1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2025-04-10 05:29:06 -04:00

Tx ph.2: put the double buffered FIR interpolator and decimator in its own class

This commit is contained in:
f4exb 2016-11-01 15:02:50 +01:00
parent ded1d3c298
commit 5d5593bda7
5 changed files with 624 additions and 285 deletions

View File

@ -212,6 +212,7 @@ set(sdrbase_HEADERS
sdrbase/dsp/interpolator.h
sdrbase/dsp/hbfiltertraits.h
sdrbase/dsp/inthalfbandfilter.h
sdrbase/dsp/inthalfbandfilterdb.h
sdrbase/dsp/kissfft.h
sdrbase/dsp/kissengine.h
sdrbase/dsp/lowpass.h

View File

@ -1,3 +1,20 @@
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016 F4EXB //
// written by Edouard Griffiths //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef INCLUDE_INTHALFBANDFILTER_H
#define INCLUDE_INTHALFBANDFILTER_H
@ -86,51 +103,6 @@ public:
}
}
// upsample by 2, return center part of original spectrum - double buffer variant
bool workInterpolateCenterDB(Sample* sampleIn, Sample *SampleOut)
{
switch(m_state)
{
case 0:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = 0;
m_samplesDB[m_ptrDB][1] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][0] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][1] = 0;
// save result
doFIRDB(SampleOut);
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB][1] = sampleIn->imag();
m_samplesDB[m_ptrDB + m_sizeDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB + m_sizeDB][1] = sampleIn->imag();
// save result
doFIRDB(SampleOut);
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
}
}
bool workDecimateCenter(qint32 *x, qint32 *y)
{
// insert sample into ring-buffer
@ -356,99 +328,6 @@ public:
}
}
// upsample by 2, from lower half of original spectrum - double buffer variant
bool workInterpolateLowerHalfDB(Sample* sampleIn, Sample *sampleOut)
{
Sample s;
switch(m_state)
{
case 0:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = 0;
m_samplesDB[m_ptrDB][1] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][0] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][1] = 0;
// save result
doFIRDB(&s);
sampleOut->setReal(s.imag());
sampleOut->setImag(-s.real());
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
case 1:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB][1] = sampleIn->imag();
m_samplesDB[m_ptrDB + m_sizeDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB + m_sizeDB][1] = sampleIn->imag();
// save result
doFIRDB(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 2;
// tell caller we consumed the sample
return true;
case 2:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = 0;
m_samplesDB[m_ptrDB][1] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][0] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][1] = 0;
// save result
doFIRDB(&s);
sampleOut->setReal(-s.imag());
sampleOut->setImag(s.real());
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 3;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB][1] = sampleIn->imag();
m_samplesDB[m_ptrDB + m_sizeDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB + m_sizeDB][1] = sampleIn->imag();
// save result
doFIRDB(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
}
}
// downsample by 2, return upper half of original spectrum
bool workDecimateUpperHalf(Sample* sample)
{
@ -603,99 +482,6 @@ public:
}
}
// upsample by 2, move original spectrum to upper half - double buffer variant
bool workInterpolateUpperHalfDB(Sample* sampleIn, Sample *sampleOut)
{
Sample s;
switch(m_state)
{
case 0:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = 0;
m_samplesDB[m_ptrDB][1] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][0] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][1] = 0;
// save result
doFIRDB(&s);
sampleOut->setReal(-s.imag());
sampleOut->setImag(s.real());
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
case 1:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB][1] = sampleIn->imag();
m_samplesDB[m_ptrDB + m_sizeDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB + m_sizeDB][1] = sampleIn->imag();
// save result
doFIRDB(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 2;
// tell caller we consumed the sample
return true;
case 2:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = 0;
m_samplesDB[m_ptrDB][1] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][0] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][1] = 0;
// save result
doFIRDB(&s);
sampleOut->setReal(s.imag());
sampleOut->setImag(-s.real());
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 3;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB][1] = sampleIn->imag();
m_samplesDB[m_ptrDB + m_sizeDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB + m_sizeDB][1] = sampleIn->imag();
// save result
doFIRDB(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
}
}
void myDecimate(const Sample* sample1, Sample* sample2)
{
m_samples[m_ptr][0] = sample1->real();
@ -726,42 +512,14 @@ public:
protected:
qint32 m_samples[HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1][2]; // Valgrind optim (from qint16)
qint32 m_samplesDB[2*(HBFIRFilterTraits<HBFilterOrder>::hbOrder - 1)][2]; // double buffer technique
qint16 m_ptr;
int m_ptrDB;
int m_sizeDB;
int m_state;
void doFIRDB(Sample* sample)
{
int a = m_ptrDB + m_sizeDB; // tip pointer
int b = m_ptrDB + 1; // tail pointer
qint32 iAcc = 0;
qint32 qAcc = 0;
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder / 4; i++)
{
iAcc += (m_samplesDB[a][0] + m_samplesDB[b][0]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
qAcc += (m_samplesDB[a][1] + m_samplesDB[b][1]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
a -= 2;
b += 2;
}
iAcc += ((qint32)m_samplesDB[b-1][0]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
qAcc += ((qint32)m_samplesDB[b-1][1]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
sample->setReal(iAcc >> HBFIRFilterTraits<HBFilterOrder>::hbShift -1);
sample->setImag(qAcc >> HBFIRFilterTraits<HBFilterOrder>::hbShift -1);
}
void doFIR(Sample* sample)
{
// init read-pointer
// int a = HBFIRFilterTraits<HBFilterOrder>::hbMod[m_ptr + 2 + 1]; // 0 + 1
// int b = HBFIRFilterTraits<HBFilterOrder>::hbMod[m_ptr + 2 - 2]; //-1 - 1
// ancient way:
int a = (m_ptr + 1) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
int b = (m_ptr + (HBFIRFilterTraits<HBFilterOrder>::hbOrder - 1)) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
int a = HBFIRFilterTraits<HBFilterOrder>::hbMod[m_ptr + 2 + 1]; // 0 + 1
int b = HBFIRFilterTraits<HBFilterOrder>::hbMod[m_ptr + 2 - 2]; //-1 - 1
// go through samples in buffer
qint32 iAcc = 0;
@ -776,16 +534,11 @@ protected:
qAcc += (m_samples[a][1] + m_samples[b][1]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
// update read-pointer
// a = HBFIRFilterTraits<HBFilterOrder>::hbMod[a + 2 + 2];
// b = HBFIRFilterTraits<HBFilterOrder>::hbMod[b + 2 - 2];
// ancient way:
a = (a + 2) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
b = (b + (HBFIRFilterTraits<HBFilterOrder>::hbOrder - 1)) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
a = HBFIRFilterTraits<HBFilterOrder>::hbMod[a + 2 + 2];
b = HBFIRFilterTraits<HBFilterOrder>::hbMod[b + 2 - 2];
}
// a = HBFIRFilterTraits<HBFilterOrder>::hbMod[a + 2 - 1];
// ancient way:
a = (a + HBFIRFilterTraits<HBFilterOrder>::hbOrder) % (HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1);
a = HBFIRFilterTraits<HBFilterOrder>::hbMod[a + 2 - 1];
iAcc += ((qint32)m_samples[a][0] + 1) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
qAcc += ((qint32)m_samples[a][1] + 1) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
@ -837,22 +590,13 @@ protected:
template<uint32_t HBFilterOrder>
IntHalfbandFilter<HBFilterOrder>::IntHalfbandFilter()
{
m_sizeDB = HBFIRFilterTraits<HBFilterOrder>::hbOrder - 1;
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder + 1; i++)
{
m_samples[i][0] = 0;
m_samples[i][1] = 0;
if (i < m_sizeDB)
{
m_samplesDB[i][0] = 0;
m_samplesDB[i][1] = 0;
}
}
m_ptr = 0;
m_ptrDB = 0;
m_state = 0;
}

View File

@ -0,0 +1,594 @@
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016 F4EXB //
// written by Edouard Griffiths //
// //
// Integer half-band FIR based interpolator and decimator //
// This is the double buffer variant //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef INCLUDE_INTHALFBANDFILTER_DB_H
#define INCLUDE_INTHALFBANDFILTER_DB_H
#include <stdint.h>
#include "dsp/dsptypes.h"
#include "dsp/hbfiltertraits.h"
#include "util/export.h"
template<uint32_t HBFilterOrder>
class SDRANGEL_API IntHalfbandFilterDB {
public:
IntHalfbandFilterDB();
// downsample by 2, return center part of original spectrum
bool workDecimateCenter(Sample* sample)
{
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = sample->real();
m_samplesDB[m_ptrDB][1] = sample->imag();
m_samplesDB[m_ptrDB + m_sizeDB][0] = sample->real();
m_samplesDB[m_ptrDB + m_sizeDB][1] = sample->imag();
switch(m_state)
{
case 0:
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
default:
// save result
doFIR(sample);
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// upsample by 2, return center part of original spectrum - double buffer variant
bool workInterpolateCenter(Sample* sampleIn, Sample *SampleOut)
{
switch(m_state)
{
case 0:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = 0;
m_samplesDB[m_ptrDB][1] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][0] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][1] = 0;
// save result
doFIR(SampleOut);
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB][1] = sampleIn->imag();
m_samplesDB[m_ptrDB + m_sizeDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB + m_sizeDB][1] = sampleIn->imag();
// save result
doFIR(SampleOut);
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
}
}
bool workDecimateCenter(qint32 *x, qint32 *y)
{
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = *x;
m_samplesDB[m_ptrDB][1] = *y;
m_samplesDB[m_ptrDB + m_sizeDB][0] = *x;
m_samplesDB[m_ptrDB + m_sizeDB][1] = *y;
switch(m_state)
{
case 0:
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
default:
// save result
doFIR(x, y);
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// downsample by 2, return lower half of original spectrum
bool workDecimateLowerHalf(Sample* sample)
{
switch(m_state)
{
case 0:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = -sample->imag();
m_samplesDB[m_ptrDB][1] = sample->real();
m_samplesDB[m_ptrDB + m_sizeDB][0] = -sample->imag();
m_samplesDB[m_ptrDB + m_sizeDB][1] = sample->real();
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
case 1:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = -sample->real();
m_samplesDB[m_ptrDB][1] = -sample->imag();
m_samplesDB[m_ptrDB + m_sizeDB][0] = -sample->real();
m_samplesDB[m_ptrDB + m_sizeDB][1] = -sample->imag();
// save result
doFIR(sample);
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 2;
// tell caller we have a new sample
return true;
case 2:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = sample->imag();
m_samplesDB[m_ptrDB][1] = -sample->real();
m_samplesDB[m_ptrDB + m_sizeDB][0] = sample->imag();
m_samplesDB[m_ptrDB + m_sizeDB][1] = -sample->real();
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 3;
// tell caller we don't have a new sample
return false;
default:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = sample->real();
m_samplesDB[m_ptrDB][1] = sample->imag();
m_samplesDB[m_ptrDB + m_sizeDB][0] = sample->real();
m_samplesDB[m_ptrDB + m_sizeDB][1] = sample->imag();
// save result
doFIR(sample);
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// upsample by 2, from lower half of original spectrum - double buffer variant
bool workInterpolateLowerHalf(Sample* sampleIn, Sample *sampleOut)
{
Sample s;
switch(m_state)
{
case 0:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = 0;
m_samplesDB[m_ptrDB][1] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][0] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][1] = 0;
// save result
doFIR(&s);
sampleOut->setReal(s.imag());
sampleOut->setImag(-s.real());
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
case 1:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB][1] = sampleIn->imag();
m_samplesDB[m_ptrDB + m_sizeDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB + m_sizeDB][1] = sampleIn->imag();
// save result
doFIR(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 2;
// tell caller we consumed the sample
return true;
case 2:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = 0;
m_samplesDB[m_ptrDB][1] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][0] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][1] = 0;
// save result
doFIR(&s);
sampleOut->setReal(-s.imag());
sampleOut->setImag(s.real());
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 3;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB][1] = sampleIn->imag();
m_samplesDB[m_ptrDB + m_sizeDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB + m_sizeDB][1] = sampleIn->imag();
// save result
doFIR(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
}
}
// downsample by 2, return upper half of original spectrum
bool workDecimateUpperHalf(Sample* sample)
{
switch(m_state)
{
case 0:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = sample->imag();
m_samplesDB[m_ptrDB][1] = -sample->real();
m_samplesDB[m_ptrDB + m_sizeDB][0] = sample->imag();
m_samplesDB[m_ptrDB + m_sizeDB][1] = -sample->real();
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 1;
// tell caller we don't have a new sample
return false;
case 1:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = -sample->real();
m_samplesDB[m_ptrDB][1] = -sample->imag();
m_samplesDB[m_ptrDB + m_sizeDB][0] = -sample->real();
m_samplesDB[m_ptrDB + m_sizeDB][1] = -sample->imag();
// save result
doFIR(sample);
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 2;
// tell caller we have a new sample
return true;
case 2:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = -sample->imag();
m_samplesDB[m_ptrDB][1] = sample->real();
m_samplesDB[m_ptrDB + m_sizeDB][0] = -sample->imag();
m_samplesDB[m_ptrDB + m_sizeDB][1] = sample->real();
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 3;
// tell caller we don't have a new sample
return false;
default:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = sample->real();
m_samplesDB[m_ptrDB][1] = sample->imag();
m_samplesDB[m_ptrDB + m_sizeDB][0] = sample->real();
m_samplesDB[m_ptrDB + m_sizeDB][1] = sample->imag();
// save result
doFIR(sample);
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 0;
// tell caller we have a new sample
return true;
}
}
// upsample by 2, move original spectrum to upper half - double buffer variant
bool workInterpolateUpperHalf(Sample* sampleIn, Sample *sampleOut)
{
Sample s;
switch(m_state)
{
case 0:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = 0;
m_samplesDB[m_ptrDB][1] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][0] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][1] = 0;
// save result
doFIR(&s);
sampleOut->setReal(-s.imag());
sampleOut->setImag(s.real());
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 1;
// tell caller we didn't consume the sample
return false;
case 1:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB][1] = sampleIn->imag();
m_samplesDB[m_ptrDB + m_sizeDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB + m_sizeDB][1] = sampleIn->imag();
// save result
doFIR(&s);
sampleOut->setReal(-s.real());
sampleOut->setImag(-s.imag());
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 2;
// tell caller we consumed the sample
return true;
case 2:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = 0;
m_samplesDB[m_ptrDB][1] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][0] = 0;
m_samplesDB[m_ptrDB + m_sizeDB][1] = 0;
// save result
doFIR(&s);
sampleOut->setReal(s.imag());
sampleOut->setImag(-s.real());
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 3;
// tell caller we didn't consume the sample
return false;
default:
// insert sample into ring-buffer
m_samplesDB[m_ptrDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB][1] = sampleIn->imag();
m_samplesDB[m_ptrDB + m_sizeDB][0] = sampleIn->real();
m_samplesDB[m_ptrDB + m_sizeDB][1] = sampleIn->imag();
// save result
doFIR(&s);
sampleOut->setReal(s.real());
sampleOut->setImag(s.imag());
// advance write-pointer
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
// next state
m_state = 0;
// tell caller we consumed the sample
return true;
}
}
void myDecimate(const Sample* sample1, Sample* sample2)
{
m_samplesDB[m_ptrDB][0] = sample1->real();
m_samplesDB[m_ptrDB][1] = sample1->imag();
m_samplesDB[m_ptrDB + m_sizeDB][0] = sample1->real();
m_samplesDB[m_ptrDB + m_sizeDB][1] = sample1->imag();
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
m_samplesDB[m_ptrDB][0] = sample2->real();
m_samplesDB[m_ptrDB][1] = sample2->imag();
m_samplesDB[m_ptrDB + m_sizeDB][0] = sample2->real();
m_samplesDB[m_ptrDB + m_sizeDB][1] = sample2->imag();
doFIR(sample2);
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
}
void myDecimate(qint32 x1, qint32 y1, qint32 *x2, qint32 *y2)
{
m_samplesDB[m_ptrDB][0] = x1;
m_samplesDB[m_ptrDB][1] = y1;
m_samplesDB[m_ptrDB + m_sizeDB][0] = x1;
m_samplesDB[m_ptrDB + m_sizeDB][1] = y1;
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
m_samplesDB[m_ptrDB][0] = *x2;
m_samplesDB[m_ptrDB][1] = *y2;
m_samplesDB[m_ptrDB + m_sizeDB][0] = *x2;
m_samplesDB[m_ptrDB + m_sizeDB][1] = *y2;
doFIR(x2, y2);
m_ptrDB = (m_ptrDB + 1) % m_sizeDB;
}
protected:
qint32 m_samplesDB[2*(HBFIRFilterTraits<HBFilterOrder>::hbOrder - 1)][2]; // double buffer technique
int m_ptrDB;
int m_sizeDB;
int m_state;
void doFIR(Sample* sample)
{
int a = m_ptrDB + m_sizeDB; // tip pointer
int b = m_ptrDB + 1; // tail pointer
qint32 iAcc = 0;
qint32 qAcc = 0;
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder / 4; i++)
{
iAcc += (m_samplesDB[a][0] + m_samplesDB[b][0]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
qAcc += (m_samplesDB[a][1] + m_samplesDB[b][1]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
a -= 2;
b += 2;
}
iAcc += ((qint32)m_samplesDB[b-1][0]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
qAcc += ((qint32)m_samplesDB[b-1][1]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
sample->setReal(iAcc >> HBFIRFilterTraits<HBFilterOrder>::hbShift -1);
sample->setImag(qAcc >> HBFIRFilterTraits<HBFilterOrder>::hbShift -1);
}
void doFIR(qint32 *x, qint32 *y)
{
int a = m_ptrDB + m_sizeDB; // tip pointer
int b = m_ptrDB + 1; // tail pointer
qint32 iAcc = 0;
qint32 qAcc = 0;
for (int i = 0; i < HBFIRFilterTraits<HBFilterOrder>::hbOrder / 4; i++)
{
iAcc += (m_samplesDB[a][0] + m_samplesDB[b][0]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
qAcc += (m_samplesDB[a][1] + m_samplesDB[b][1]) * HBFIRFilterTraits<HBFilterOrder>::hbCoeffs[i];
a -= 2;
b += 2;
}
iAcc += ((qint32)m_samplesDB[b-1][0]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
qAcc += ((qint32)m_samplesDB[b-1][1]) << (HBFIRFilterTraits<HBFilterOrder>::hbShift - 1);
*x = iAcc >> (HBFIRFilterTraits<HBFilterOrder>::hbShift -1); // HB_SHIFT incorrect do not loose the gained bit
*y = qAcc >> (HBFIRFilterTraits<HBFilterOrder>::hbShift -1);
}
};
template<uint32_t HBFilterOrder>
IntHalfbandFilterDB<HBFilterOrder>::IntHalfbandFilterDB()
{
m_sizeDB = HBFIRFilterTraits<HBFilterOrder>::hbOrder - 1;
for (int i = 0; i < m_sizeDB; i++)
{
m_samplesDB[i][0] = 0;
m_samplesDB[i][1] = 0;
}
m_ptrDB = 0;
m_state = 0;
}
#endif // INCLUDE_INTHALFBANDFILTER_DB_H

View File

@ -202,20 +202,20 @@ void UpChannelizer::applyConfiguration()
}
UpChannelizer::FilterStage::FilterStage(Mode mode) :
m_filter(new IntHalfbandFilter<UPCHANNELIZER_HB_FILTER_ORDER>),
m_filter(new IntHalfbandFilterDB<UPCHANNELIZER_HB_FILTER_ORDER>),
m_workFunction(0)
{
switch(mode) {
case ModeCenter:
m_workFunction = &IntHalfbandFilter<UPCHANNELIZER_HB_FILTER_ORDER>::workInterpolateCenterDB;
m_workFunction = &IntHalfbandFilterDB<UPCHANNELIZER_HB_FILTER_ORDER>::workInterpolateCenter;
break;
case ModeLowerHalf:
m_workFunction = &IntHalfbandFilter<UPCHANNELIZER_HB_FILTER_ORDER>::workInterpolateLowerHalfDB;
m_workFunction = &IntHalfbandFilterDB<UPCHANNELIZER_HB_FILTER_ORDER>::workInterpolateLowerHalf;
break;
case ModeUpperHalf:
m_workFunction = &IntHalfbandFilter<UPCHANNELIZER_HB_FILTER_ORDER>::workInterpolateUpperHalfDB;
m_workFunction = &IntHalfbandFilterDB<UPCHANNELIZER_HB_FILTER_ORDER>::workInterpolateUpperHalf;
break;
}
}

View File

@ -23,7 +23,7 @@
#include <QMutex>
#include "util/export.h"
#include "util/message.h"
#include "dsp/inthalfbandfilter.h"
#include "dsp/inthalfbandfilterdb.h"
#define UPCHANNELIZER_HB_FILTER_ORDER 96
@ -69,8 +69,8 @@ protected:
ModeUpperHalf
};
typedef bool (IntHalfbandFilter<UPCHANNELIZER_HB_FILTER_ORDER>::*WorkFunction)(Sample* sIn, Sample *sOut);
IntHalfbandFilter<UPCHANNELIZER_HB_FILTER_ORDER>* m_filter;
typedef bool (IntHalfbandFilterDB<UPCHANNELIZER_HB_FILTER_ORDER>::*WorkFunction)(Sample* sIn, Sample *sOut);
IntHalfbandFilterDB<UPCHANNELIZER_HB_FILTER_ORDER>* m_filter;
WorkFunction m_workFunction;
FilterStage(Mode mode);