.iqc.p1;
a->cset = 0;
memcpy (a->cm[a->cset], cm, a->ints * 4 * sizeof (float));
memcpy (a->cc[a->cset], cc, a->ints * 4 * sizeof (float));
memcpy (a->cs[a->cset], cs, a->ints * 4 * sizeof (float));
a->busy = 1; // InterlockedBitTestAndSet (&a->busy, 0);
a->state = BEGIN;
a->count = 0;
txa.iqc.p1->run = 1; //InterlockedBitTestAndSet (&txa.iqc.p1->run, 0);
// while (_InterlockedAnd (&a->busy, 1)) Sleep(1);
while (a->busy == 1) {
std::this_thread::sleep_for(std::chrono::seconds(1));
}
}
void IQC::SetiqcEnd (TXA& txa)
{
IQC *a = txa.iqc.p1;
a->busy = 1; // InterlockedBitTestAndSet (&a->busy, 0);
a->state = END;
a->count = 0;
// while (_InterlockedAnd (&a->busy, 1)) Sleep(1);
while (a->busy == 1) {
std::this_thread::sleep_for(std::chrono::seconds(1));
}
txa.iqc.p1->run = 0; //InterlockedBitTestAndReset (&txa.iqc.p1->run, 0);
}
void IQC::GetiqcDogCount (TXA& txa, int* count)
{
IQC *a = txa.iqc.p1;
*count = a->dog.count;
}
void IQC::SetiqcDogCount (TXA& txa, int count)
{
IQC *a = txa.iqc.p1;
a->dog.count = count;
size = _size;
}
} // namespace WDSP

View File

@ -28,6 +28,9 @@ warren@wpratt.com
#ifndef wdsp_iqc_h
#define wdsp_iqc_h
#include <array>
#include <vector>
#include "export.h"
namespace WDSP {
@ -37,52 +40,63 @@ class TXA;
class WDSP_API IQC
{
public:
enum class IQCSTATE
{
RUN = 0,
BEGIN,
SWAP,
END,
DONE
};
long run;
long busy;
int size;
float* in;
float* out;
float rate;
double rate;
int ints;
float* t;
std::vector<double> t;
int cset;
float* cm[2];
float* cc[2];
float* cs[2];
float tup;
float* cup;
std::array<std::vector<double>, 2> cm;
std::array<std::vector<double>, 2> cc;
std::array<std::vector<double>, 2> cs;
double tup;
std::vector<double> cup;
int count;
int ntup;
int state;
IQCSTATE state;
struct
{
int spi;
int* cpi;
std::vector<int> cpi;
int full_ints;
int count;
} dog;
static IQC* create_iqc (int run, int size, float* in, float* out, float rate, int ints, float tup, int spi);
static void destroy_iqc (IQC *a);
static void flush_iqc (IQC *a);
static void xiqc (IQC *a);
static void setBuffers_iqc (IQC *a, float* in, float* out);
static void setSamplerate_iqc (IQC *a, int rate);
static void setSize_iqc (IQC *a, int size);
// TXA Properties
static void GetiqcValues (TXA& txa, float* cm, float* cc, float* cs);
static void SetiqcValues (TXA& txa, float* cm, float* cc, float* cs);
static void SetiqcSwap (TXA& txa, float* cm, float* cc, float* cs);
static void SetiqcStart (TXA& txa, float* cm, float* cc, float* cs);
static void SetiqcEnd (TXA& txa);
static void GetiqcDogCount (TXA& txa, int* count);
static void SetiqcDogCount (TXA& txa, int count);
IQC(
int run,
int size,
float* in,
float* out,
double rate,
int ints,
double tup,
int spi
);
IQC(const IQC&) = delete;
IQC& operator=(const IQC& other) = delete;
~IQC() = default;
void flush();
void execute();
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
private:
static void size_iqc (IQC *a);
static void desize_iqc (IQC *a);
static void calc_iqc (IQC *a);
static void decalc_iqc (IQC *a);
void size_iqc();
void calc();
};
} // namespace WDSP

View File

@ -75,12 +75,18 @@ public:
int out_idx; // ring buffer position from which delayed samples are pulled
double backmult; // multiplier for waveform averaging
double ombackmult; // multiplier for waveform averaging
double I1, Q1;
double I2, Q2;
double I, Q;
double Ilast, Qlast;
double deltaI, deltaQ;
double Inext, Qnext;
double I1;
double Q1;
double I2;
double Q2;
double I;
double Q;
double Ilast;
double Qlast;
double deltaI;
double deltaQ;
double Inext;
double Qnext;
int overflow;
NOB(

View File

@ -35,122 +35,91 @@ warren@wpratt.com
namespace WDSP {
void OSCTRL::calc_osctrl (OSCTRL *a)
void OSCTRL::calc()
{
a->pn = (int)((0.3 / a->bw) * a->rate + 0.5);
if ((a->pn & 1) == 0) a->pn += 1;
if (a->pn < 3) a->pn = 3;
a->dl_len = a->pn >> 1;
a->dl = new float[a->pn * 2]; // (float *) malloc0 (a->pn * sizeof (complex));
a->dlenv = new float[a->pn]; // (float *) malloc0 (a->pn * sizeof (float));
a->in_idx = 0;
a->out_idx = a->in_idx + a->dl_len;
a->max_env = 0.0;
pn = (int)((0.3 / bw) * rate + 0.5);
if ((pn & 1) == 0) pn += 1;
if (pn < 3) pn = 3;
dl_len = pn >> 1;
dl.resize(pn * 2);
dlenv.resize(pn);
in_idx = 0;
out_idx = in_idx + dl_len;
max_env = 0.0;
}
void OSCTRL::decalc_osctrl (OSCTRL *a)
OSCTRL::OSCTRL(
int _run,
int _size,
float* _inbuff,
float* _outbuff,
int _rate,
double _osgain
) :
run(_run),
size(_size),
inbuff(_inbuff),
outbuff(_outbuff),
rate(_rate),
osgain(_osgain)
{
delete[] (a->dlenv);
delete[] (a->dl);
bw = 3000.0;
calc();
}
OSCTRL* OSCTRL::create_osctrl (
int run,
int size,
float* inbuff,
float* outbuff,
int rate,
float osgain
)
void OSCTRL::flush()
{
OSCTRL *a = new OSCTRL;
a->run = run;
a->size = size;
a->inbuff = inbuff;
a->outbuff = outbuff;
a->rate = rate;
a->osgain = osgain;
a->bw = 3000.0;
calc_osctrl (a);
return a;
std::fill(dl.begin(), dl.end(), 0);
std::fill(dlenv.begin(), dlenv.end(), 0);
}
void OSCTRL::destroy_osctrl (OSCTRL *a)
void OSCTRL::execute()
{
decalc_osctrl (a);
delete (a);
}
void OSCTRL::flush_osctrl (OSCTRL *a)
{
std::fill(a->dl, a->dl + a->dl_len * 2, 0);
std::fill(a->dlenv, a->dlenv + a->pn, 0);
}
void OSCTRL::xosctrl (OSCTRL *a)
{
if (a->run)
if (run)
{
int i, j;
float divisor;
for (i = 0; i < a->size; i++)
double divisor;
for (int i = 0; i < size; i++)
{
a->dl[2 * a->in_idx + 0] = a->inbuff[2 * i + 0]; // put sample in delay line
a->dl[2 * a->in_idx + 1] = a->inbuff[2 * i + 1];
a->env_out = a->dlenv[a->in_idx]; // take env out of delay line
a->dlenv[a->in_idx] = sqrt (a->inbuff[2 * i + 0] * a->inbuff[2 * i + 0] // put env in delay line
+ a->inbuff[2 * i + 1] * a->inbuff[2 * i + 1]);
if (a->dlenv[a->in_idx] > a->max_env) a->max_env = a->dlenv[a->in_idx];
if (a->env_out >= a->max_env && a->env_out > 0.0) // run the buffer
dl[2 * in_idx + 0] = inbuff[2 * i + 0]; // put sample in delay line
dl[2 * in_idx + 1] = inbuff[2 * i + 1];
env_out = dlenv[in_idx]; // take env out of delay line
dlenv[in_idx] = sqrt (inbuff[2 * i + 0] * inbuff[2 * i + 0] // put env in delay line
+ inbuff[2 * i + 1] * inbuff[2 * i + 1]);
if (dlenv[in_idx] > max_env) max_env = dlenv[in_idx];
if (env_out >= max_env && env_out > 0.0) // run the buffer
{
a->max_env = 0.0;
for (j = 0; j < a->pn; j++)
if (a->dlenv[j] > a->max_env) a->max_env = a->dlenv[j];
max_env = 0.0;
for (int j = 0; j < pn; j++)
if (dlenv[j] > max_env) max_env = dlenv[j];
}
if (a->max_env > 1.0) divisor = 1.0 + a->osgain * (a->max_env - 1.0);
if (max_env > 1.0) divisor = 1.0 + osgain * (max_env - 1.0);
else divisor = 1.0;
a->outbuff[2 * i + 0] = a->dl[2 * a->out_idx + 0] / divisor; // output sample
a->outbuff[2 * i + 1] = a->dl[2 * a->out_idx + 1] / divisor;
if (--a->in_idx < 0) a->in_idx += a->pn;
if (--a->out_idx < 0) a->out_idx += a->pn;
outbuff[2 * i + 0] = (float) (dl[2 * out_idx + 0] / divisor); // output sample
outbuff[2 * i + 1] = (float) (dl[2 * out_idx + 1] / divisor);
if (--in_idx < 0) in_idx += pn;
if (--out_idx < 0) out_idx += pn;
}
}
else if (a->inbuff != a->outbuff)
std::copy(a->inbuff, a->inbuff + a->size * 2, a->outbuff);
else if (inbuff != outbuff)
std::copy(inbuff, inbuff + size * 2, outbuff);
}
void OSCTRL::setBuffers_osctrl (OSCTRL *a, float* in, float* out)
void OSCTRL::setBuffers(float* _in, float* _out)
{
a->inbuff = in;
a->outbuff = out;
inbuff = _in;
outbuff = _out;
}
void OSCTRL::setSamplerate_osctrl (OSCTRL *a, int rate)
void OSCTRL::setSamplerate(int _rate)
{
decalc_osctrl (a);
a->rate = rate;
calc_osctrl (a);
rate = _rate;
calc();
}
void OSCTRL::setSize_osctrl (OSCTRL *a, int size)
void OSCTRL::setSize(int _size)
{
a->size = size;
flush_osctrl (a);
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
void OSCTRL::SetosctrlRun (TXA& txa, int run)
{
if (txa.osctrl->run != run)
{
txa.osctrl->run = run;
txa.setupBPFilters();
}
size = _size;
flush();
}
} // namespace WDSP

View File

@ -32,6 +32,8 @@ warren@wpratt.com
#ifndef wdsp_osctrl_h
#define wdsp_osctrl_h
#include <vector>
#include "export.h"
namespace WDSP {
@ -46,37 +48,37 @@ public:
float *inbuff; // input buffer
float *outbuff; // output buffer
int rate; // sample rate
float osgain; // gain applied to overshoot "clippings"
float bw; // bandwidth
double osgain; // gain applied to overshoot "clippings"
double bw; // bandwidth
int pn; // "peak stretcher" window, samples
int dl_len; // delay line length, samples
float* dl; // delay line for complex samples
float* dlenv; // delay line for envelope values
std::vector<double> dl; // delay line for complex samples
std::vector<double> dlenv; // delay line for envelope values
int in_idx; // input index for dl
int out_idx; // output index for dl
float max_env; // maximum env value in env delay line
float env_out;
double max_env; // maximum env value in env delay line
double env_out;
static void xosctrl (OSCTRL *a);
static OSCTRL* create_osctrl (
OSCTRL(
int run,
int size,
float* inbuff,
float* outbuff,
int rate,
float osgain
double osgain
);
static void destroy_osctrl (OSCTRL *a);
static void flush_osctrl (OSCTRL *a);
static void setBuffers_osctrl (OSCTRL *a, float* in, float* out);
static void setSamplerate_osctrl (OSCTRL *a, int rate);
static void setSize_osctrl (OSCTRL *a, int size);
// TXA Properties
static void SetosctrlRun (TXA& txa, int run);
OSCTRL(const OSCTRL&) = delete;
OSCTRL& operator=(const OSCTRL& other) = delete;
~OSCTRL() = default;
void flush();
void execute();
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
private:
static void calc_osctrl (OSCTRL *a);
static void decalc_osctrl (OSCTRL *a);
void calc();
};
} // namespace WDSP

View File

@ -31,162 +31,141 @@ warren@wpratt.com
namespace WDSP {
enum _USLEW
void USLEW::calc()
{
BEGIN,
WAIT,
UP,
ON
};
void USLEW::calc_uslew (USLEW *a)
{
int i;
float delta, theta;
a->runmode = 0;
a->state = BEGIN;
a->count = 0;
a->ndelup = (int)(a->tdelay * a->rate);
a->ntup = (int)(a->tupslew * a->rate);
a->cup = new float[a->ntup + 1]; // (float *) malloc0 ((a->ntup + 1) * sizeof (float));
delta = PI / (float)a->ntup;
double delta;
double theta;
runmode = 0;
state = _USLEW::BEGIN;
count = 0;
ndelup = (int)(tdelay * rate);
ntup = (int)(tupslew * rate);
cup.resize(ntup + 1);
delta = PI / (float)ntup;
theta = 0.0;
for (i = 0; i <= a->ntup; i++)
for (int i = 0; i <= ntup; i++)
{
a->cup[i] = 0.5 * (1.0 - cos (theta));
cup[i] = 0.5 * (1.0 - cos (theta));
theta += delta;
}
*a->ch_upslew &= ~((long)1); // InterlockedBitTestAndReset (a->ch_upslew, 0);
*ch_upslew &= ~((long)1);
}
void USLEW::decalc_uslew (USLEW *a)
USLEW::USLEW(
long *_ch_upslew,
int _size,
float* _in,
float* _out,
double _rate,
double _tdelay,
double _tupslew
) :
ch_upslew(_ch_upslew),
size(_size),
in(_in),
out(_out),
rate(_rate),
tdelay(_tdelay),
tupslew(_tupslew)
{
delete[] (a->cup);
calc();
}
USLEW* USLEW::create_uslew (
TXA *txa,
long *ch_upslew,
int size,
float* in,
float* out,
float rate,
float tdelay,
float tupslew
)
void USLEW::flush()
{
USLEW *a = new USLEW;
a->txa = txa;
a->ch_upslew = ch_upslew;
a->size = size;
a->in = in;
a->out = out;
a->rate = rate;
a->tdelay = tdelay;
a->tupslew = tupslew;
calc_uslew (a);
return a;
state = _USLEW::BEGIN;
runmode = 0;
*ch_upslew &= ~1L;
}
void USLEW::destroy_uslew (USLEW *a)
void USLEW::execute (int check)
{
decalc_uslew (a);
delete (a);
}
if (!runmode && check)
runmode = 1;
void USLEW::flush_uslew (USLEW *a)
{
a->state = BEGIN;
a->runmode = 0;
*a->ch_upslew &= ~1L; //InterlockedBitTestAndReset (a->ch_upslew, 0);
}
void USLEW::xuslew (USLEW *a)
{
if (!a->runmode && a->txa->uslewCheck())
a->runmode = 1;
long upslew = *a->ch_upslew;
*a->ch_upslew = 1L;
if (a->runmode && upslew) //_InterlockedAnd (a->ch_upslew, 1))
long upslew = *ch_upslew;
*ch_upslew = 1L;
if (runmode && upslew) //_InterlockedAnd (ch_upslew, 1))
{
int i;
float I, Q;
for (i = 0; i < a->size; i++)
double I;
double Q;
for (int i = 0; i < size; i++)
{
I = a->in[2 * i + 0];
Q = a->in[2 * i + 1];
switch (a->state)
I = in[2 * i + 0];
Q = in[2 * i + 1];
switch (state)
{
case BEGIN:
a->out[2 * i + 0] = 0.0;
a->out[2 * i + 1] = 0.0;
case _USLEW::BEGIN:
out[2 * i + 0] = 0.0;
out[2 * i + 1] = 0.0;
if ((I != 0.0) || (Q != 0.0))
{
if (a->ndelup > 0)
if (ndelup > 0)
{
a->state = WAIT;
a->count = a->ndelup;
state = _USLEW::WAIT;
count = ndelup;
}
else if (a->ntup > 0)
else if (ntup > 0)
{
a->state = UP;
a->count = a->ntup;
state = _USLEW::UP;
count = ntup;
}
else
a->state = ON;
state = _USLEW::ON;
}
break;
case WAIT:
a->out[2 * i + 0] = 0.0;
a->out[2 * i + 1] = 0.0;
if (a->count-- == 0)
case _USLEW::WAIT:
out[2 * i + 0] = 0.0;
out[2 * i + 1] = 0.0;
if (count-- == 0)
{
if (a->ntup > 0)
if (ntup > 0)
{
a->state = UP;
a->count = a->ntup;
state = _USLEW::UP;
count = ntup;
}
else
a->state = ON;
state = _USLEW::ON;
}
break;
case UP:
a->out[2 * i + 0] = I * a->cup[a->ntup - a->count];
a->out[2 * i + 1] = Q * a->cup[a->ntup - a->count];
if (a->count-- == 0)
a->state = ON;
case _USLEW::UP:
out[2 * i + 0] = (float) (I * cup[ntup - count]);
out[2 * i + 1] = (float) (Q * cup[ntup - count]);
if (count-- == 0)
state = _USLEW::ON;
break;
case ON:
a->out[2 * i + 0] = I;
a->out[2 * i + 1] = Q;
*a->ch_upslew &= ~((long)1); // InterlockedBitTestAndReset (a->ch_upslew, 0);
a->runmode = 0;
case _USLEW::ON:
out[2 * i + 0] = (float) I;
out[2 * i + 1] = (float) Q;
*ch_upslew &= ~((long)1);
runmode = 0;
break;
default:
break;
}
}
}
else if (a->out != a->in)
std::copy( a->in, a->in + a->size * 2, a->out);
else if (out != in)
std::copy( in, in + size * 2, out);
}
void USLEW::setBuffers_uslew (USLEW *a, float* in, float* out)
void USLEW::setBuffers(float* _in, float* _out)
{
a->in = in;
a->out = out;
in = _in;
out = _out;
}
void USLEW::setSamplerate_uslew (USLEW *a, int rate)
void USLEW::setSamplerate(int _rate)
{
decalc_uslew (a);
a->rate = rate;
calc_uslew (a);
decalc();
rate = _rate;
calc();
}
void USLEW::setSize_uslew (USLEW *a, int size)
void USLEW::setSize(int _size)
{
a->size = size;
flush_uslew (a);
size = _size;
flush();
}
/********************************************************************************************************
@ -195,13 +174,17 @@ void USLEW::setSize_uslew (USLEW *a, int size)
* *
********************************************************************************************************/
void USLEW::SetuSlewTime (TXA& txa, float time)
void USLEW::setuSlewTime(double _time)
{
// NOTE: 'time' is in seconds
USLEW *a = txa.uslew;
decalc_uslew (a);
a->tupslew = time;
calc_uslew (a);
decalc();
tupslew = _time;
calc();
}
void USLEW::setRun(int run)
{
runmode = run;
}
} // namespace WDSP

View File

@ -28,6 +28,8 @@ warren@wpratt.com
#ifndef wdsp_slew_h
#define wdsp_slew_h
#include <vector>
#include "export.h"
namespace WDSP {
@ -37,42 +39,53 @@ class TXA;
class WDSP_API USLEW
{
public:
TXA *txa;
enum class _USLEW
{
BEGIN,
WAIT,
UP,
ON
};
long *ch_upslew;
int size;
float* in;
float* out;
float rate;
float tdelay;
float tupslew;
double rate;
double tdelay;
double tupslew;
int runmode;
int state;
_USLEW state;
int count;
int ndelup;
int ntup;
float* cup;
std::vector<double> cup;
static USLEW* create_uslew (
TXA *txa,
USLEW(
long *ch_upslew,
int size, float* in,
int size,
float* in,
float* out,
float rate,
float tdelay,
float tupslew
double rate,
double tdelay,
double tupslew
);
static void destroy_uslew (USLEW *a);
static void flush_uslew (USLEW *a);
static void xuslew (USLEW *a);
static void setBuffers_uslew (USLEW *a, float* in, float* out);
static void setSamplerate_uslew (USLEW *a, int rate);
static void setSize_uslew (USLEW *a, int size);
USLEW(const USLEW&) = delete;
USLEW& operator=(const USLEW& other) = delete;
~USLEW() = default;
void flush();
void execute (int check);
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
// TXA Properties
static void SetuSlewTime (TXA& txa, float time);
void setuSlewTime(double time);
void setRun(int run);
private:
static void calc_uslew (USLEW *a);
static void decalc_uslew (USLEW *a);
void calc();
void decalc();
};
} // namespace WDSP