1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-17 05:41:56 -05:00

Tx ph.2: Fixed half-band interpolators and set the order to 64 (for all)

This commit is contained in:
f4exb 2016-10-29 12:29:24 +02:00
parent e9f0bb0d45
commit 4ab45f4768
3 changed files with 383 additions and 272 deletions

View File

@ -397,7 +397,7 @@ if (BUILD_DEBIAN)
endif (BUILD_DEBIAN)
set_target_properties(sdrbase PROPERTIES DEFINE_SYMBOL "sdrangel_EXPORTS")
target_compile_features(sdrbase PRIVATE cxx_generalized_initializers) # cmake >= 3.1.0
target_compile_features(sdrbase PUBLIC cxx_generalized_initializers) # cmake >= 3.1.0
qt5_use_modules(sdrbase Core Widgets OpenGL Multimedia)

View File

@ -10,9 +10,105 @@
/*
* supported filter orders: 64, 48, 32
*/
#define HB_FILTERORDER 32
#define HB_FILTERORDER 64
#define HB_SHIFT 14
template<uint32_t HBFilterOrder>
struct HBFIRFilterTraits
{
static const qint32 hbOrder = 32;
static const qint32 hbShift = 14;
static constexpr qint16 hbMod[38] = { 31,32,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,0,1,2};
/* Coefficents. This is a sinc function:
* Half of the half of coefficients are stored because:
* - half of the coefficients are 0
* - there is a symmertry around the central 1.0 coefficient (not stored either)
* There are actually order+1 coefficients
*/
static constexpr qint32 hbCoeffs[8] = {
(qint32)(-0.015956912844043127236437484839370881673 * (1 << hbShift)),
(qint32)( 0.013023031678944928940522274274371739011 * (1 << hbShift)),
(qint32)(-0.01866942273717486777684371190844103694 * (1 << hbShift)),
(qint32)( 0.026550887571157304190005987720724078827 * (1 << hbShift)),
(qint32)(-0.038350314277854319344740474662103224546 * (1 << hbShift)),
(qint32)( 0.058429248652825838128421764849917963147 * (1 << hbShift)),
(qint32)(-0.102889802028955756885153505209018476307 * (1 << hbShift)),
(qint32)( 0.317237706405931241260276465254719369113 * (1 << hbShift))
};
};
template<>
struct HBFIRFilterTraits<32>
{
static const qint32 hbOrder = 32;
static const qint32 hbShift = 14;
static constexpr qint16 hbMod[32+6] = { 31,32,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,0,1,2};
static constexpr qint32 hbCoeffs[8] = {
(qint32)(-0.015956912844043127236437484839370881673 * (1 << hbShift)),
(qint32)( 0.013023031678944928940522274274371739011 * (1 << hbShift)),
(qint32)(-0.01866942273717486777684371190844103694 * (1 << hbShift)),
(qint32)( 0.026550887571157304190005987720724078827 * (1 << hbShift)),
(qint32)(-0.038350314277854319344740474662103224546 * (1 << hbShift)),
(qint32)( 0.058429248652825838128421764849917963147 * (1 << hbShift)),
(qint32)(-0.102889802028955756885153505209018476307 * (1 << hbShift)),
(qint32)( 0.317237706405931241260276465254719369113 * (1 << hbShift))
};
};
template<>
struct HBFIRFilterTraits<48>
{
static const qint32 hbOrder = 48;
static const qint32 hbShift = 14;
static constexpr qint16 hbMod[48+6] = { 47,48,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,
42,43,44,45,46,47,48,0,1,2} ;
static constexpr qint32 hbCoeffs[12] = {
(qint32)(-0.004102576237611492253332112767338912818 * (1 << hbShift)),
(qint32)( 0.003950551047979387886410762575906119309 * (1 << hbShift)),
(qint32)(-0.005807875789391703583164350277456833282 * (1 << hbShift)),
(qint32)( 0.00823497890520805998770814682075069868 * (1 << hbShift)),
(qint32)(-0.011372226513199541059195851744334504474 * (1 << hbShift)),
(qint32)( 0.015471557140973646315984524335362948477 * (1 << hbShift)),
(qint32)(-0.020944996398689276484450516591095947661 * (1 << hbShift)),
(qint32)( 0.028568078132034283034279553703527199104 * (1 << hbShift)),
(qint32)(-0.040015143905614086738964374490024056286 * (1 << hbShift)),
(qint32)( 0.059669519431831075095828964549582451582 * (1 << hbShift)),
(qint32)(-0.103669138691865420076609893840213771909 * (1 << hbShift)),
(qint32)( 0.317491986549921390015072120149852707982 * (1 << hbShift))
};
};
template<>
struct HBFIRFilterTraits<64>
{
static const qint32 hbOrder = 64;
static const qint32 hbShift = 14;
static constexpr qint16 hbMod[64+6] = { 63,64,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,
45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,0,1,2} ;
static constexpr qint32 hbCoeffs[16] = {
(qint32)(-0.001114417441601693505720538368564120901 * (1 << hbShift)),
(qint32)( 0.001268007827185253051302527005361753254 * (1 << hbShift)),
(qint32)(-0.001959831378850490895410230152151598304 * (1 << hbShift)),
(qint32)( 0.002878308307661380308073439948657323839 * (1 << hbShift)),
(qint32)(-0.004071361818258721100571850826099762344 * (1 << hbShift)),
(qint32)( 0.005597288494657440618973431867289036745 * (1 << hbShift)),
(qint32)(-0.007532345003308904551886371336877346039 * (1 << hbShift)),
(qint32)( 0.009980346844667375288961963519795972388 * (1 << hbShift)),
(qint32)(-0.013092614174300500062830820979797863401 * (1 << hbShift)),
(qint32)( 0.01710934914871829748417297878404497169 * (1 << hbShift)),
(qint32)(-0.022443558692997273018576720460259821266 * (1 << hbShift)),
(qint32)( 0.029875811511593811098386197500076377764 * (1 << hbShift)),
(qint32)(-0.041086352085710403647667021687084343284 * (1 << hbShift)),
(qint32)( 0.060465467462665789533104998554335907102 * (1 << hbShift)),
(qint32)(-0.104159517495977321788203084906854201108 * (1 << hbShift)),
(qint32)( 0.317657589850154464805598308885237202048 * (1 << hbShift)),
};
};
class SDRANGEL_API IntHalfbandFilter {
public:
IntHalfbandFilter();
@ -235,75 +331,85 @@ public:
// upsample by 2, from lower half of original spectrum
bool workInterpolateLowerHalf(Sample* sampleIn, Sample *sampleOut)
{
Sample s;
switch(m_state)
{
case 0:
// insert sample into ring-buffer
m_samples[m_ptr][0] = 0;
m_samples[m_ptr][1] = 0;
case 0:
// insert sample into ring-buffer
m_samples[m_ptr][0] = 0;
m_samples[m_ptr][1] = 0;
// save result
doFIR(sampleOut);
// save result
doFIR(&s);
sampleOut->setReal(s.imag());
sampleOut->setImag(-s.real());
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 1;
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
// tell caller we don't have a new sample
return false;
case 1:
// insert sample into ring-buffer
m_samples[m_ptr][0] = -sampleIn->real();
m_samples[m_ptr][1] = -sampleIn->imag();
case 1:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
// save result
doFIR(sampleOut);
// save result
doFIR(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 2;
// next state
m_state = 2;
// tell caller we consumed the sample
return true;
// tell caller we have a new sample
return true;
case 2:
// insert sample into ring-buffer
m_samples[m_ptr][0] = 0;
m_samples[m_ptr][1] = 0;
case 2:
// insert sample into ring-buffer
m_samples[m_ptr][0] = 0;
m_samples[m_ptr][1] = 0;
// save result
doFIR(sampleOut);
// save result
doFIR(&s);
sampleOut->setReal(-s.imag());
sampleOut->setImag(s.real());
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 3;
// next state
m_state = 3;
// tell caller we didn't consume the sample
return false;
// tell caller we don't have a new sample
return false;
default:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
default:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
// save result
doFIR(sampleOut);
// save result
doFIR(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 0;
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
// tell caller we have a new sample
return true;
}
}
@ -379,179 +485,145 @@ public:
// upsample by 2, move original spectrum to upper half
bool workInterpolateUpperHalf(Sample* sampleIn, Sample *sampleOut)
{
Sample s;
switch(m_state)
{
case 0:
// insert sample into ring-buffer
m_samples[m_ptr][0] = 0;
m_samples[m_ptr][1] = 0;
case 0:
// insert sample into ring-buffer
m_samples[m_ptr][0] = 0;
m_samples[m_ptr][1] = 0;
// save result
doFIR(sampleOut);
// save result
doFIR(&s);
sampleOut->setReal(-s.imag());
sampleOut->setImag(s.real());
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 1;
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
// tell caller we don't have a new sample
return false;
case 1:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sampleIn->imag();
m_samples[m_ptr][1] = -sampleIn->real();
case 1:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
// save result
doFIR(sampleOut);
// save result
doFIR(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 2;
// next state
m_state = 2;
// tell caller we consumed the sample
return true;
// tell caller we have a new sample
return true;
case 2:
// insert sample into ring-buffer
m_samples[m_ptr][0] = 0;
m_samples[m_ptr][1] = 0;
case 2:
// insert sample into ring-buffer
m_samples[m_ptr][0] = 0;
m_samples[m_ptr][1] = 0;
// save result
doFIR(sampleOut);
// save result
doFIR(&s);
sampleOut->setReal(s.imag());
sampleOut->setImag(-s.real());
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 3;
// next state
m_state = 3;
// tell caller we didn't consume the sample
return false;
// tell caller we don't have a new sample
return false;
case 3:
// insert sample into ring-buffer
m_samples[m_ptr][0] = -sampleIn->real();
m_samples[m_ptr][1] = -sampleIn->imag();
default:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
// save result
doFIR(sampleOut);
// save result
doFIR(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 4;
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
case 4:
// insert sample into ring-buffer
m_samples[m_ptr][0] = 0;
m_samples[m_ptr][1] = 0;
// save result
doFIR(sampleOut);
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 5;
// tell caller we didn't consume the sample
return false;
case 5:
// insert sample into ring-buffer
m_samples[m_ptr][0] = -sampleIn->imag();
m_samples[m_ptr][1] = sampleIn->real();
// save result
doFIR(sampleOut);
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 6;
// tell caller we consumed the sample
return true;
case 6:
// insert sample into ring-buffer
m_samples[m_ptr][0] = 0;
m_samples[m_ptr][1] = 0;
// save result
doFIR(sampleOut);
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 7;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
m_samples[m_ptr][0] = sampleIn->real();
m_samples[m_ptr][1] = sampleIn->imag();
// save result
doFIR(sampleOut);
// advance write-pointer
m_ptr = (m_ptr + HB_FILTERORDER) % (HB_FILTERORDER + 1);
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
// tell caller we have a new sample
return true;
}
}
void myDecimate(const Sample* sample1, Sample* sample2)
{
static const qint16 mod33[38] = { 31,32,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,0,1,2};
#if HB_FILTERORDER == 64
static const qint16 HB_MOD[64+6] = { 63,64,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,
45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,0,1,2} ;
#elif HB_FILTERORDER == 48
static const qint16 HB_MOD[48+6] = { 47,48,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,
42,43,44,45,46,47,48,0,1,2} ;
#elif HB_FILTERORDER == 32
static const qint16 HB_MOD[38] = { 31,32,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,0,1,2};
#else
#error unsupported filter order
#endif
m_samples[m_ptr][0] = sample1->real();
m_samples[m_ptr][1] = sample1->imag();
m_ptr = mod33[m_ptr + 2 - 1];
m_samples[m_ptr][0] = sample1->real();
m_samples[m_ptr][1] = sample1->imag();
m_ptr = HB_MOD[m_ptr + 2 - 1];
m_samples[m_ptr][0] = sample2->real();
m_samples[m_ptr][1] = sample2->imag();
m_samples[m_ptr][0] = sample2->real();
m_samples[m_ptr][1] = sample2->imag();
doFIR(sample2);
doFIR(sample2);
m_ptr = mod33[m_ptr + 2 - 1];
}
m_ptr = HB_MOD[m_ptr + 2 - 1];
}
void myDecimate(qint32 x1, qint32 y1, qint32 *x2, qint32 *y2)
{
static const qint16 mod33[38] = { 31,32,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,0,1,2};
void myDecimate(qint32 x1, qint32 y1, qint32 *x2, qint32 *y2)
{
#if HB_FILTERORDER == 64
static const qint16 HB_MOD[64+6] = { 63,64,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,
45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,0,1,2} ;
#elif HB_FILTERORDER == 48
static const qint16 HB_MOD[48+6] = { 47,48,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,
42,43,44,45,46,47,48,0,1,2} ;
#elif HB_FILTERORDER == 32
static const qint16 HB_MOD[38] = { 31,32,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,0,1,2};
#else
#error unsupported filter order
#endif
m_samples[m_ptr][0] = x1;
m_samples[m_ptr][1] = y1;
m_ptr = mod33[m_ptr + 2 - 1];
m_samples[m_ptr][0] = x1;
m_samples[m_ptr][1] = y1;
m_ptr = HB_MOD[m_ptr + 2 - 1];
m_samples[m_ptr][0] = *x2;
m_samples[m_ptr][1] = *y2;
m_samples[m_ptr][0] = *x2;
m_samples[m_ptr][1] = *y2;
doFIR(x2, y2);
doFIR(x2, y2);
m_ptr = mod33[m_ptr + 2 - 1];
}
m_ptr = HB_MOD[m_ptr + 2 - 1];
}
protected:
qint32 m_samples[HB_FILTERORDER + 1][2]; // Valgrind optim (from qint16)
@ -560,44 +632,54 @@ protected:
void doFIR(Sample* sample)
{
// coefficents
// Coefficents. This is a sinc function:
// Half of the half of coefficients are stored because:
// - half of the coefficients are 0
// - there is a symmertry around the central 1.0 coefficient (not stored either)
// There are actually order+1 coefficients
#if HB_FILTERORDER == 64
static const qint16 HB_MOD[64+6] = { 63,64,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,
45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,0,1,2} ;
static const qint32 COEFF[16] = {
-0.001114417441601693505720538368564120901 * (1 << HB_SHIFT),
0.001268007827185253051302527005361753254 * (1 << HB_SHIFT),
-0.001959831378850490895410230152151598304 * (1 << HB_SHIFT),
0.002878308307661380308073439948657323839 * (1 << HB_SHIFT),
-0.004071361818258721100571850826099762344 * (1 << HB_SHIFT),
0.005597288494657440618973431867289036745 * (1 << HB_SHIFT),
-0.007532345003308904551886371336877346039 * (1 << HB_SHIFT),
0.009980346844667375288961963519795972388 * (1 << HB_SHIFT),
-0.013092614174300500062830820979797863401 * (1 << HB_SHIFT),
0.01710934914871829748417297878404497169 * (1 << HB_SHIFT),
-0.022443558692997273018576720460259821266 * (1 << HB_SHIFT),
0.029875811511593811098386197500076377764 * (1 << HB_SHIFT),
-0.041086352085710403647667021687084343284 * (1 << HB_SHIFT),
0.060465467462665789533104998554335907102 * (1 << HB_SHIFT),
-0.104159517495977321788203084906854201108 * (1 << HB_SHIFT),
0.317657589850154464805598308885237202048 * (1 << HB_SHIFT),
(qint32)(-0.001114417441601693505720538368564120901 * (1 << HB_SHIFT)),
(qint32)( 0.001268007827185253051302527005361753254 * (1 << HB_SHIFT)),
(qint32)(-0.001959831378850490895410230152151598304 * (1 << HB_SHIFT)),
(qint32)( 0.002878308307661380308073439948657323839 * (1 << HB_SHIFT)),
(qint32)(-0.004071361818258721100571850826099762344 * (1 << HB_SHIFT)),
(qint32)( 0.005597288494657440618973431867289036745 * (1 << HB_SHIFT)),
(qint32)(-0.007532345003308904551886371336877346039 * (1 << HB_SHIFT)),
(qint32)( 0.009980346844667375288961963519795972388 * (1 << HB_SHIFT)),
(qint32)(-0.013092614174300500062830820979797863401 * (1 << HB_SHIFT)),
(qint32)( 0.01710934914871829748417297878404497169 * (1 << HB_SHIFT)),
(qint32)(-0.022443558692997273018576720460259821266 * (1 << HB_SHIFT)),
(qint32)( 0.029875811511593811098386197500076377764 * (1 << HB_SHIFT)),
(qint32)(-0.041086352085710403647667021687084343284 * (1 << HB_SHIFT)),
(qint32)( 0.060465467462665789533104998554335907102 * (1 << HB_SHIFT)),
(qint32)(-0.104159517495977321788203084906854201108 * (1 << HB_SHIFT)),
(qint32)( 0.317657589850154464805598308885237202048 * (1 << HB_SHIFT)),
};
#elif HB_FILTERORDER == 48
static const qint16 HB_MOD[48+6] = { 47,48,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,
42,43,44,45,46,47,48,0,1,2} ;
static const qint32 COEFF[12] = {
-0.004102576237611492253332112767338912818 * (1 << HB_SHIFT),
0.003950551047979387886410762575906119309 * (1 << HB_SHIFT),
-0.005807875789391703583164350277456833282 * (1 << HB_SHIFT),
0.00823497890520805998770814682075069868 * (1 << HB_SHIFT),
-0.011372226513199541059195851744334504474 * (1 << HB_SHIFT),
0.015471557140973646315984524335362948477 * (1 << HB_SHIFT),
-0.020944996398689276484450516591095947661 * (1 << HB_SHIFT),
0.028568078132034283034279553703527199104 * (1 << HB_SHIFT),
-0.040015143905614086738964374490024056286 * (1 << HB_SHIFT),
0.059669519431831075095828964549582451582 * (1 << HB_SHIFT),
-0.103669138691865420076609893840213771909 * (1 << HB_SHIFT),
0.317491986549921390015072120149852707982 * (1 << HB_SHIFT)
(qint32)(-0.004102576237611492253332112767338912818 * (1 << HB_SHIFT)),
(qint32)( 0.003950551047979387886410762575906119309 * (1 << HB_SHIFT)),
(qint32)(-0.005807875789391703583164350277456833282 * (1 << HB_SHIFT)),
(qint32)( 0.00823497890520805998770814682075069868 * (1 << HB_SHIFT)),
(qint32)(-0.011372226513199541059195851744334504474 * (1 << HB_SHIFT)),
(qint32)( 0.015471557140973646315984524335362948477 * (1 << HB_SHIFT)),
(qint32)(-0.020944996398689276484450516591095947661 * (1 << HB_SHIFT)),
(qint32)( 0.028568078132034283034279553703527199104 * (1 << HB_SHIFT)),
(qint32)(-0.040015143905614086738964374490024056286 * (1 << HB_SHIFT)),
(qint32)( 0.059669519431831075095828964549582451582 * (1 << HB_SHIFT)),
(qint32)(-0.103669138691865420076609893840213771909 * (1 << HB_SHIFT)),
(qint32)( 0.317491986549921390015072120149852707982 * (1 << HB_SHIFT))
};
#elif HB_FILTERORDER == 32
static const qint16 mod33[38] = { 31,32,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
static const qint16 HB_MOD[32+6] = { 31,32,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,0,1,2} ;
static const qint32 COEFF[8] = {
(qint32)(-0.015956912844043127236437484839370881673 * (1 << HB_SHIFT)),
@ -615,8 +697,8 @@ protected:
// init read-pointer
int a = mod33[m_ptr + 2 + 1]; // 0 + 1
int b = mod33[m_ptr + 2 - 2]; //-1 - 1
int a = HB_MOD[m_ptr + 2 + 1]; // 0 + 1
int b = HB_MOD[m_ptr + 2 - 2]; //-1 - 1
// go through samples in buffer
qint32 iAcc = 0;
@ -631,11 +713,11 @@ protected:
qAcc += (m_samples[a][1] + m_samples[b][1]) * COEFF[i];
// update read-pointer
a = mod33[a + 2 + 2];
b = mod33[b + 2 - 2];
a = HB_MOD[a + 2 + 2];
b = HB_MOD[b + 2 - 2];
}
a = mod33[a + 2 - 1];
a = HB_MOD[a + 2 - 1];
iAcc += ((qint32)m_samples[a][0] + 1) << (HB_SHIFT - 1);
qAcc += ((qint32)m_samples[a][1] + 1) << (HB_SHIFT - 1);
@ -646,44 +728,54 @@ protected:
void doFIR(qint32 *x, qint32 *y)
{
// coefficents
// Coefficents. This is a sinc function:
// Half of the half of coefficients are stored because:
// - half of the coefficients are 0
// - there is a symmertry around the central 1.0 coefficient (not stored either)
// There are actually order+1 coefficients
#if HB_FILTERORDER == 64
static const qint16 HB_MOD[64+6] = { 63,64,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,
45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,0,1,2} ;
static const qint32 COEFF[16] = {
-0.001114417441601693505720538368564120901 * (1 << HB_SHIFT),
0.001268007827185253051302527005361753254 * (1 << HB_SHIFT),
-0.001959831378850490895410230152151598304 * (1 << HB_SHIFT),
0.002878308307661380308073439948657323839 * (1 << HB_SHIFT),
-0.004071361818258721100571850826099762344 * (1 << HB_SHIFT),
0.005597288494657440618973431867289036745 * (1 << HB_SHIFT),
-0.007532345003308904551886371336877346039 * (1 << HB_SHIFT),
0.009980346844667375288961963519795972388 * (1 << HB_SHIFT),
-0.013092614174300500062830820979797863401 * (1 << HB_SHIFT),
0.01710934914871829748417297878404497169 * (1 << HB_SHIFT),
-0.022443558692997273018576720460259821266 * (1 << HB_SHIFT),
0.029875811511593811098386197500076377764 * (1 << HB_SHIFT),
-0.041086352085710403647667021687084343284 * (1 << HB_SHIFT),
0.060465467462665789533104998554335907102 * (1 << HB_SHIFT),
-0.104159517495977321788203084906854201108 * (1 << HB_SHIFT),
0.317657589850154464805598308885237202048 * (1 << HB_SHIFT),
(qint32)(-0.001114417441601693505720538368564120901 * (1 << HB_SHIFT)),
(qint32)( 0.001268007827185253051302527005361753254 * (1 << HB_SHIFT)),
(qint32)(-0.001959831378850490895410230152151598304 * (1 << HB_SHIFT)),
(qint32)( 0.002878308307661380308073439948657323839 * (1 << HB_SHIFT)),
(qint32)(-0.004071361818258721100571850826099762344 * (1 << HB_SHIFT)),
(qint32)( 0.005597288494657440618973431867289036745 * (1 << HB_SHIFT)),
(qint32)(-0.007532345003308904551886371336877346039 * (1 << HB_SHIFT)),
(qint32)( 0.009980346844667375288961963519795972388 * (1 << HB_SHIFT)),
(qint32)(-0.013092614174300500062830820979797863401 * (1 << HB_SHIFT)),
(qint32)( 0.01710934914871829748417297878404497169 * (1 << HB_SHIFT)),
(qint32)(-0.022443558692997273018576720460259821266 * (1 << HB_SHIFT)),
(qint32)( 0.029875811511593811098386197500076377764 * (1 << HB_SHIFT)),
(qint32)(-0.041086352085710403647667021687084343284 * (1 << HB_SHIFT)),
(qint32)( 0.060465467462665789533104998554335907102 * (1 << HB_SHIFT)),
(qint32)(-0.104159517495977321788203084906854201108 * (1 << HB_SHIFT)),
(qint32)( 0.317657589850154464805598308885237202048 * (1 << HB_SHIFT)),
};
#elif HB_FILTERORDER == 48
static const qint32 COEFF[12] = {
-0.004102576237611492253332112767338912818 * (1 << HB_SHIFT),
0.003950551047979387886410762575906119309 * (1 << HB_SHIFT),
-0.005807875789391703583164350277456833282 * (1 << HB_SHIFT),
0.00823497890520805998770814682075069868 * (1 << HB_SHIFT),
-0.011372226513199541059195851744334504474 * (1 << HB_SHIFT),
0.015471557140973646315984524335362948477 * (1 << HB_SHIFT),
-0.020944996398689276484450516591095947661 * (1 << HB_SHIFT),
0.028568078132034283034279553703527199104 * (1 << HB_SHIFT),
-0.040015143905614086738964374490024056286 * (1 << HB_SHIFT),
0.059669519431831075095828964549582451582 * (1 << HB_SHIFT),
-0.103669138691865420076609893840213771909 * (1 << HB_SHIFT),
0.317491986549921390015072120149852707982 * (1 << HB_SHIFT)
};
static const qint16 HB_MOD[48+6] = { 47,48,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,
42,43,44,45,46,47,48,0,1,2} ;
static const qint32 COEFF[12] = {
(qint32)(-0.004102576237611492253332112767338912818 * (1 << HB_SHIFT)),
(qint32)( 0.003950551047979387886410762575906119309 * (1 << HB_SHIFT)),
(qint32)(-0.005807875789391703583164350277456833282 * (1 << HB_SHIFT)),
(qint32)( 0.00823497890520805998770814682075069868 * (1 << HB_SHIFT)),
(qint32)(-0.011372226513199541059195851744334504474 * (1 << HB_SHIFT)),
(qint32)( 0.015471557140973646315984524335362948477 * (1 << HB_SHIFT)),
(qint32)(-0.020944996398689276484450516591095947661 * (1 << HB_SHIFT)),
(qint32)( 0.028568078132034283034279553703527199104 * (1 << HB_SHIFT)),
(qint32)(-0.040015143905614086738964374490024056286 * (1 << HB_SHIFT)),
(qint32)( 0.059669519431831075095828964549582451582 * (1 << HB_SHIFT)),
(qint32)(-0.103669138691865420076609893840213771909 * (1 << HB_SHIFT)),
(qint32)( 0.317491986549921390015072120149852707982 * (1 << HB_SHIFT))
};
#elif HB_FILTERORDER == 32
static const int mod33[38] = { 31,32,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
static const int HB_MOD[38] = { 31,32,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,0,1,2} ;
static const qint32 COEFF[8] = {
(qint32)(-0.015956912844043127236437484839370881673 * (1 << HB_SHIFT)),
@ -701,8 +793,8 @@ protected:
// init read-pointer
int a = mod33[m_ptr + 2 + 1]; // 0 + 1
int b = mod33[m_ptr + 2 - 2]; //-1 - 1
int a = HB_MOD[m_ptr + 2 + 1]; // 0 + 1
int b = HB_MOD[m_ptr + 2 - 2]; //-1 - 1
// go through samples in buffer
qint32 iAcc = 0;
@ -717,11 +809,11 @@ protected:
qAcc += (m_samples[a][1] + m_samples[b][1]) * COEFF[i];
// update read-pointer
a = mod33[a + 2 + 2];
b = mod33[b + 2 - 2];
a = HB_MOD[a + 2 + 2];
b = HB_MOD[b + 2 - 2];
}
a = mod33[a + 2 - 1];
a = HB_MOD[a + 2 - 1];
iAcc += ((qint32)m_samples[a][0] + 1) << (HB_SHIFT - 1);
qAcc += ((qint32)m_samples[a][1] + 1) << (HB_SHIFT - 1);

View File

@ -171,7 +171,8 @@ void UpChannelizer::applyConfiguration()
m_currentInputSampleRate = m_outputSampleRate / (1 << m_filterStages.size());
qDebug() << "UpChannelizer::applyConfiguration out=" << m_outputSampleRate
qDebug() << "UpChannelizer::applyConfiguration:"
<< " out=" << m_outputSampleRate
<< ", req=" << m_requestedInputSampleRate
<< ", in=" << m_currentInputSampleRate
<< ", fc=" << m_currentCenterFrequency;
@ -225,34 +226,52 @@ Real UpChannelizer::createFilterChain(Real sigStart, Real sigEnd, Real chanStart
safetyMargin = 0;
//fprintf(stderr, "Channelizer::createFilterChain: ");
//fprintf(stderr, "Signal [%.1f, %.1f] (BW %.1f), Channel [%.1f, %.1f], Rot %.1f, Safety %.1f\n", sigStart, sigEnd, sigBw, chanStart, chanEnd, rot, safetyMargin);
#if 1
qDebug() << "UpChannelizer::createFilterChain: start:"
<< " sig: [" << sigStart << ":" << sigEnd << "]"
<< " BW: " << sigBw
<< " chan: [" << chanStart << ":" << chanEnd << "]"
<< " rot: " << rot
<< " safety: " << safetyMargin;
// check if it fits into the left half
if(signalContainsChannel(sigStart + safetyMargin, sigStart + sigBw / 2.0 - safetyMargin, chanStart, chanEnd)) {
//fprintf(stderr, "-> take left half (rotate by +1/4 and decimate by 2)\n");
if(signalContainsChannel(sigStart + safetyMargin, sigStart + sigBw / 2.0 - safetyMargin, chanStart, chanEnd))
{
qDebug() << "UpChannelizer::createFilterChain: take left half (rotate by +1/4 and decimate by 2):"
<< " [" << m_filterStages.size() << "]"
<< " sig: [" << sigStart << ":" << sigStart + sigBw / 2.0 << "]";
m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf));
return createFilterChain(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd);
}
// check if it fits into the right half
if(signalContainsChannel(sigEnd - sigBw / 2.0f + safetyMargin, sigEnd - safetyMargin, chanStart, chanEnd)) {
//fprintf(stderr, "-> take right half (rotate by -1/4 and decimate by 2)\n");
if(signalContainsChannel(sigEnd - sigBw / 2.0f + safetyMargin, sigEnd - safetyMargin, chanStart, chanEnd))
{
qDebug() << "UpChannelizer::createFilterChain: take right half (rotate by -1/4 and decimate by 2):"
<< " [" << m_filterStages.size() << "]"
<< " sig: [" << sigEnd - sigBw / 2.0f << ":" << sigEnd << "]";
m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf));
return createFilterChain(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd);
}
// check if it fits into the center
// Was: if(signalContainsChannel(sigStart + rot + safetyMargin, sigStart + rot + sigBw / 2.0f - safetyMargin, chanStart, chanEnd)) {
if(signalContainsChannel(sigStart + rot + safetyMargin, sigEnd - rot - safetyMargin, chanStart, chanEnd)) {
//fprintf(stderr, "-> take center half (decimate by 2)\n");
if(signalContainsChannel(sigStart + rot + safetyMargin, sigEnd - rot - safetyMargin, chanStart, chanEnd))
{
qDebug() << "UpChannelizer::createFilterChain: take center half (decimate by 2):"
<< " [" << m_filterStages.size() << "]"
<< " sig: [" << sigStart + rot << ":" << sigEnd - rot << "]";
m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter));
// Was: return createFilterChain(sigStart + rot, sigStart + sigBw / 2.0f + rot, chanStart, chanEnd);
return createFilterChain(sigStart + rot, sigEnd - rot, chanStart, chanEnd);
}
#endif
Real ofs = ((chanEnd - chanStart) / 2.0 + chanStart) - ((sigEnd - sigStart) / 2.0 + sigStart);
//fprintf(stderr, "-> complete (final BW %.1f, frequency offset %.1f)\n", sigBw, ofs);
qDebug() << "UpChannelizer::createFilterChain: complete:"
<< " #stages: " << m_filterStages.size()
<< " BW: " << sigBw
<< " ofs: " << ofs;
return ofs;
}