1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-25 09:18:54 -05:00

Delete unneeded files

This commit is contained in:
Daniele Forsi 2024-07-14 21:07:40 +02:00
parent 3c337d6cf5
commit 585077eaef
2 changed files with 0 additions and 1053 deletions

View File

@ -1,271 +0,0 @@
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2024 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef PLUGINS_CHANNELRX_WDSPRX_WDSPRXSETTINGS_H_
#define PLUGINS_CHANNELRX_WDSPRX_WDSPRXSETTINGS_H_
#include <QByteArray>
#include <QString>
#include "dsp/fftwindow.h"
class Serializable;
struct WDSPRxProfile
{
enum WDSPRxDemod
{
DemodSSB,
DemodAM,
DemodSAM,
DemodFMN,
};
enum WDSPRxAGCMode
{
AGCLong,
AGCSlow,
AGCMedium,
AGCFast,
};
enum WDSPRxNRScheme
{
NRSchemeNR,
NRSchemeNR2,
};
enum WDSPRxNBScheme
{
NBSchemeNB, //!< Preemptive Wideband Blanker (ANB)
NBSchemeNB2, //!< Interpolating Wideband Blanker (NOB)
};
enum WDSPRxNR2Gain
{
NR2GainLinear,
NR2GainLog,
NR2GainGamma,
};
enum WDSPRxNR2NPE
{
NR2NPEOSMS,
NR2NPEMMSE,
};
enum WDSPRxNRPosition
{
NRPositionPreAGC,
NRPositionPostAGC,
};
enum WDSPRxNB2Mode
{
NB2ModeZero,
NB2ModeSampleAndHold,
NB2ModeMeanHold,
NB2ModeHoldSample,
NB2ModeInterpolate,
};
enum WDSPRxSquelchMode
{
SquelchModeVoice,
SquelchModeAM,
SquelchModeFM,
};
WDSPRxDemod m_demod;
// Filter
int m_spanLog2;
Real m_highCutoff;
Real m_lowCutoff;
int m_fftWindow; // 0: 4-term Blackman-Harris, 1: 7-term Blackman-Harris
// AGC
bool m_agc;
WDSPRxAGCMode m_agcMode;
int m_agcGain; //!< Fixed gain if AGC is off else top gain
int m_agcSlope;
int m_agcHangThreshold;
// Noise blanker
bool m_dnb;
WDSPRxNBScheme m_nbScheme;
WDSPRxNB2Mode m_nb2Mode;
double m_nbSlewTime; // a.k.a tau
double m_nbLeadTime; // a.k.a adv time
double m_nbLagTime; // a.k.a hang time
int m_nbThreshold;
double m_nbAvgTime; // a.k.a back tau
// Noise rediction
bool m_dnr;
bool m_anf;
WDSPRxNRScheme m_nrScheme;
WDSPRxNR2Gain m_nr2Gain;
WDSPRxNR2NPE m_nr2NPE;
WDSPRxNRPosition m_nrPosition;
bool m_nr2ArtifactReduction;
// Demods
bool m_amFadeLevel;
bool m_cwPeaking;
double m_cwPeakFrequency;
double m_cwBandwidth;
double m_cwGain;
double m_fmDeviation;
double m_fmAFLow;
double m_fmAFHigh;
bool m_fmAFLimiter;
double m_fmAFLimiterGain;
bool m_fmCTCSSNotch;
double m_fmCTCSSNotchFrequency;
// Squelch
bool m_squelch;
int m_squelchThreshold;
WDSPRxSquelchMode m_squelchMode;
double m_ssqlTauMute; //!< Voice squelch tau mute
double m_ssqlTauUnmute; //!< Voice squelch tau unmute
double m_amsqMaxTail;
WDSPRxProfile() :
m_demod(DemodSSB),
m_spanLog2(3),
m_highCutoff(3000),
m_lowCutoff(300),
m_fftWindow(0),
m_agc(false),
m_agcMode(AGCMedium),
m_agcGain(80),
m_agcSlope(35),
m_agcHangThreshold(0),
m_dnb(false),
m_nbScheme(NBSchemeNB),
m_nb2Mode(NB2ModeZero),
m_nbSlewTime(0.1),
m_nbLeadTime(0.1),
m_nbLagTime(0.1),
m_nbThreshold(30),
m_nbAvgTime(50.0),
m_dnr(false),
m_anf(false),
m_nrScheme(NRSchemeNR),
m_nr2Gain(NR2GainGamma),
m_nr2NPE(NR2NPEOSMS),
m_nrPosition(NRPositionPreAGC),
m_nr2ArtifactReduction(true),
m_amFadeLevel(false),
m_cwPeaking(false),
m_cwPeakFrequency(600.0),
m_cwBandwidth(100.0),
m_cwGain(2.0),
m_fmDeviation(2500.0),
m_fmAFLow(300.0),
m_fmAFHigh(3000.0),
m_fmAFLimiter(false),
m_fmAFLimiterGain(10.0),
m_fmCTCSSNotch(false),
m_fmCTCSSNotchFrequency(67.0),
m_squelch(false),
m_squelchThreshold(3),
m_squelchMode(SquelchModeVoice),
m_ssqlTauMute(0.1),
m_ssqlTauUnmute(0.1),
m_amsqMaxTail(1.5)
{}
};
struct WDSPRxSettings
{
WDSPRxProfile::WDSPRxDemod m_demod;
qint32 m_inputFrequencyOffset;
// Real m_highCutoff;
// Real m_lowCutoff;
Real m_volume;
// int m_spanLog2;
bool m_audioBinaural;
bool m_audioFlipChannels;
bool m_dsb;
bool m_audioMute;
// AGC
bool m_agc;
WDSPRxProfile::WDSPRxAGCMode m_agcMode;
int m_agcGain; //!< Fixed gain if AGC is off else top gain
int m_agcSlope;
int m_agcHangThreshold;
// Noise blanker
bool m_dnb;
WDSPRxProfile::WDSPRxNBScheme m_nbScheme;
WDSPRxProfile::WDSPRxNB2Mode m_nb2Mode;
double m_nbSlewTime;
double m_nbLeadTime;
double m_nbLagTime;
int m_nbThreshold;
double m_nbAvgTime;
// Noise reduction
bool m_dnr;
bool m_anf;
WDSPRxProfile::WDSPRxNRScheme m_nrScheme;
WDSPRxProfile::WDSPRxNR2Gain m_nr2Gain;
WDSPRxProfile::WDSPRxNR2NPE m_nr2NPE;
WDSPRxProfile::WDSPRxNRPosition m_nrPosition;
bool m_nr2ArtifactReduction;
// Demods
bool m_amFadeLevel;
bool m_cwPeaking;
double m_cwPeakFrequency;
double m_cwBandwidth;
double m_cwGain;
double m_fmDeviation;
double m_fmAFLow;
double m_fmAFHigh;
bool m_fmAFLimiter;
double m_fmAFLimiterGain;
bool m_fmCTCSSNotch;
double m_fmCTCSSNotchFrequency;
// Squelch
bool m_squelch;
int m_squelchThreshold;
WDSPRxProfile::WDSPRxSquelchMode m_squelchMode;
double m_ssqlTauMute; //!< Voice squelch tau mute
double m_ssqlTauUnmute; //!< Voice squelch tau unmute
double m_amsqMaxTail;
quint32 m_rgbColor;
QString m_title;
QString m_audioDeviceName;
int m_streamIndex; //!< MIMO channel. Not relevant when connected to SI (single Rx).
bool m_useReverseAPI;
QString m_reverseAPIAddress;
uint16_t m_reverseAPIPort;
uint16_t m_reverseAPIDeviceIndex;
uint16_t m_reverseAPIChannelIndex;
int m_workspaceIndex;
QByteArray m_geometryBytes;
bool m_hidden;
std::vector<WDSPRxProfile> m_profiles;
unsigned int m_profileIndex;
Serializable *m_channelMarker;
Serializable *m_spectrumGUI;
Serializable *m_rollupState;
WDSPRxSettings();
void resetToDefaults();
void setChannelMarker(Serializable *channelMarker) { m_channelMarker = channelMarker; }
void setSpectrumGUI(Serializable *spectrumGUI) { m_spectrumGUI = spectrumGUI; }
void setRollupState(Serializable *rollupState) { m_rollupState = rollupState; }
QByteArray serialize() const;
bool deserialize(const QByteArray& data);
static const int m_minPowerThresholdDB;
static const float m_mminPowerThresholdDBf;
};
#endif /* PLUGINS_CHANNELRX_WDSPRX_WDSPRXSETTINGS_H_ */

View File

@ -1,782 +0,0 @@
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2024 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <QTime>
#include <QDebug>
#include "dsp/spectrumvis.h"
#include "dsp/datafifo.h"
#include "util/db.h"
#include "util/messagequeue.h"
#include "maincore.h"
#include "RXA.hpp"
#include "nbp.hpp"
#include "meter.hpp"
#include "patchpanel.hpp"
#include "wcpAGC.hpp"
#include "anr.hpp"
#include "emnr.hpp"
#include "snba.hpp"
#include "anf.hpp"
#include "anb.hpp"
#include "nob.hpp"
#include "amd.hpp"
#include "fmd.hpp"
#include "iir.cpp"
#include "ssql.hpp"
#include "amsq.hpp"
#include "fmsq.hpp"
#include "wdsprxsink.h"
const int WDSPRxSink::m_ssbFftLen = 2048;
const int WDSPRxSink::m_wdspSampleRate = 48000;
const int WDSPRxSink::m_wdspBufSize = 512;
WDSPRxSink::SpectrumProbe::SpectrumProbe(SampleVector& sampleVector) :
m_sampleVector(sampleVector),
m_spanLog2(0),
m_dsb(false),
m_usb(true),
m_sum(0)
{}
void WDSPRxSink::SpectrumProbe::setSpanLog2(int spanLog2)
{
m_spanLog2 = spanLog2;
}
void WDSPRxSink::SpectrumProbe::proceed(const float *in, int nb_samples)
{
int decim = 1<<(m_spanLog2 - 1);
unsigned char decim_mask = decim - 1; // counter LSB bit mask for decimation by 2^(m_scaleLog2 - 1)
for (int i = 0; i < nb_samples; i++)
{
float cr = in[2*i+1];
float ci = in[2*i];
m_sum += std::complex<float>{cr, ci};
if (decim == 1)
{
m_sampleVector.push_back(Sample(cr*SDR_RX_SCALEF, ci*SDR_RX_SCALEF));
}
else
{
if (!(m_undersampleCount++ & decim_mask))
{
float avgr = m_sum.real() / decim;
float avgi = m_sum.imag() / decim;
if (!m_dsb & !m_usb)
{ // invert spectrum for LSB
m_sampleVector.push_back(Sample(avgi*SDR_RX_SCALEF, avgr*SDR_RX_SCALEF));
}
else
{
m_sampleVector.push_back(Sample(avgr*SDR_RX_SCALEF, avgi*SDR_RX_SCALEF));
}
m_sum = 0;
}
}
}
}
WDSPRxSink::WDSPRxSink() :
m_squelchDelayLine(2*48000),
m_audioActive(false),
m_spectrumSink(nullptr),
m_spectrumProbe(m_sampleBuffer),
m_inCount(0),
m_audioFifo(24000),
m_audioSampleRate(48000)
{
m_Bandwidth = 5000;
m_channelSampleRate = 48000;
m_channelFrequencyOffset = 0;
m_audioBuffer.resize(m_audioSampleRate / 10);
m_audioBufferFill = 0;
m_undersampleCount = 0;
m_demodBuffer.resize(1<<12);
m_demodBufferFill = 0;
m_sAvg = 0.0;
m_sPeak = 0.0;
m_sCount = 1;
m_rxa = WDSP::RXA::create_rxa(
m_wdspSampleRate, // input samplerate
m_wdspSampleRate, // output samplerate
m_wdspSampleRate, // sample rate for mainstream dsp processing (dsp)
m_wdspBufSize // number complex samples processed per buffer in mainstream dsp processing
);
m_rxa->setSpectrumProbe(&m_spectrumProbe);
WDSP::RXA::SetPassband(*m_rxa, 0, m_Bandwidth);
WDSP::ANR::SetANRVals(*m_rxa, 64, 16, 16e-4, 10e-7);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
applySettings(m_settings, true);
}
WDSPRxSink::~WDSPRxSink()
{
WDSP::RXA::destroy_rxa(m_rxa);
}
void WDSPRxSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
if (m_channelSampleRate == 0) {
return;
}
Complex ci;
for(SampleVector::const_iterator it = begin; it < end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if (m_interpolatorDistance < 1.0f) // interpolate
{
while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
else
{
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
}
}
void WDSPRxSink::getMagSqLevels(double& avg, double& peak, int& nbSamples)
{
avg = m_sAvg;
peak = m_sPeak;
nbSamples = m_sCount;
}
void WDSPRxSink::processOneSample(Complex &ci)
{
m_rxa->get_inbuff()[2*m_inCount] = ci.imag() / SDR_RX_SCALEF;
m_rxa->get_inbuff()[2*m_inCount+1] = ci.real() / SDR_RX_SCALEF;
if (++m_inCount == m_rxa->get_insize())
{
WDSP::RXA::xrxa(m_rxa);
m_sCount = m_wdspBufSize;
m_sAvg = WDSP::METER::GetMeter(*m_rxa, WDSP::RXA::RXA_S_AV);
m_sPeak = WDSP::METER::GetMeter(*m_rxa, WDSP::RXA::RXA_S_PK);
for (int i = 0; i < m_rxa->get_outsize(); i++)
{
if (m_settings.m_audioMute)
{
m_audioBuffer[m_audioBufferFill].r = 0;
m_audioBuffer[m_audioBufferFill].l = 0;
}
else
{
const double& cr = m_rxa->get_outbuff()[2*i+1];
const double& ci = m_rxa->get_outbuff()[2*i];
qint16 zr = cr * 32768.0;
qint16 zi = ci * 32768.0;
m_audioBuffer[m_audioBufferFill].r = zr;
m_audioBuffer[m_audioBufferFill].l = zi;
if (m_settings.m_audioBinaural)
{
m_demodBuffer[m_demodBufferFill++] = zr;
m_demodBuffer[m_demodBufferFill++] = zi;
}
else
{
Real demod = (zr + zi) * 0.7;
qint16 sample = (qint16)(demod);
m_demodBuffer[m_demodBufferFill++] = sample;
}
if (m_demodBufferFill >= m_demodBuffer.size())
{
QList<ObjectPipe*> dataPipes;
MainCore::instance()->getDataPipes().getDataPipes(m_channel, "demod", dataPipes);
if (dataPipes.size() > 0)
{
QList<ObjectPipe*>::iterator it = dataPipes.begin();
for (; it != dataPipes.end(); ++it)
{
DataFifo *fifo = qobject_cast<DataFifo*>((*it)->m_element);
if (fifo)
{
fifo->write(
(quint8*) &m_demodBuffer[0],
m_demodBuffer.size() * sizeof(qint16),
m_settings.m_audioBinaural ? DataFifo::DataTypeCI16 : DataFifo::DataTypeI16
);
}
}
}
m_demodBufferFill = 0;
}
} // audio sample
if (++m_audioBufferFill == m_audioBuffer.size())
{
std::size_t res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], std::min(m_audioBufferFill, m_audioBuffer.size()));
if (res != m_audioBufferFill) {
qDebug("WDSPRxSink::processOneSample: %lu/%lu samples written", res, m_audioBufferFill);
}
m_audioBufferFill = 0;
}
} // result loop
if (m_spectrumSink && (m_sampleBuffer.size() != 0))
{
m_spectrumSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), !m_settings.m_dsb);
m_sampleBuffer.clear();
}
m_inCount = 0;
}
}
void WDSPRxSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "WDSPRxSink::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset;
if ((m_channelFrequencyOffset != channelFrequencyOffset) ||
(m_channelSampleRate != channelSampleRate) || force)
{
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
}
if ((m_channelSampleRate != channelSampleRate) || force)
{
Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > channelSampleRate ? channelSampleRate : (m_Bandwidth * 1.5f);
m_interpolator.create(16, channelSampleRate, interpolatorBandwidth, 2.0f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) channelSampleRate / (Real) m_wdspSampleRate;
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
}
void WDSPRxSink::applyAudioSampleRate(int sampleRate)
{
qDebug("WDSPRxSink::applyAudioSampleRate: %d", sampleRate);
Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > m_channelSampleRate ? m_channelSampleRate : (m_Bandwidth * 1.5f);
m_interpolator.create(16, m_channelSampleRate, interpolatorBandwidth, 2.0f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) m_wdspSampleRate;
WDSP::RXA::setOutputSamplerate(m_rxa, sampleRate);
m_audioFifo.setSize(sampleRate);
m_audioSampleRate = sampleRate;
m_audioBuffer.resize(sampleRate / 10);
m_audioBufferFill = 0;
QList<ObjectPipe*> pipes;
MainCore::instance()->getMessagePipes().getMessagePipes(m_channel, "reportdemod", pipes);
if (pipes.size() > 0)
{
for (const auto& pipe : pipes)
{
MessageQueue* messageQueue = qobject_cast<MessageQueue*>(pipe->m_element);
if (messageQueue)
{
MainCore::MsgChannelDemodReport *msg = MainCore::MsgChannelDemodReport::create(m_channel, sampleRate);
messageQueue->push(msg);
}
}
}
}
void WDSPRxSink::applySettings(const WDSPRxSettings& settings, bool force)
{
qDebug() << "WDSPRxSink::applySettings:"
<< " m_demod: " << settings.m_demod
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
<< " m_profileIndex: " << settings.m_profileIndex
<< " m_spanLog2: " << settings.m_profiles[settings.m_profileIndex].m_spanLog2
<< " m_highCutoff: " << settings.m_profiles[settings.m_profileIndex].m_highCutoff
<< " m_lowCutoff: " << settings.m_profiles[settings.m_profileIndex].m_lowCutoff
<< " m_fftWindow: " << settings.m_profiles[settings.m_profileIndex].m_fftWindow << "]"
<< " m_volume: " << settings.m_volume
<< " m_audioBinaural: " << settings.m_audioBinaural
<< " m_audioFlipChannels: " << settings.m_audioFlipChannels
<< " m_dsb: " << settings.m_dsb
<< " m_audioMute: " << settings.m_audioMute
<< " m_agc: " << settings.m_agc
<< " m_agcMode: " << settings.m_agcMode
<< " m_agcGain: " << settings.m_agcGain
<< " m_agcSlope: " << settings.m_agcSlope
<< " m_agcHangThreshold: " << settings.m_agcHangThreshold
<< " m_audioDeviceName: " << settings.m_audioDeviceName
<< " m_anf: "<< settings.m_anf
<< " m_dnr: " << settings.m_dnr
<< " m_nrScheme: " << settings.m_nrScheme
<< " m_nrPosition: "<< settings.m_nrPosition
<< " m_nr2Gain: " << settings.m_nr2Gain
<< " m_nr2NPE: " << settings.m_nr2NPE
<< " m_nr2ArtifactReduction: " << settings.m_nr2ArtifactReduction
<< " m_streamIndex: " << settings.m_streamIndex
<< " m_useReverseAPI: " << settings.m_useReverseAPI
<< " m_reverseAPIAddress: " << settings.m_reverseAPIAddress
<< " m_reverseAPIPort: " << settings.m_reverseAPIPort
<< " m_reverseAPIDeviceIndex: " << settings.m_reverseAPIDeviceIndex
<< " m_reverseAPIChannelIndex: " << settings.m_reverseAPIChannelIndex
<< " force: " << force;
// Filter and mode
if((m_settings.m_profiles[m_settings.m_profileIndex].m_highCutoff != settings.m_profiles[settings.m_profileIndex].m_highCutoff) ||
(m_settings.m_profiles[m_settings.m_profileIndex].m_lowCutoff != settings.m_profiles[settings.m_profileIndex].m_lowCutoff) ||
(m_settings.m_profiles[m_settings.m_profileIndex].m_fftWindow != settings.m_profiles[settings.m_profileIndex].m_fftWindow) ||
(m_settings.m_demod != settings.m_demod) ||
(m_settings.m_dsb != settings.m_dsb) || force)
{
float band, low, high, fLow, fHigh;
bool usb, dsb;
band = settings.m_profiles[settings.m_profileIndex].m_highCutoff;
high = band;
low = settings.m_profiles[settings.m_profileIndex].m_lowCutoff;
if (band < 0)
{
band = -band;
m_spectrumProbe.setUSB(false);
usb = false;
}
else
{
m_spectrumProbe.setUSB(true);
usb = true;
}
m_Bandwidth = band;
if (high < low)
{
if (settings.m_dsb)
{
fLow = high;
fHigh = -high;
m_spectrumProbe.setDSB(true);
dsb = true;
}
else
{
fLow = high;
fHigh = low;
m_spectrumProbe.setDSB(false);
dsb = false;
}
}
else
{
if (settings.m_dsb)
{
fLow = -high;
fHigh = high;
m_spectrumProbe.setDSB(true);
dsb = true;
}
else
{
fLow = low;
fHigh = high;
m_spectrumProbe.setDSB(false);
dsb = false;
}
}
Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > m_channelSampleRate ? m_channelSampleRate : (m_Bandwidth * 1.5f);
m_interpolator.create(16, m_channelSampleRate, interpolatorBandwidth, 2.0f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) m_audioSampleRate;
WDSP::RXA::SetPassband(*m_rxa, fLow, fHigh);
WDSP::NBP::NBPSetWindow(*m_rxa, m_settings.m_profiles[m_settings.m_profileIndex].m_fftWindow);
if (settings.m_demod == WDSPRxProfile::DemodSSB)
{
if (dsb)
{
WDSP::RXA::SetMode(*m_rxa, WDSP::RXA::RXA_DSB);
}
else
{
if (usb) {
WDSP::RXA::SetMode(*m_rxa, WDSP::RXA::RXA_USB);
} else {
WDSP::RXA::SetMode(*m_rxa, WDSP::RXA::RXA_LSB);
}
}
}
else if (settings.m_demod == WDSPRxProfile::DemodAM)
{
WDSP::RXA::SetMode(*m_rxa, WDSP::RXA::RXA_AM);
}
else if (settings.m_demod == WDSPRxProfile::DemodSAM)
{
WDSP::RXA::SetMode(*m_rxa, WDSP::RXA::RXA_SAM);
}
else if (settings.m_demod == WDSPRxProfile::DemodFMN)
{
WDSP::RXA::SetMode(*m_rxa, WDSP::RXA::RXA_FM);
}
}
if ((m_settings.m_profiles[settings.m_profileIndex].m_spanLog2 != settings.m_profiles[settings.m_profileIndex].m_spanLog2) || force) {
m_spectrumProbe.setSpanLog2(settings.m_profiles[settings.m_profileIndex].m_spanLog2);
}
// Noise Reduction
if ((m_settings.m_dnr != settings.m_dnr)
|| (m_settings.m_nrScheme != settings.m_nrScheme) || force)
{
WDSP::ANR::SetANRRun(*m_rxa, 0);
WDSP::EMNR::SetEMNRRun(*m_rxa, 0);
if (settings.m_dnr)
{
switch (settings.m_nrScheme)
{
case WDSPRxProfile::NRSchemeNR:
WDSP::ANR::SetANRRun(*m_rxa, 1);
break;
case WDSPRxProfile::NRSchemeNR2:
WDSP::EMNR::SetEMNRRun(*m_rxa, 1);
break;
default:
break;
}
}
}
if ((m_settings.m_nrPosition != settings.m_nrPosition) || force)
{
switch (settings.m_nrPosition)
{
case WDSPRxProfile::NRPositionPreAGC:
WDSP::ANR::SetANRPosition(*m_rxa, 0);
WDSP::EMNR::SetEMNRPosition(*m_rxa, 0);
break;
case WDSPRxProfile::NRPositionPostAGC:
WDSP::ANR::SetANRPosition(*m_rxa, 1);
WDSP::EMNR::SetEMNRPosition(*m_rxa, 1);
break;
default:
break;
}
}
if ((m_settings.m_nr2Gain != settings.m_nr2Gain) || force)
{
switch (settings.m_nr2Gain)
{
case WDSPRxProfile::NR2GainLinear:
WDSP::EMNR::SetEMNRgainMethod(*m_rxa, 0);
break;
case WDSPRxProfile::NR2GainLog:
WDSP::EMNR::SetEMNRgainMethod(*m_rxa, 1);
break;
case WDSPRxProfile::NR2GainGamma:
WDSP::EMNR::SetEMNRgainMethod(*m_rxa, 2);
break;
default:
break;
}
}
if ((m_settings.m_nr2NPE != settings.m_nr2NPE) || force)
{
switch (settings.m_nr2NPE)
{
case WDSPRxProfile::NR2NPEOSMS:
WDSP::EMNR::SetEMNRnpeMethod(*m_rxa, 0);
break;
case WDSPRxProfile::NR2NPEMMSE:
WDSP::EMNR::SetEMNRnpeMethod(*m_rxa, 1);
break;
default:
break;
}
}
if ((m_settings.m_nr2ArtifactReduction != settings.m_nr2ArtifactReduction) || force) {
WDSP::EMNR::SetEMNRaeRun(*m_rxa, settings.m_nr2ArtifactReduction ? 1 : 0);
}
if ((m_settings.m_anf != settings.m_anf) || force) {
WDSP::ANF::SetANFRun(*m_rxa, settings.m_anf ? 1 : 0);
}
// CW Peaking
if ((m_settings.m_cwPeaking != settings.m_cwPeaking) || force) {
WDSP::SPEAK::SetSPCWRun(*m_rxa, settings.m_cwPeaking ? 1 : 0);
}
if ((m_settings.m_cwPeakFrequency != settings.m_cwPeakFrequency) || force) {
WDSP::SPEAK::SetSPCWFreq(*m_rxa, settings.m_cwPeakFrequency);
}
if ((m_settings.m_cwBandwidth != settings.m_cwBandwidth) || force) {
WDSP::SPEAK::SetSPCWBandwidth(*m_rxa, settings.m_cwBandwidth);
}
if ((m_settings.m_cwGain != settings.m_cwGain) || force) {
WDSP::SPEAK::SetSPCWGain(*m_rxa, settings.m_cwGain);
}
// Noise Blanker
if ((m_settings.m_dnb != settings.m_dnb)
|| (m_settings.m_nbScheme != settings.m_nbScheme) || force)
{
WDSP::ANB::SetANBRun(*m_rxa, 0);
WDSP::NOB::SetNOBRun(*m_rxa, 0);
if (settings.m_dnb)
{
switch(settings.m_nbScheme)
{
case WDSPRxProfile::NBSchemeNB:
WDSP::ANB::SetANBRun(*m_rxa, 1);
break;
case WDSPRxProfile::NBSchemeNB2:
WDSP::NOB::SetNOBRun(*m_rxa, 1);
break;
default:
break;
}
}
}
if ((m_settings.m_nbSlewTime != settings.m_nbSlewTime) || force)
{
WDSP::ANB::SetANBTau(*m_rxa, settings.m_nbSlewTime * 0.001);
WDSP::NOB::SetNOBTau(*m_rxa, settings.m_nbSlewTime * 0.001);
}
if ((m_settings.m_nbLeadTime != settings.m_nbLeadTime) || force)
{
WDSP::ANB::SetANBAdvtime(*m_rxa, settings.m_nbLeadTime * 0.001);
WDSP::NOB::SetNOBAdvtime(*m_rxa, settings.m_nbLeadTime * 0.001);
}
if ((m_settings.m_nbLagTime != settings.m_nbLagTime) || force)
{
WDSP::ANB::SetANBHangtime(*m_rxa, settings.m_nbLagTime * 0.001);
WDSP::NOB::SetNOBHangtime(*m_rxa, settings.m_nbLagTime * 0.001);
}
if ((m_settings.m_nbThreshold != settings.m_nbThreshold) || force)
{
WDSP::ANB::SetANBThreshold(*m_rxa, settings.m_nbThreshold);
WDSP::NOB::SetNOBThreshold(*m_rxa, settings.m_nbThreshold);
}
if ((m_settings.m_nbAvgTime != settings.m_nbAvgTime) || force)
{
WDSP::ANB::SetANBBacktau(*m_rxa, settings.m_nbAvgTime * 0.001);
WDSP::NOB::SetNOBBacktau(*m_rxa, settings.m_nbAvgTime * 0.001);
}
// AM option
if ((m_settings.m_amFadeLevel != settings.m_amFadeLevel) || force) {
WDSP::AMD::SetAMDFadeLevel(*m_rxa, settings.m_amFadeLevel);
}
// FM options
if ((m_settings.m_fmDeviation != settings.m_fmDeviation) || force) {
WDSP::FMD::SetFMDeviation(*m_rxa, settings.m_fmDeviation);
}
if ((m_settings.m_fmAFLow != settings.m_fmAFLow)
|| (m_settings.m_fmAFHigh != settings.m_fmAFHigh) || force)
{
WDSP::FMD::SetFMAFFilter(*m_rxa, settings.m_fmAFLow, settings.m_fmAFHigh);
}
if ((m_settings.m_fmAFLimiter != settings.m_fmAFLimiter) || force) {
WDSP::FMD::SetFMLimRun(*m_rxa, settings.m_fmAFLimiter ? 1 : 0);
}
if ((m_settings.m_fmAFLimiterGain != settings.m_fmAFLimiterGain) || force) {
WDSP::FMD::SetFMLimGain(*m_rxa, settings.m_fmAFLimiterGain);
}
if ((m_settings.m_fmCTCSSNotch != settings.m_fmCTCSSNotch) || force) {
WDSP::FMD::SetCTCSSRun(*m_rxa, settings.m_fmCTCSSNotch ? 1 : 0);
}
if ((m_settings.m_fmCTCSSNotchFrequency != settings.m_fmCTCSSNotchFrequency) || force) {
WDSP::FMD::SetCTCSSFreq(*m_rxa, settings.m_fmCTCSSNotchFrequency);
}
// Squelch
if ((m_settings.m_squelch != settings.m_squelch)
|| (m_settings.m_squelchThreshold != settings.m_squelchThreshold)
|| (m_settings.m_squelchMode != settings.m_squelchMode) || force)
{
WDSP::SSQL::SetSSQLRun(*m_rxa, 0);
WDSP::AMSQ::SetAMSQRun(*m_rxa, 0);
WDSP::FMSQ::SetFMSQRun(*m_rxa, 0);
if (settings.m_squelch)
{
switch(settings.m_squelchMode)
{
case WDSPRxProfile::SquelchModeVoice:
{
WDSP::SSQL::SetSSQLRun(*m_rxa, 1);
double threshold = 0.0075 * settings.m_squelchThreshold;
WDSP::SSQL::SetSSQLThreshold(*m_rxa, threshold);
}
break;
case WDSPRxProfile::SquelchModeAM:
{
WDSP::AMSQ::SetAMSQRun(*m_rxa, 1);
double threshold = ((settings.m_squelchThreshold / 100.0) * 160.0) - 160.0;
WDSP::AMSQ::SetAMSQThreshold(*m_rxa, threshold);
}
break;
case WDSPRxProfile::SquelchModeFM:
{
WDSP::FMSQ::SetFMSQRun(*m_rxa, 1);
double threshold = pow(10.0, -2.0 * ((double) settings.m_squelchThreshold) / 100.0);
qDebug("WDSPRxSink::applySettings: FM squelch %lf", threshold);
WDSP::FMSQ::SetFMSQThreshold(*m_rxa, threshold);
}
break;
default:
break;
}
}
}
if ((m_settings.m_ssqlTauMute != settings.m_ssqlTauMute) || force) {
WDSP::SSQL::SetSSQLTauMute(*m_rxa, settings.m_ssqlTauMute);
}
if ((m_settings.m_ssqlTauUnmute != settings.m_ssqlTauUnmute) || force) {
WDSP::SSQL::SetSSQLTauUnMute(*m_rxa, settings.m_ssqlTauUnmute);
}
if ((m_settings.m_amsqMaxTail != settings.m_amsqMaxTail) || force) {
WDSP::AMSQ::SetAMSQMaxTail(*m_rxa, settings.m_amsqMaxTail);
}
// Audio panel
if ((m_settings.m_volume != settings.m_volume) || force) {
WDSP::PANEL::SetPanelGain1(*m_rxa, settings.m_volume);
}
if ((m_settings.m_audioBinaural != settings.m_audioBinaural) || force) {
WDSP::PANEL::SetPanelBinaural(*m_rxa, settings.m_audioBinaural ? 1 : 0);
}
if ((m_settings.m_audioFlipChannels != settings.m_audioFlipChannels) || force) {
WDSP::PANEL::SetPanelCopy(*m_rxa, settings.m_audioFlipChannels ? 3 : 0);
}
// AGC
if ((m_settings.m_agc != settings.m_agc)
|| (m_settings.m_agcMode != settings.m_agcMode)
|| (m_settings.m_agcSlope != settings.m_agcSlope)
|| (m_settings.m_agcHangThreshold != settings.m_agcHangThreshold)
|| (m_settings.m_agcGain != settings.m_agcGain) || force)
{
WDSP::WCPAGC::SetAGCSlope(*m_rxa, settings.m_agcSlope); // SetRXAAGCSlope(id, rx->agc_slope);
WDSP::WCPAGC::SetAGCTop(*m_rxa, (float) settings.m_agcGain); // SetRXAAGCTop(id, rx->agc_gain);
if (settings.m_agc)
{
switch (settings.m_agcMode)
{
case WDSPRxProfile::WDSPRxAGCMode::AGCLong:
WDSP::WCPAGC::SetAGCMode(*m_rxa, 1);
WDSP::WCPAGC::SetAGCAttack(*m_rxa, 2); // SetRXAAGCAttack(id, 2);
WDSP::WCPAGC::SetAGCHang(*m_rxa, 2000); // SetRXAAGCHang(id, 2000);
WDSP::WCPAGC::SetAGCDecay(*m_rxa, 2000); // SetRXAAGCDecay(id, 2000);
WDSP::WCPAGC::SetAGCHangThreshold(*m_rxa, settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, (int)rx->agc_hang_threshold);
break;
case WDSPRxProfile::WDSPRxAGCMode::AGCSlow:
WDSP::WCPAGC::SetAGCMode(*m_rxa, 2);
WDSP::WCPAGC::SetAGCAttack(*m_rxa, 2); // SetRXAAGCAttack(id, 2);
WDSP::WCPAGC::SetAGCHang(*m_rxa, 1000); // SetRXAAGCHang(id, 1000);
WDSP::WCPAGC::SetAGCDecay(*m_rxa, 500); // SetRXAAGCDecay(id, 500);
WDSP::WCPAGC::SetAGCHangThreshold(*m_rxa, settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, (int)rx->agc_hang_threshold);
break;
case WDSPRxProfile::WDSPRxAGCMode::AGCMedium:
WDSP::WCPAGC::SetAGCMode(*m_rxa, 3);
WDSP::WCPAGC::SetAGCAttack(*m_rxa, 2); // SetRXAAGCAttack(id, 2);
WDSP::WCPAGC::SetAGCHang(*m_rxa, 0); // SetRXAAGCHang(id, 0);
WDSP::WCPAGC::SetAGCDecay(*m_rxa, 250); // SetRXAAGCDecay(id, 250);
WDSP::WCPAGC::SetAGCHangThreshold(*m_rxa, settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, 100);
break;
case WDSPRxProfile::WDSPRxAGCMode::AGCFast:
WDSP::WCPAGC::SetAGCMode(*m_rxa, 4);
WDSP::WCPAGC::SetAGCAttack(*m_rxa, 2); // SetRXAAGCAttack(id, 2);
WDSP::WCPAGC::SetAGCHang(*m_rxa, 0); // SetRXAAGCHang(id, 0);
WDSP::WCPAGC::SetAGCDecay(*m_rxa, 50); // SetRXAAGCDecay(id, 50);
WDSP::WCPAGC::SetAGCHangThreshold(*m_rxa, settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, 100);
break;
}
}
else
{
WDSP::WCPAGC::SetAGCMode(*m_rxa, 0);
}
}
m_settings = settings;
}