1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-23 00:18:37 -05:00

SSB Modulator: interim state (7)

This commit is contained in:
f4exb 2016-12-14 01:16:23 +01:00
parent dcd87b5ff8
commit 3e0077c803

View File

@ -167,8 +167,8 @@ void SSBMod::pull(Sample& sample)
m_interpolatorDistanceRemain += m_interpolatorDistance; m_interpolatorDistanceRemain += m_interpolatorDistance;
ci *= 29204.0f; //scaling at -1 dB to account for filter overshoot ci *= m_carrierNco.nextIQ(); // shift to carrier frequency
// ci *= m_carrierNco.nextIQ(); // shift to carrier frequency ci *= 29204.0f; //scaling at -1 dB to account for possible filter overshoot
m_settingsMutex.unlock(); m_settingsMutex.unlock();
@ -183,14 +183,8 @@ void SSBMod::pull(Sample& sample)
void SSBMod::modulateSample() void SSBMod::modulateSample()
{ {
Complex c; pullAF(m_modSample);
calculateLevel(m_modSample);
pullAF(c);
calculateLevel(c);
// TODO: feed spectrum
m_modSample = m_carrierNco.nextIQ() * c;
} }
void SSBMod::pullAF(Complex& sample) void SSBMod::pullAF(Complex& sample)
@ -329,8 +323,8 @@ void SSBMod::pullAF(Complex& sample)
if (!(m_undersampleCount++ & decim_mask)) if (!(m_undersampleCount++ & decim_mask))
{ {
Real avgr = m_sum.real() / decim; Real avgr = (m_sum.real() / decim) * 29204.0f; //scaling at -1 dB to account for possible filter overshoot
Real avgi = m_sum.imag() / decim; Real avgi = (m_sum.imag() / decim) * 29204.0f;
// m_magsqSpectrum = (avgr * avgr + avgi * avgi) / (1<<30); // m_magsqSpectrum = (avgr * avgr + avgi * avgi) / (1<<30);
// //
// m_magsqSum += m_magsqSpectrum; // m_magsqSum += m_magsqSpectrum;
@ -363,8 +357,8 @@ void SSBMod::pullAF(Complex& sample)
if (!(m_undersampleCount++ & decim_mask)) if (!(m_undersampleCount++ & decim_mask))
{ {
Real avgr = m_sum.real() / decim; Real avgr = (m_sum.real() / decim) * 29204.0f; //scaling at -1 dB to account for possible filter overshoot
Real avgi = m_sum.imag() / decim; Real avgi = (m_sum.imag() / decim) * 29204.0f;
// m_magsqSpectrum = (avgr * avgr + avgi * avgi) / (1<<30); // m_magsqSpectrum = (avgr * avgr + avgi * avgi) / (1<<30);
// //
// m_magsqSum += m_magsqSpectrum; // m_magsqSum += m_magsqSpectrum;
@ -569,8 +563,13 @@ void SSBMod::apply()
(m_config.m_lowCutoff != m_running.m_lowCutoff) || (m_config.m_lowCutoff != m_running.m_lowCutoff) ||
(m_config.m_audioSampleRate != m_running.m_audioSampleRate)) (m_config.m_audioSampleRate != m_running.m_audioSampleRate))
{ {
m_SSBFilter->create_filter(m_config.m_lowCutoff / (float) m_config.m_audioSampleRate, m_config.m_bandwidth / (float) m_config.m_audioSampleRate); m_settingsMutex.lock();
m_DSBFilter->create_dsb_filter((2.0f * m_config.m_bandwidth) / (float) m_config.m_audioSampleRate); // m_SSBFilter = new fftfilt(m_config.m_lowCutoff / m_config.m_audioSampleRate, m_config.m_bandwidth / m_config.m_audioSampleRate, m_ssbFftLen);
// m_DSBFilter = new fftfilt((2.0f * m_config.m_bandwidth) / m_config.m_audioSampleRate, 2 * m_ssbFftLen);
m_SSBFilter->create_filter(m_config.m_lowCutoff / m_config.m_audioSampleRate, m_config.m_bandwidth / m_config.m_audioSampleRate);
m_DSBFilter->create_dsb_filter((2.0f * m_config.m_bandwidth) / m_config.m_audioSampleRate);
m_settingsMutex.unlock();
} }
if ((m_config.m_inputFrequencyOffset != m_running.m_inputFrequencyOffset) || if ((m_config.m_inputFrequencyOffset != m_running.m_inputFrequencyOffset) ||
@ -589,7 +588,7 @@ void SSBMod::apply()
m_interpolatorDistanceRemain = 0; m_interpolatorDistanceRemain = 0;
m_interpolatorConsumed = false; m_interpolatorConsumed = false;
m_interpolatorDistance = (Real) m_config.m_audioSampleRate / (Real) m_config.m_outputSampleRate; m_interpolatorDistance = (Real) m_config.m_audioSampleRate / (Real) m_config.m_outputSampleRate;
m_interpolator.create(48, m_config.m_audioSampleRate, m_config.m_bandwidth / 2.2, 3.0); m_interpolator.create(48, m_config.m_audioSampleRate, m_config.m_bandwidth, 3.0);
m_settingsMutex.unlock(); m_settingsMutex.unlock();
} }