1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-09-21 12:26:34 -04:00

WDSP receiver: implemented squelch

This commit is contained in:
f4exb 2024-07-06 22:43:46 +02:00
parent 07e179c196
commit 8dd46a08ea
12 changed files with 1569 additions and 20 deletions

View File

@ -21,7 +21,6 @@
#include <vector> #include <vector>
#include <QNetworkRequest> #include <QNetworkRequest>
#include <QRecursiveMutex>
#include "dsp/mimochannel.h" #include "dsp/mimochannel.h"
#include "dsp/spectrumvis.h" #include "dsp/spectrumvis.h"
@ -186,7 +185,7 @@ private:
ScopeVis m_scopeSink; ScopeVis m_scopeSink;
QThread *m_thread; QThread *m_thread;
InterferometerBaseband* m_basebandSink; InterferometerBaseband* m_basebandSink;
QRecursiveMutex m_mutex; QMutex m_mutex;
bool m_running; bool m_running;
InterferometerSettings m_settings; InterferometerSettings m_settings;
MessageQueue *m_guiMessageQueue; //!< Input message queue to the GUI MessageQueue *m_guiMessageQueue; //!< Input message queue to the GUI

View File

@ -22,6 +22,7 @@ WDSPRxDNRDialog::WDSPRxDNRDialog(QWidget* parent) :
ui(new Ui::WDSPRxDNRDialog) ui(new Ui::WDSPRxDNRDialog)
{ {
ui->setupUi(this); ui->setupUi(this);
ui->snb->hide();
} }
WDSPRxDNRDialog::~WDSPRxDNRDialog() WDSPRxDNRDialog::~WDSPRxDNRDialog()
@ -29,6 +30,14 @@ WDSPRxDNRDialog::~WDSPRxDNRDialog()
delete ui; delete ui;
} }
void WDSPRxDNRDialog::setSNB(bool snb)
{
ui->snb->blockSignals(true);
ui->snb->setChecked(snb);
ui->snb->blockSignals(false);
m_snb = snb;
}
void WDSPRxDNRDialog::setANF(bool anf) void WDSPRxDNRDialog::setANF(bool anf)
{ {
ui->anf->blockSignals(true); ui->anf->blockSignals(true);
@ -77,6 +86,12 @@ void WDSPRxDNRDialog::setNR2ArtifactReduction(bool nr2ArtifactReducion)
m_nr2ArtifactReduction = nr2ArtifactReducion; m_nr2ArtifactReduction = nr2ArtifactReducion;
} }
void WDSPRxDNRDialog::on_snb_clicked(bool checked)
{
m_snb = checked;
emit valueChanged(ChangedSNB);
}
void WDSPRxDNRDialog::on_anf_clicked(bool checked) void WDSPRxDNRDialog::on_anf_clicked(bool checked)
{ {
m_anf = checked; m_anf = checked;

View File

@ -30,6 +30,7 @@ class SDRGUI_API WDSPRxDNRDialog : public QDialog {
Q_OBJECT Q_OBJECT
public: public:
enum ValueChanged { enum ValueChanged {
ChangedSNB,
ChangedANF, ChangedANF,
ChangedNR, ChangedNR,
ChangedNR2Gain, ChangedNR2Gain,
@ -41,6 +42,7 @@ public:
explicit WDSPRxDNRDialog(QWidget* parent = nullptr); explicit WDSPRxDNRDialog(QWidget* parent = nullptr);
~WDSPRxDNRDialog(); ~WDSPRxDNRDialog();
void setSNB(bool snb);
void setANF(bool anf); void setANF(bool anf);
void setNRScheme(WDSPRxProfile::WDSPRxNRScheme scheme); void setNRScheme(WDSPRxProfile::WDSPRxNRScheme scheme);
void setNR2Gain(WDSPRxProfile::WDSPRxNR2Gain gain); void setNR2Gain(WDSPRxProfile::WDSPRxNR2Gain gain);
@ -48,6 +50,7 @@ public:
void setNRPosition(WDSPRxProfile::WDSPRxNRPosition position); void setNRPosition(WDSPRxProfile::WDSPRxNRPosition position);
void setNR2ArtifactReduction(bool nr2ArtifactReducion); void setNR2ArtifactReduction(bool nr2ArtifactReducion);
bool getSNB() const { return m_snb; }
bool getANF() const { return m_anf; } bool getANF() const { return m_anf; }
WDSPRxProfile::WDSPRxNRScheme getNRScheme() const { return m_nrScheme; } WDSPRxProfile::WDSPRxNRScheme getNRScheme() const { return m_nrScheme; }
WDSPRxProfile::WDSPRxNR2Gain getNR2Gain() const { return m_nr2Gain; } WDSPRxProfile::WDSPRxNR2Gain getNR2Gain() const { return m_nr2Gain; }
@ -60,6 +63,7 @@ signals:
private: private:
Ui::WDSPRxDNRDialog *ui; Ui::WDSPRxDNRDialog *ui;
bool m_snb;
bool m_anf; bool m_anf;
WDSPRxProfile::WDSPRxNRScheme m_nrScheme; WDSPRxProfile::WDSPRxNRScheme m_nrScheme;
WDSPRxProfile::WDSPRxNR2Gain m_nr2Gain; WDSPRxProfile::WDSPRxNR2Gain m_nr2Gain;
@ -68,6 +72,7 @@ private:
bool m_nr2ArtifactReduction; bool m_nr2ArtifactReduction;
private slots: private slots:
void on_snb_clicked(bool checked);
void on_anf_clicked(bool checked); void on_anf_clicked(bool checked);
void on_nr_currentIndexChanged(int index); void on_nr_currentIndexChanged(int index);
void on_nr2Gain_currentIndexChanged(int index); void on_nr2Gain_currentIndexChanged(int index);

View File

@ -40,6 +40,19 @@
</item> </item>
</widget> </widget>
</item> </item>
<item>
<widget class="QCheckBox" name="snb">
<property name="enabled">
<bool>true</bool>
</property>
<property name="toolTip">
<string>Spectral Noise Blanker</string>
</property>
<property name="text">
<string>SNB</string>
</property>
</widget>
</item>
<item> <item>
<widget class="QCheckBox" name="anf"> <widget class="QCheckBox" name="anf">
<property name="toolTip"> <property name="toolTip">

View File

@ -318,6 +318,7 @@ void WDSPRxGUI::on_profileIndex_valueChanged(int value)
m_settings.m_nbAvgTime = m_settings.m_profiles[m_settings.m_profileIndex].m_nbAvgTime; m_settings.m_nbAvgTime = m_settings.m_profiles[m_settings.m_profileIndex].m_nbAvgTime;
// Noise reduction // Noise reduction
m_settings.m_dnr = m_settings.m_profiles[m_settings.m_profileIndex].m_dnr; m_settings.m_dnr = m_settings.m_profiles[m_settings.m_profileIndex].m_dnr;
m_settings.m_snb = m_settings.m_profiles[m_settings.m_profileIndex].m_snb;
m_settings.m_anf = m_settings.m_profiles[m_settings.m_profileIndex].m_anf; m_settings.m_anf = m_settings.m_profiles[m_settings.m_profileIndex].m_anf;
m_settings.m_nrScheme = m_settings.m_profiles[m_settings.m_profileIndex].m_nrScheme; m_settings.m_nrScheme = m_settings.m_profiles[m_settings.m_profileIndex].m_nrScheme;
m_settings.m_nr2Gain = m_settings.m_profiles[m_settings.m_profileIndex].m_nr2Gain; m_settings.m_nr2Gain = m_settings.m_profiles[m_settings.m_profileIndex].m_nr2Gain;
@ -946,6 +947,7 @@ void WDSPRxGUI::dnrSetupDialog(const QPoint& p)
{ {
m_dnrDialog = new WDSPRxDNRDialog(); m_dnrDialog = new WDSPRxDNRDialog();
m_dnrDialog->move(p); m_dnrDialog->move(p);
m_dnrDialog->setSNB(m_settings.m_snb);
m_dnrDialog->setANF(m_settings.m_anf); m_dnrDialog->setANF(m_settings.m_anf);
m_dnrDialog->setNRScheme(m_settings.m_nrScheme); m_dnrDialog->setNRScheme(m_settings.m_nrScheme);
m_dnrDialog->setNR2Gain(m_settings.m_nr2Gain); m_dnrDialog->setNR2Gain(m_settings.m_nr2Gain);
@ -969,6 +971,11 @@ void WDSPRxGUI::dnrSetup(int32_t iValueChanged)
switch (valueChanged) switch (valueChanged)
{ {
case WDSPRxDNRDialog::ValueChanged::ChangedSNB:
m_settings.m_snb = m_dnrDialog->getSNB();
m_settings.m_profiles[m_settings.m_profileIndex].m_snb = m_settings.m_snb;
applySettings();
break;
case WDSPRxDNRDialog::ValueChanged::ChangedANF: case WDSPRxDNRDialog::ValueChanged::ChangedANF:
m_settings.m_anf = m_dnrDialog->getANF(); m_settings.m_anf = m_dnrDialog->getANF();
m_settings.m_profiles[m_settings.m_profileIndex].m_anf = m_settings.m_anf; m_settings.m_profiles[m_settings.m_profileIndex].m_anf = m_settings.m_anf;

View File

@ -63,6 +63,7 @@ void WDSPRxSettings::resetToDefaults()
m_nbAvgTime = 50.0; m_nbAvgTime = 50.0;
// Noise reduction // Noise reduction
m_dnr = false; m_dnr = false;
m_snb = false;
m_anf = false; m_anf = false;
m_nrScheme = WDSPRxProfile::NRSchemeNR; m_nrScheme = WDSPRxProfile::NRSchemeNR;
m_nr2Gain = WDSPRxProfile::NR2GainGamma; m_nr2Gain = WDSPRxProfile::NR2GainGamma;
@ -138,6 +139,7 @@ QByteArray WDSPRxSettings::serialize() const
s.writeDouble(27, m_nbAvgTime); s.writeDouble(27, m_nbAvgTime);
// Noise reduction // Noise reduction
s.writeBool( 30, m_dnr); s.writeBool( 30, m_dnr);
s.writeBool( 31, m_snb);
s.writeBool( 32, m_anf); s.writeBool( 32, m_anf);
s.writeS32( 33, (int) m_nrScheme); s.writeS32( 33, (int) m_nrScheme);
s.writeS32( 34, (int) m_nr2Gain); s.writeS32( 34, (int) m_nr2Gain);
@ -160,9 +162,10 @@ QByteArray WDSPRxSettings::serialize() const
// Squelch // Squelch
s.writeBool( 60, m_squelch); s.writeBool( 60, m_squelch);
s.writeS32( 61, m_squelchThreshold); s.writeS32( 61, m_squelchThreshold);
s.writeDouble(62, m_ssqlTauMute); s.writeS32( 62, (int) m_squelchMode);
s.writeDouble(63, m_ssqlTauUnmute); s.writeDouble(63, m_ssqlTauMute);
s.writeDouble(64, m_amsqMaxTail); s.writeDouble(64, m_ssqlTauUnmute);
s.writeDouble(65, m_amsqMaxTail);
// //
s.writeString(70, m_title); s.writeString(70, m_title);
s.writeString(71, m_audioDeviceName); s.writeString(71, m_audioDeviceName);
@ -207,6 +210,7 @@ QByteArray WDSPRxSettings::serialize() const
s.writeDouble(127 + 100*i, m_profiles[i].m_nbAvgTime); s.writeDouble(127 + 100*i, m_profiles[i].m_nbAvgTime);
// Noise reduction // Noise reduction
s.writeBool (130 + 100*i, m_profiles[i].m_dnr); s.writeBool (130 + 100*i, m_profiles[i].m_dnr);
s.writeBool (131 + 100*i, m_profiles[i].m_snb);
s.writeBool (132 + 100*i, m_profiles[i].m_anf); s.writeBool (132 + 100*i, m_profiles[i].m_anf);
s.writeS32 (133 + 100*i, (int) m_profiles[i].m_nrScheme); s.writeS32 (133 + 100*i, (int) m_profiles[i].m_nrScheme);
s.writeS32 (134 + 100*i, (int) m_profiles[i].m_nr2Gain); s.writeS32 (134 + 100*i, (int) m_profiles[i].m_nr2Gain);
@ -229,9 +233,10 @@ QByteArray WDSPRxSettings::serialize() const
// Squelch // Squelch
s.writeBool( 160 + 100*i, m_profiles[i].m_squelch); s.writeBool( 160 + 100*i, m_profiles[i].m_squelch);
s.writeS32( 161 + 100*i, m_profiles[i].m_squelchThreshold); s.writeS32( 161 + 100*i, m_profiles[i].m_squelchThreshold);
s.writeDouble(162 + 100*i, m_profiles[i].m_ssqlTauMute); s.writeS32( 162 + 100*i, (int) m_profiles[i].m_squelchMode);
s.writeDouble(163 + 100*i, m_profiles[i].m_ssqlTauUnmute); s.writeDouble(163 + 100*i, m_profiles[i].m_ssqlTauMute);
s.writeDouble(164 + 100*i, m_profiles[i].m_amsqMaxTail); s.writeDouble(164 + 100*i, m_profiles[i].m_ssqlTauUnmute);
s.writeDouble(165 + 100*i, m_profiles[i].m_amsqMaxTail);
} }
return s.final(); return s.final();
@ -290,6 +295,7 @@ bool WDSPRxSettings::deserialize(const QByteArray& data)
d.readDouble(27, &m_nbAvgTime, 50.0); d.readDouble(27, &m_nbAvgTime, 50.0);
// Nosie reduction // Nosie reduction
d.readBool( 30, &m_dnr, false); d.readBool( 30, &m_dnr, false);
d.readBool( 31, &m_snb, false);
d.readBool( 32, &m_anf, false); d.readBool( 32, &m_anf, false);
d.readS32( 33, &tmp, 2); d.readS32( 33, &tmp, 2);
m_nrScheme = (WDSPRxProfile::WDSPRxNRScheme) tmp; m_nrScheme = (WDSPRxProfile::WDSPRxNRScheme) tmp;
@ -316,9 +322,11 @@ bool WDSPRxSettings::deserialize(const QByteArray& data)
// Squelch // Squelch
d.readBool( 60, &m_squelch, false); d.readBool( 60, &m_squelch, false);
d.readS32( 61, &m_squelchThreshold, 3); d.readS32( 61, &m_squelchThreshold, 3);
d.readDouble(62, &m_ssqlTauMute, 0.1); d.readS32( 62, &tmp, 0);
d.readDouble(63, &m_ssqlTauUnmute, 0.1); m_squelchMode = (WDSPRxProfile::WDSPRxSquelchMode) tmp;
d.readDouble(64, &m_amsqMaxTail, 1.5); d.readDouble(63, &m_ssqlTauMute, 0.1);
d.readDouble(64, &m_ssqlTauUnmute, 0.1);
d.readDouble(65, &m_amsqMaxTail, 1.5);
// //
d.readString(70, &m_title, "WDSP Receiver"); d.readString(70, &m_title, "WDSP Receiver");
d.readString(71, &m_audioDeviceName, AudioDeviceManager::m_defaultDeviceName); d.readString(71, &m_audioDeviceName, AudioDeviceManager::m_defaultDeviceName);
@ -381,14 +389,15 @@ bool WDSPRxSettings::deserialize(const QByteArray& data)
d.readDouble(127 + 100*i, &m_profiles[i].m_nbAvgTime, 50.0); d.readDouble(127 + 100*i, &m_profiles[i].m_nbAvgTime, 50.0);
// Noise reduction // Noise reduction
d.readBool (130 + 100*i, &m_profiles[i].m_dnr, false); d.readBool (130 + 100*i, &m_profiles[i].m_dnr, false);
d.readBool (131 + 100*i, &m_profiles[i].m_snb, false);
d.readBool (132 + 100*i, &m_profiles[i].m_anf, false); d.readBool (132 + 100*i, &m_profiles[i].m_anf, false);
d.readS32 (133 + 100*i, &tmp); d.readS32 (133 + 100*i, &tmp, 0);
m_profiles[i].m_nrScheme = (WDSPRxProfile::WDSPRxNRScheme) tmp; m_profiles[i].m_nrScheme = (WDSPRxProfile::WDSPRxNRScheme) tmp;
d.readS32 (134 + 100*i, &tmp); d.readS32 (134 + 100*i, &tmp, 0);
m_profiles[i].m_nr2Gain = (WDSPRxProfile::WDSPRxNR2Gain) tmp; m_profiles[i].m_nr2Gain = (WDSPRxProfile::WDSPRxNR2Gain) tmp;
d.readS32 (135 + 100*i, &tmp); d.readS32 (135 + 100*i, &tmp, 0);
m_profiles[i].m_nr2NPE = (WDSPRxProfile::WDSPRxNR2NPE) tmp; m_profiles[i].m_nr2NPE = (WDSPRxProfile::WDSPRxNR2NPE) tmp;
d.readS32 (136 + 100*i, &tmp); d.readS32 (136 + 100*i, &tmp, 0);
m_profiles[i].m_nrPosition = (WDSPRxProfile::WDSPRxNRPosition) tmp; m_profiles[i].m_nrPosition = (WDSPRxProfile::WDSPRxNRPosition) tmp;
d.readBool (137 + 100*i, &m_profiles[i].m_nr2ArtifactReduction); d.readBool (137 + 100*i, &m_profiles[i].m_nr2ArtifactReduction);
// Demods // Demods
@ -407,9 +416,11 @@ bool WDSPRxSettings::deserialize(const QByteArray& data)
// Squelch // Squelch
d.readBool( 160 + 100*i, &m_profiles[i].m_squelch, false); d.readBool( 160 + 100*i, &m_profiles[i].m_squelch, false);
d.readS32( 161 + 100*i, &m_profiles[i].m_squelchThreshold, 3); d.readS32( 161 + 100*i, &m_profiles[i].m_squelchThreshold, 3);
d.readDouble(161 + 100*i, &m_profiles[i].m_ssqlTauMute, 0.1); d.readS32( 162 + 100*i, &tmp, 0);
d.readDouble(162 + 100*i, &m_profiles[i].m_ssqlTauUnmute, 0.1); m_profiles[i].m_squelchMode = (WDSPRxProfile::WDSPRxSquelchMode) tmp;
d.readDouble(163 + 100*i, &m_profiles[i].m_amsqMaxTail, 1.5); d.readDouble(163 + 100*i, &m_profiles[i].m_ssqlTauMute, 0.1);
d.readDouble(164 + 100*i, &m_profiles[i].m_ssqlTauUnmute, 0.1);
d.readDouble(165 + 100*i, &m_profiles[i].m_amsqMaxTail, 1.5);
} }
return true; return true;

View File

@ -0,0 +1,422 @@
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2024 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QColor>
#include "audio/audiodevicemanager.h"
#include "util/simpleserializer.h"
#include "settings/serializable.h"
#include "wdsprxsettings.h"
#ifdef SDR_RX_SAMPLE_24BIT
const int WDSPRxSettings::m_minPowerThresholdDB = -120;
const float WDSPRxSettings::m_mminPowerThresholdDBf = 120.0f;
#else
const int WDSPRxSettings::m_minPowerThresholdDB = -100;
const float WDSPRxSettings::m_mminPowerThresholdDBf = 100.0f;
#endif
WDSPRxSettings::WDSPRxSettings() :
m_channelMarker(nullptr),
m_spectrumGUI(nullptr),
m_rollupState(nullptr)
{
m_profiles.resize(10);
resetToDefaults();
}
void WDSPRxSettings::resetToDefaults()
{
m_demod = WDSPRxProfile::DemodSSB;
m_audioBinaural = false;
m_audioFlipChannels = false;
m_dsb = false;
m_audioMute = false;
// AGC
m_agc = false;
m_agcMode = WDSPRxProfile::AGCMedium;
m_agcGain = 80;
m_agcSlope = 35; // 3.5 dB
m_agcHangThreshold = 0;
// Noise blanker
m_dnb = false;
m_nbScheme = WDSPRxProfile::WDSPRxNBScheme::NBSchemeNB;
m_nb2Mode = WDSPRxProfile::WDSPRxNB2Mode::NB2ModeZero;
m_nbSlewTime = 0.1;
m_nbLeadTime = 0.1;
m_nbLagTime = 0.1;
m_nbThreshold = 30;
m_nbAvgTime = 50.0;
// Noise reduction
m_dnr = false;
m_anf = false;
m_nrScheme = WDSPRxProfile::NRSchemeNR;
m_nr2Gain = WDSPRxProfile::NR2GainGamma;
m_nr2NPE = WDSPRxProfile::NR2NPEOSMS;
m_nrPosition = WDSPRxProfile::NRPositionPreAGC;
m_nr2ArtifactReduction = true;
// Demods
m_amFadeLevel = false;
m_cwPeaking = false;
m_cwPeakFrequency = 600.0;
m_cwBandwidth = 100.0;
m_cwGain = 2.0;
m_fmDeviation = 2500.0;
m_fmAFLow = 300.0;
m_fmAFHigh = 3000.0;
m_fmAFLimiter = false;
m_fmAFLimiterGain = 10.0;
m_fmCTCSSNotch = false;
m_fmCTCSSNotchFrequency = 67.0;
// Squelch
m_squelch = false;
m_squelchThreshold = 3;
m_squelchMode = WDSPRxProfile::SquelchModeVoice;
m_ssqlTauMute = 0.1;
m_ssqlTauUnmute = 0.1;
m_amsqMaxTail = 1.5;
//
m_volume = 1.0;
m_inputFrequencyOffset = 0;
m_rgbColor = QColor(0, 255, 196).rgb();
m_title = "WDSP Receiver";
m_audioDeviceName = AudioDeviceManager::m_defaultDeviceName;
m_streamIndex = 0;
m_useReverseAPI = false;
m_reverseAPIAddress = "127.0.0.1";
m_reverseAPIPort = 8888;
m_reverseAPIDeviceIndex = 0;
m_reverseAPIChannelIndex = 0;
m_workspaceIndex = 0;
m_hidden = false;
m_profileIndex = 0;
}
QByteArray WDSPRxSettings::serialize() const
{
SimpleSerializer s(1);
s.writeS32( 1, m_inputFrequencyOffset);
s.writeS32( 2, (int) m_demod);
s.writeS32( 3, m_volume * 10.0);
if (m_spectrumGUI) {
s.writeBlob(4, m_spectrumGUI->serialize());
}
s.writeU32( 5, m_rgbColor);
s.writeBool( 8, m_audioBinaural);
s.writeBool( 9, m_audioFlipChannels);
s.writeBool( 10, m_dsb);
// AGC
s.writeBool( 11, m_agc);
s.writeS32( 12, (int) m_agcMode);
s.writeS32( 13, m_agcGain);
s.writeS32( 14, m_agcSlope);
s.writeS32( 15, m_agcHangThreshold);
// Noise blanker
s.writeBool( 20, m_dnb);
s.writeS32( 21, (int) m_nbScheme);
s.writeS32( 22, (int) m_nb2Mode);
s.writeDouble(23, m_nbSlewTime);
s.writeDouble(24, m_nbLeadTime);
s.writeDouble(25, m_nbLagTime);
s.writeS32( 26, m_nbThreshold);
s.writeDouble(27, m_nbAvgTime);
// Noise reduction
s.writeBool( 30, m_dnr);
s.writeBool( 32, m_anf);
s.writeS32( 33, (int) m_nrScheme);
s.writeS32( 34, (int) m_nr2Gain);
s.writeS32( 35, (int) m_nr2NPE);
s.writeS32( 36, (int) m_nrPosition);
s.writeBool( 37, m_nr2ArtifactReduction);
// Demods
s.writeBool( 40, m_amFadeLevel);
s.writeBool( 41, m_cwPeaking);
s.writeDouble(42, m_cwPeakFrequency);
s.writeDouble(43, m_cwBandwidth);
s.writeDouble(44, m_cwGain);
s.writeDouble(45, m_fmDeviation);
s.writeDouble(46, m_fmAFLow);
s.writeDouble(47, m_fmAFHigh);
s.writeBool( 48, m_fmAFLimiter);
s.writeDouble(49, m_fmAFLimiterGain);
s.writeBool( 50, m_fmCTCSSNotch);
s.writeDouble(51, m_fmCTCSSNotchFrequency);
// Squelch
s.writeBool( 60, m_squelch);
s.writeS32( 61, m_squelchThreshold);
s.writeDouble(62, m_ssqlTauMute);
s.writeDouble(63, m_ssqlTauUnmute);
s.writeDouble(64, m_amsqMaxTail);
//
s.writeString(70, m_title);
s.writeString(71, m_audioDeviceName);
s.writeBool( 72, m_useReverseAPI);
s.writeString(73, m_reverseAPIAddress);
s.writeU32( 74, m_reverseAPIPort);
s.writeU32( 75, m_reverseAPIDeviceIndex);
s.writeU32( 76, m_reverseAPIChannelIndex);
s.writeS32( 77, m_streamIndex);
if (m_rollupState) {
s.writeBlob(78, m_rollupState->serialize());
}
s.writeS32( 79, m_workspaceIndex);
s.writeBlob( 80, m_geometryBytes);
s.writeBool( 81, m_hidden);
s.writeU32( 82, m_profileIndex);
for (unsigned int i = 0; i < 10; i++)
{
s.writeS32 (104 + 100*i, (int) m_profiles[i].m_demod);
// Filter
s.writeS32 (100 + 100*i, m_profiles[i].m_spanLog2);
s.writeS32 (101 + 100*i, m_profiles[i].m_highCutoff / 100.0);
s.writeS32 (102 + 100*i, m_profiles[i].m_lowCutoff / 100.0);
s.writeS32 (103 + 100*i, m_profiles[i].m_fftWindow);
// AGC
s.writeBool (110 + 100*i, m_profiles[i].m_agc);
s.writeS32 (111 + 100*i, (int) m_profiles[i].m_agcMode);
s.writeS32 (112 + 100*i, m_profiles[i].m_agcGain);
s.writeS32 (113 + 100*i, m_profiles[i].m_agcSlope);
s.writeS32 (114 + 100*i, m_profiles[i].m_agcHangThreshold);
// Noise blanjer
s.writeBool (120 + 100*i, m_profiles[i].m_dnb);
s.writeS32 (121 + 100*i, (int) m_profiles[i].m_nbScheme);
s.writeS32 (122 + 100*i, (int) m_profiles[i].m_nb2Mode);
s.writeDouble(123 + 100*i, m_profiles[i].m_nbSlewTime);
s.writeDouble(124 + 100*i, m_profiles[i].m_nbLeadTime);
s.writeDouble(125 + 100*i, m_profiles[i].m_nbLagTime);
s.writeS32 (126 + 100*i, m_profiles[i].m_nbThreshold);
s.writeDouble(127 + 100*i, m_profiles[i].m_nbAvgTime);
// Noise reduction
s.writeBool (130 + 100*i, m_profiles[i].m_dnr);
s.writeBool (132 + 100*i, m_profiles[i].m_anf);
s.writeS32 (133 + 100*i, (int) m_profiles[i].m_nrScheme);
s.writeS32 (134 + 100*i, (int) m_profiles[i].m_nr2Gain);
s.writeS32 (135 + 100*i, (int) m_profiles[i].m_nr2NPE);
s.writeS32 (136 + 100*i, (int) m_profiles[i].m_nrPosition);
s.writeBool (137 + 100*i, m_profiles[i].m_nr2ArtifactReduction);
// Demods
s.writeBool (140 + 100*i, m_profiles[i].m_amFadeLevel);
s.writeBool (141 + 100*i, m_profiles[i].m_cwPeaking);
s.writeDouble(142 + 100*i, m_profiles[i].m_cwPeakFrequency);
s.writeDouble(143 + 100*i, m_profiles[i].m_cwBandwidth);
s.writeDouble(144 + 100*i, m_profiles[i].m_cwGain);
s.writeDouble(145 + 100*i, m_profiles[i].m_fmDeviation);
s.writeDouble(146 + 100*i, m_profiles[i].m_fmAFLow);
s.writeDouble(147 + 100*i, m_profiles[i].m_fmAFHigh);
s.writeBool( 148 + 100*i, m_profiles[i].m_fmAFLimiter);
s.writeDouble(149 + 100*i, m_profiles[i].m_fmAFLimiterGain);
s.writeBool( 150 + 100*i, m_profiles[i].m_fmCTCSSNotch);
s.writeDouble(151 + 100*i, m_profiles[i].m_fmCTCSSNotchFrequency);
// Squelch
s.writeBool( 160 + 100*i, m_profiles[i].m_squelch);
s.writeS32( 161 + 100*i, m_profiles[i].m_squelchThreshold);
s.writeDouble(162 + 100*i, m_profiles[i].m_ssqlTauMute);
s.writeDouble(163 + 100*i, m_profiles[i].m_ssqlTauUnmute);
s.writeDouble(164 + 100*i, m_profiles[i].m_amsqMaxTail);
}
return s.final();
}
bool WDSPRxSettings::deserialize(const QByteArray& data)
{
SimpleDeserializer d(data);
if(!d.isValid())
{
resetToDefaults();
return false;
}
if(d.getVersion() == 1)
{
QByteArray bytetmp;
qint32 tmp;
uint32_t utmp;
QString strtmp;
d.readS32( 1, &m_inputFrequencyOffset, 0);
d.readS32( 2, &tmp, 0);
m_demod = (WDSPRxProfile::WDSPRxDemod) tmp;
d.readS32( 3, &tmp, 30);
m_volume = tmp / 10.0;
if (m_spectrumGUI)
{
d.readBlob(4, &bytetmp);
m_spectrumGUI->deserialize(bytetmp);
}
d.readU32( 5, &m_rgbColor);
d.readBool( 8, &m_audioBinaural, false);
d.readBool( 9, &m_audioFlipChannels, false);
d.readBool( 10, &m_dsb, false);
// AGC
d.readBool( 11, &m_agc, true);
d.readS32( 12, &tmp, 2);
m_agcMode = (WDSPRxProfile::WDSPRxAGCMode) tmp;
d.readS32( 13, &m_agcGain, 80);
d.readS32( 14, &m_agcSlope, 35);
d.readS32( 15, &m_agcHangThreshold, 0);
// Noise blanker
d.readBool( 20, &m_dnb, false);
d.readS32( 21, &tmp, 2);
m_nbScheme = (WDSPRxProfile::WDSPRxNBScheme) tmp;
d.readS32( 22, &tmp, 2);
m_nb2Mode = (WDSPRxProfile::WDSPRxNB2Mode) tmp;
d.readDouble(23, &m_nbSlewTime, 0.1);
d.readDouble(24, &m_nbLeadTime, 0.1);
d.readDouble(25, &m_nbLagTime, 0.1);
d.readS32( 26, &m_nbThreshold, 30);
d.readDouble(27, &m_nbAvgTime, 50.0);
// Nosie reduction
d.readBool( 30, &m_dnr, false);
d.readBool( 32, &m_anf, false);
d.readS32( 33, &tmp, 2);
m_nrScheme = (WDSPRxProfile::WDSPRxNRScheme) tmp;
d.readS32( 34, &tmp, 2);
m_nr2Gain = (WDSPRxProfile::WDSPRxNR2Gain) tmp;
d.readS32( 35, &tmp, 2);
m_nr2NPE = (WDSPRxProfile::WDSPRxNR2NPE) tmp;
d.readS32( 36, &tmp, 2);
m_nrPosition = (WDSPRxProfile::WDSPRxNRPosition) tmp;
d.readBool( 37, &m_nr2ArtifactReduction, true);
// Demods
d.readBool( 40, &m_amFadeLevel, false);
d.readBool( 41, &m_cwPeaking, false);
d.readDouble(42, &m_cwPeakFrequency, 600.0);
d.readDouble(43, &m_cwBandwidth, 100.0);
d.readDouble(44, &m_cwGain, 2.0);
d.readDouble(45, &m_fmDeviation, 2500.0);
d.readDouble(46, &m_fmAFLow, 300.0);
d.readDouble(47, &m_fmAFHigh, 3000.0);
d.readBool( 48, &m_fmAFLimiter, false);
d.readDouble(49, &m_fmAFLimiterGain, 10.0);
d.readBool( 50, &m_fmCTCSSNotch, false);
d.readDouble(51, &m_fmCTCSSNotchFrequency, 67.0);
// Squelch
d.readBool( 60, &m_squelch, false);
d.readS32( 61, &m_squelchThreshold, 3);
d.readDouble(62, &m_ssqlTauMute, 0.1);
d.readDouble(63, &m_ssqlTauUnmute, 0.1);
d.readDouble(64, &m_amsqMaxTail, 1.5);
//
d.readString(70, &m_title, "WDSP Receiver");
d.readString(71, &m_audioDeviceName, AudioDeviceManager::m_defaultDeviceName);
d.readBool( 72, &m_useReverseAPI, false);
d.readString(73, &m_reverseAPIAddress, "127.0.0.1");
d.readU32( 74, &utmp, 0);
if ((utmp > 1023) && (utmp < 65535)) {
m_reverseAPIPort = utmp;
} else {
m_reverseAPIPort = 8888;
}
d.readU32( 75, &utmp, 0);
m_reverseAPIDeviceIndex = utmp > 99 ? 99 : utmp;
d.readU32( 76, &utmp, 0);
m_reverseAPIChannelIndex = utmp > 99 ? 99 : utmp;
d.readS32( 77, &m_streamIndex, 0);
if (m_rollupState)
{
d.readBlob(78, &bytetmp);
m_rollupState->deserialize(bytetmp);
}
d.readS32( 79, &m_workspaceIndex, 0);
d.readBlob( 80, &m_geometryBytes);
d.readBool( 81, &m_hidden, false);
d.readU32( 82, &utmp, 0);
m_profileIndex = utmp < 10 ? utmp : 0;
for (unsigned int i = 0; (i < 10); i++)
{
d.readS32 (104 + 100*i, &tmp, 9);
m_profiles[i].m_demod = (WDSPRxProfile::WDSPRxDemod) tmp;
// Filter
d.readS32 (100 + 100*i, &m_profiles[i].m_spanLog2, 3);
d.readS32 (101 + 100*i, &tmp, 30);
m_profiles[i].m_highCutoff = tmp * 100.0;
d.readS32 (102 + 100*i, &tmp, 3);
m_profiles[i].m_lowCutoff = tmp * 100.0;
d.readS32 (103 + 100*i, &m_profiles[i].m_fftWindow, 0);
// AGC
d.readBool( 110 + 100*i, &m_profiles[i].m_agc, true);
d.readS32( 111 + 100*i, &tmp, 2);
m_profiles[i].m_agcMode = (WDSPRxProfile::WDSPRxAGCMode) tmp;
d.readS32( 112 + 100*i, &m_profiles[i].m_agcGain, 80);
d.readS32( 113 + 100*i, &m_profiles[i].m_agcSlope, 35);
d.readS32( 114 + 100*i, &m_profiles[i].m_agcHangThreshold, 0);
// Noise blanker
d.readBool (120 + 100*i, &m_profiles[i].m_dnb, false);
d.readS32 (121 + 100*i, &tmp);
m_profiles[i].m_nbScheme = (WDSPRxProfile::WDSPRxNBScheme) tmp;
d.readS32 (122 + 100*i, &tmp);
m_profiles[i].m_nb2Mode = (WDSPRxProfile::WDSPRxNB2Mode) tmp;
d.readDouble(123 + 100*i, &m_profiles[i].m_nbSlewTime, 0.1);
d.readDouble(124 + 100*i, &m_profiles[i].m_nbLeadTime, 0.1);
d.readDouble(125 + 100*i, &m_profiles[i].m_nbLagTime, 0.1);
d.readS32 (126 + 100*i, &m_profiles[i].m_nbThreshold, 30);
d.readDouble(127 + 100*i, &m_profiles[i].m_nbAvgTime, 50.0);
// Noise reduction
d.readBool (130 + 100*i, &m_profiles[i].m_dnr, false);
d.readBool (132 + 100*i, &m_profiles[i].m_anf, false);
d.readS32 (133 + 100*i, &tmp);
m_profiles[i].m_nrScheme = (WDSPRxProfile::WDSPRxNRScheme) tmp;
d.readS32 (134 + 100*i, &tmp);
m_profiles[i].m_nr2Gain = (WDSPRxProfile::WDSPRxNR2Gain) tmp;
d.readS32 (135 + 100*i, &tmp);
m_profiles[i].m_nr2NPE = (WDSPRxProfile::WDSPRxNR2NPE) tmp;
d.readS32 (136 + 100*i, &tmp);
m_profiles[i].m_nrPosition = (WDSPRxProfile::WDSPRxNRPosition) tmp;
d.readBool (137 + 100*i, &m_profiles[i].m_nr2ArtifactReduction);
// Demods
d.readBool (140 + 100*i, &m_amFadeLevel, false);
d.readBool (141 + 100*i, &m_cwPeaking, false);
d.readDouble(142 + 100*i, &m_profiles[i].m_cwPeakFrequency, 600.0);
d.readDouble(143 + 100*i, &m_profiles[i].m_cwBandwidth, 100.0);
d.readDouble(144 + 100*i, &m_profiles[i].m_cwGain, 2.0);
d.readDouble(145 + 100*i, &m_profiles[i].m_fmDeviation, 2500.0);
d.readDouble(146 + 100*i, &m_profiles[i].m_fmAFLow, 300.0);
d.readDouble(147 + 100*i, &m_profiles[i].m_fmAFHigh, 3000.0);
d.readBool( 148 + 100*i, &m_profiles[i].m_fmAFLimiter, false);
d.readDouble(149 + 100*i, &m_profiles[i].m_fmAFLimiterGain, 10.0);
d.readBool( 150 + 100*i, &m_profiles[i].m_fmCTCSSNotch, false);
d.readDouble(151 + 100*i, &m_profiles[i].m_fmCTCSSNotchFrequency, 67.0);
// Squelch
d.readBool( 160 + 100*i, &m_profiles[i].m_squelch, false);
d.readS32( 161 + 100*i, &m_profiles[i].m_squelchThreshold, 3);
d.readDouble(161 + 100*i, &m_profiles[i].m_ssqlTauMute, 0.1);
d.readDouble(162 + 100*i, &m_profiles[i].m_ssqlTauUnmute, 0.1);
d.readDouble(163 + 100*i, &m_profiles[i].m_amsqMaxTail, 1.5);
}
return true;
}
else
{
resetToDefaults();
return false;
}
}

View File

@ -0,0 +1,18 @@
--- plugins/channelrx/wdsprx/wdsprxsettings.cpp
+++ plugins/channelrx/wdsprx/wdsprxsettings.cpp
@@ -182,6 +184,7 @@ QByteArray WDSPRxSettings::serialize() const
s.writeDouble(127 + 50*i, m_profiles[i].m_nbAvgTime);
// Noise reduction
s.writeBool (130 + 50*i, m_profiles[i].m_dnr);
+ s.writeBool (131 + 50*i, m_profiles[i].m_snb);
s.writeBool (132 + 50*i, m_profiles[i].m_anf);
s.writeS32 (133 + 50*i, (int) m_profiles[i].m_nrScheme);
s.writeS32 (134 + 50*i, (int) m_profiles[i].m_nr2Gain);
@@ -329,6 +333,7 @@ bool WDSPRxSettings::deserialize(const QByteArray& data)
d.readDouble(127 + 50*i, &m_profiles[i].m_nbAvgTime, 50.0);
// Noise reduction
d.readBool (130 + 50*i, &m_profiles[i].m_dnr, false);
+ d.readBool (131 + 50*i, &m_profiles[i].m_snb, false);
d.readBool (132 + 50*i, &m_profiles[i].m_anf, false);
d.readS32 (133 + 50*i, &tmp);
m_profiles[i].m_nrScheme = (WDSPRxProfile::WDSPRxNRScheme) tmp;

View File

@ -106,6 +106,7 @@ struct WDSPRxProfile
double m_nbAvgTime; // a.k.a back tau double m_nbAvgTime; // a.k.a back tau
// Noise rediction // Noise rediction
bool m_dnr; bool m_dnr;
bool m_snb;
bool m_anf; bool m_anf;
WDSPRxNRScheme m_nrScheme; WDSPRxNRScheme m_nrScheme;
WDSPRxNR2Gain m_nr2Gain; WDSPRxNR2Gain m_nr2Gain;
@ -153,6 +154,7 @@ struct WDSPRxProfile
m_nbThreshold(30), m_nbThreshold(30),
m_nbAvgTime(50.0), m_nbAvgTime(50.0),
m_dnr(false), m_dnr(false),
m_snb(false),
m_anf(false), m_anf(false),
m_nrScheme(NRSchemeNR), m_nrScheme(NRSchemeNR),
m_nr2Gain(NR2GainGamma), m_nr2Gain(NR2GainGamma),
@ -209,6 +211,7 @@ struct WDSPRxSettings
double m_nbAvgTime; double m_nbAvgTime;
// Noise reduction // Noise reduction
bool m_dnr; bool m_dnr;
bool m_snb;
bool m_anf; bool m_anf;
WDSPRxProfile::WDSPRxNRScheme m_nrScheme; WDSPRxProfile::WDSPRxNRScheme m_nrScheme;
WDSPRxProfile::WDSPRxNR2Gain m_nr2Gain; WDSPRxProfile::WDSPRxNR2Gain m_nr2Gain;

View File

@ -0,0 +1,271 @@
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2024 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef PLUGINS_CHANNELRX_WDSPRX_WDSPRXSETTINGS_H_
#define PLUGINS_CHANNELRX_WDSPRX_WDSPRXSETTINGS_H_
#include <QByteArray>
#include <QString>
#include "dsp/fftwindow.h"
class Serializable;
struct WDSPRxProfile
{
enum WDSPRxDemod
{
DemodSSB,
DemodAM,
DemodSAM,
DemodFMN,
};
enum WDSPRxAGCMode
{
AGCLong,
AGCSlow,
AGCMedium,
AGCFast,
};
enum WDSPRxNRScheme
{
NRSchemeNR,
NRSchemeNR2,
};
enum WDSPRxNBScheme
{
NBSchemeNB, //!< Preemptive Wideband Blanker (ANB)
NBSchemeNB2, //!< Interpolating Wideband Blanker (NOB)
};
enum WDSPRxNR2Gain
{
NR2GainLinear,
NR2GainLog,
NR2GainGamma,
};
enum WDSPRxNR2NPE
{
NR2NPEOSMS,
NR2NPEMMSE,
};
enum WDSPRxNRPosition
{
NRPositionPreAGC,
NRPositionPostAGC,
};
enum WDSPRxNB2Mode
{
NB2ModeZero,
NB2ModeSampleAndHold,
NB2ModeMeanHold,
NB2ModeHoldSample,
NB2ModeInterpolate,
};
enum WDSPRxSquelchMode
{
SquelchModeVoice,
SquelchModeAM,
SquelchModeFM,
};
WDSPRxDemod m_demod;
// Filter
int m_spanLog2;
Real m_highCutoff;
Real m_lowCutoff;
int m_fftWindow; // 0: 4-term Blackman-Harris, 1: 7-term Blackman-Harris
// AGC
bool m_agc;
WDSPRxAGCMode m_agcMode;
int m_agcGain; //!< Fixed gain if AGC is off else top gain
int m_agcSlope;
int m_agcHangThreshold;
// Noise blanker
bool m_dnb;
WDSPRxNBScheme m_nbScheme;
WDSPRxNB2Mode m_nb2Mode;
double m_nbSlewTime; // a.k.a tau
double m_nbLeadTime; // a.k.a adv time
double m_nbLagTime; // a.k.a hang time
int m_nbThreshold;
double m_nbAvgTime; // a.k.a back tau
// Noise rediction
bool m_dnr;
bool m_anf;
WDSPRxNRScheme m_nrScheme;
WDSPRxNR2Gain m_nr2Gain;
WDSPRxNR2NPE m_nr2NPE;
WDSPRxNRPosition m_nrPosition;
bool m_nr2ArtifactReduction;
// Demods
bool m_amFadeLevel;
bool m_cwPeaking;
double m_cwPeakFrequency;
double m_cwBandwidth;
double m_cwGain;
double m_fmDeviation;
double m_fmAFLow;
double m_fmAFHigh;
bool m_fmAFLimiter;
double m_fmAFLimiterGain;
bool m_fmCTCSSNotch;
double m_fmCTCSSNotchFrequency;
// Squelch
bool m_squelch;
int m_squelchThreshold;
WDSPRxSquelchMode m_squelchMode;
double m_ssqlTauMute; //!< Voice squelch tau mute
double m_ssqlTauUnmute; //!< Voice squelch tau unmute
double m_amsqMaxTail;
WDSPRxProfile() :
m_demod(DemodSSB),
m_spanLog2(3),
m_highCutoff(3000),
m_lowCutoff(300),
m_fftWindow(0),
m_agc(false),
m_agcMode(AGCMedium),
m_agcGain(80),
m_agcSlope(35),
m_agcHangThreshold(0),
m_dnb(false),
m_nbScheme(NBSchemeNB),
m_nb2Mode(NB2ModeZero),
m_nbSlewTime(0.1),
m_nbLeadTime(0.1),
m_nbLagTime(0.1),
m_nbThreshold(30),
m_nbAvgTime(50.0),
m_dnr(false),
m_anf(false),
m_nrScheme(NRSchemeNR),
m_nr2Gain(NR2GainGamma),
m_nr2NPE(NR2NPEOSMS),
m_nrPosition(NRPositionPreAGC),
m_nr2ArtifactReduction(true),
m_amFadeLevel(false),
m_cwPeaking(false),
m_cwPeakFrequency(600.0),
m_cwBandwidth(100.0),
m_cwGain(2.0),
m_fmDeviation(2500.0),
m_fmAFLow(300.0),
m_fmAFHigh(3000.0),
m_fmAFLimiter(false),
m_fmAFLimiterGain(10.0),
m_fmCTCSSNotch(false),
m_fmCTCSSNotchFrequency(67.0),
m_squelch(false),
m_squelchThreshold(3),
m_squelchMode(SquelchModeVoice),
m_ssqlTauMute(0.1),
m_ssqlTauUnmute(0.1),
m_amsqMaxTail(1.5)
{}
};
struct WDSPRxSettings
{
WDSPRxProfile::WDSPRxDemod m_demod;
qint32 m_inputFrequencyOffset;
// Real m_highCutoff;
// Real m_lowCutoff;
Real m_volume;
// int m_spanLog2;
bool m_audioBinaural;
bool m_audioFlipChannels;
bool m_dsb;
bool m_audioMute;
// AGC
bool m_agc;
WDSPRxProfile::WDSPRxAGCMode m_agcMode;
int m_agcGain; //!< Fixed gain if AGC is off else top gain
int m_agcSlope;
int m_agcHangThreshold;
// Noise blanker
bool m_dnb;
WDSPRxProfile::WDSPRxNBScheme m_nbScheme;
WDSPRxProfile::WDSPRxNB2Mode m_nb2Mode;
double m_nbSlewTime;
double m_nbLeadTime;
double m_nbLagTime;
int m_nbThreshold;
double m_nbAvgTime;
// Noise reduction
bool m_dnr;
bool m_anf;
WDSPRxProfile::WDSPRxNRScheme m_nrScheme;
WDSPRxProfile::WDSPRxNR2Gain m_nr2Gain;
WDSPRxProfile::WDSPRxNR2NPE m_nr2NPE;
WDSPRxProfile::WDSPRxNRPosition m_nrPosition;
bool m_nr2ArtifactReduction;
// Demods
bool m_amFadeLevel;
bool m_cwPeaking;
double m_cwPeakFrequency;
double m_cwBandwidth;
double m_cwGain;
double m_fmDeviation;
double m_fmAFLow;
double m_fmAFHigh;
bool m_fmAFLimiter;
double m_fmAFLimiterGain;
bool m_fmCTCSSNotch;
double m_fmCTCSSNotchFrequency;
// Squelch
bool m_squelch;
int m_squelchThreshold;
WDSPRxProfile::WDSPRxSquelchMode m_squelchMode;
double m_ssqlTauMute; //!< Voice squelch tau mute
double m_ssqlTauUnmute; //!< Voice squelch tau unmute
double m_amsqMaxTail;
quint32 m_rgbColor;
QString m_title;
QString m_audioDeviceName;
int m_streamIndex; //!< MIMO channel. Not relevant when connected to SI (single Rx).
bool m_useReverseAPI;
QString m_reverseAPIAddress;
uint16_t m_reverseAPIPort;
uint16_t m_reverseAPIDeviceIndex;
uint16_t m_reverseAPIChannelIndex;
int m_workspaceIndex;
QByteArray m_geometryBytes;
bool m_hidden;
std::vector<WDSPRxProfile> m_profiles;
unsigned int m_profileIndex;
Serializable *m_channelMarker;
Serializable *m_spectrumGUI;
Serializable *m_rollupState;
WDSPRxSettings();
void resetToDefaults();
void setChannelMarker(Serializable *channelMarker) { m_channelMarker = channelMarker; }
void setSpectrumGUI(Serializable *spectrumGUI) { m_spectrumGUI = spectrumGUI; }
void setRollupState(Serializable *rollupState) { m_rollupState = rollupState; }
QByteArray serialize() const;
bool deserialize(const QByteArray& data);
static const int m_minPowerThresholdDB;
static const float m_mminPowerThresholdDBf;
};
#endif /* PLUGINS_CHANNELRX_WDSPRX_WDSPRXSETTINGS_H_ */

View File

@ -131,7 +131,6 @@ WDSPRxSink::WDSPRxSink() :
); );
m_rxa->setSpectrumProbe(&m_spectrumProbe); m_rxa->setSpectrumProbe(&m_spectrumProbe);
WDSP::RXA::SetPassband(*m_rxa, 0, m_Bandwidth); WDSP::RXA::SetPassband(*m_rxa, 0, m_Bandwidth);
WDSP::ANR::SetANRVals(*m_rxa, 64, 16, 16e-4, 10e-7);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
applySettings(m_settings, true); applySettings(m_settings, true);
@ -351,7 +350,6 @@ void WDSPRxSink::applySettings(const WDSPRxSettings& settings, bool force)
<< " m_agcSlope: " << settings.m_agcSlope << " m_agcSlope: " << settings.m_agcSlope
<< " m_agcHangThreshold: " << settings.m_agcHangThreshold << " m_agcHangThreshold: " << settings.m_agcHangThreshold
<< " m_audioDeviceName: " << settings.m_audioDeviceName << " m_audioDeviceName: " << settings.m_audioDeviceName
<< " m_anf: "<< settings.m_anf
<< " m_dnr: " << settings.m_dnr << " m_dnr: " << settings.m_dnr
<< " m_nrScheme: " << settings.m_nrScheme << " m_nrScheme: " << settings.m_nrScheme
<< " m_nrPosition: "<< settings.m_nrPosition << " m_nrPosition: "<< settings.m_nrPosition
@ -553,6 +551,11 @@ void WDSPRxSink::applySettings(const WDSPRxSettings& settings, bool force)
WDSP::ANF::SetANFRun(*m_rxa, settings.m_anf ? 1 : 0); WDSP::ANF::SetANFRun(*m_rxa, settings.m_anf ? 1 : 0);
} }
// Caution: Causes corruption
if ((m_settings.m_snb != settings.m_snb) || force) {
WDSP::SNBA::SetSNBARun(*m_rxa, settings.m_snb ? 1 : 0);
}
// CW Peaking // CW Peaking
if ((m_settings.m_cwPeaking != settings.m_cwPeaking) || force) { if ((m_settings.m_cwPeaking != settings.m_cwPeaking) || force) {

View File

@ -0,0 +1,782 @@
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2024 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <QTime>
#include <QDebug>
#include "dsp/spectrumvis.h"
#include "dsp/datafifo.h"
#include "util/db.h"
#include "util/messagequeue.h"
#include "maincore.h"
#include "RXA.hpp"
#include "nbp.hpp"
#include "meter.hpp"
#include "patchpanel.hpp"
#include "wcpAGC.hpp"
#include "anr.hpp"
#include "emnr.hpp"
#include "snba.hpp"
#include "anf.hpp"
#include "anb.hpp"
#include "nob.hpp"
#include "amd.hpp"
#include "fmd.hpp"
#include "iir.cpp"
#include "ssql.hpp"
#include "amsq.hpp"
#include "fmsq.hpp"
#include "wdsprxsink.h"
const int WDSPRxSink::m_ssbFftLen = 2048;
const int WDSPRxSink::m_wdspSampleRate = 48000;
const int WDSPRxSink::m_wdspBufSize = 512;
WDSPRxSink::SpectrumProbe::SpectrumProbe(SampleVector& sampleVector) :
m_sampleVector(sampleVector),
m_spanLog2(0),
m_dsb(false),
m_usb(true),
m_sum(0)
{}
void WDSPRxSink::SpectrumProbe::setSpanLog2(int spanLog2)
{
m_spanLog2 = spanLog2;
}
void WDSPRxSink::SpectrumProbe::proceed(const float *in, int nb_samples)
{
int decim = 1<<(m_spanLog2 - 1);
unsigned char decim_mask = decim - 1; // counter LSB bit mask for decimation by 2^(m_scaleLog2 - 1)
for (int i = 0; i < nb_samples; i++)
{
float cr = in[2*i+1];
float ci = in[2*i];
m_sum += std::complex<float>{cr, ci};
if (decim == 1)
{
m_sampleVector.push_back(Sample(cr*SDR_RX_SCALEF, ci*SDR_RX_SCALEF));
}
else
{
if (!(m_undersampleCount++ & decim_mask))
{
float avgr = m_sum.real() / decim;
float avgi = m_sum.imag() / decim;
if (!m_dsb & !m_usb)
{ // invert spectrum for LSB
m_sampleVector.push_back(Sample(avgi*SDR_RX_SCALEF, avgr*SDR_RX_SCALEF));
}
else
{
m_sampleVector.push_back(Sample(avgr*SDR_RX_SCALEF, avgi*SDR_RX_SCALEF));
}
m_sum = 0;
}
}
}
}
WDSPRxSink::WDSPRxSink() :
m_squelchDelayLine(2*48000),
m_audioActive(false),
m_spectrumSink(nullptr),
m_spectrumProbe(m_sampleBuffer),
m_inCount(0),
m_audioFifo(24000),
m_audioSampleRate(48000)
{
m_Bandwidth = 5000;
m_channelSampleRate = 48000;
m_channelFrequencyOffset = 0;
m_audioBuffer.resize(m_audioSampleRate / 10);
m_audioBufferFill = 0;
m_undersampleCount = 0;
m_demodBuffer.resize(1<<12);
m_demodBufferFill = 0;
m_sAvg = 0.0;
m_sPeak = 0.0;
m_sCount = 1;
m_rxa = WDSP::RXA::create_rxa(
m_wdspSampleRate, // input samplerate
m_wdspSampleRate, // output samplerate
m_wdspSampleRate, // sample rate for mainstream dsp processing (dsp)
m_wdspBufSize // number complex samples processed per buffer in mainstream dsp processing
);
m_rxa->setSpectrumProbe(&m_spectrumProbe);
WDSP::RXA::SetPassband(*m_rxa, 0, m_Bandwidth);
WDSP::ANR::SetANRVals(*m_rxa, 64, 16, 16e-4, 10e-7);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
applySettings(m_settings, true);
}
WDSPRxSink::~WDSPRxSink()
{
WDSP::RXA::destroy_rxa(m_rxa);
}
void WDSPRxSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
if (m_channelSampleRate == 0) {
return;
}
Complex ci;
for(SampleVector::const_iterator it = begin; it < end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if (m_interpolatorDistance < 1.0f) // interpolate
{
while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
else
{
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
}
}
void WDSPRxSink::getMagSqLevels(double& avg, double& peak, int& nbSamples)
{
avg = m_sAvg;
peak = m_sPeak;
nbSamples = m_sCount;
}
void WDSPRxSink::processOneSample(Complex &ci)
{
m_rxa->get_inbuff()[2*m_inCount] = ci.imag() / SDR_RX_SCALEF;
m_rxa->get_inbuff()[2*m_inCount+1] = ci.real() / SDR_RX_SCALEF;
if (++m_inCount == m_rxa->get_insize())
{
WDSP::RXA::xrxa(m_rxa);
m_sCount = m_wdspBufSize;
m_sAvg = WDSP::METER::GetMeter(*m_rxa, WDSP::RXA::RXA_S_AV);
m_sPeak = WDSP::METER::GetMeter(*m_rxa, WDSP::RXA::RXA_S_PK);
for (int i = 0; i < m_rxa->get_outsize(); i++)
{
if (m_settings.m_audioMute)
{
m_audioBuffer[m_audioBufferFill].r = 0;
m_audioBuffer[m_audioBufferFill].l = 0;
}
else
{
const double& cr = m_rxa->get_outbuff()[2*i+1];
const double& ci = m_rxa->get_outbuff()[2*i];
qint16 zr = cr * 32768.0;
qint16 zi = ci * 32768.0;
m_audioBuffer[m_audioBufferFill].r = zr;
m_audioBuffer[m_audioBufferFill].l = zi;
if (m_settings.m_audioBinaural)
{
m_demodBuffer[m_demodBufferFill++] = zr;
m_demodBuffer[m_demodBufferFill++] = zi;
}
else
{
Real demod = (zr + zi) * 0.7;
qint16 sample = (qint16)(demod);
m_demodBuffer[m_demodBufferFill++] = sample;
}
if (m_demodBufferFill >= m_demodBuffer.size())
{
QList<ObjectPipe*> dataPipes;
MainCore::instance()->getDataPipes().getDataPipes(m_channel, "demod", dataPipes);
if (dataPipes.size() > 0)
{
QList<ObjectPipe*>::iterator it = dataPipes.begin();
for (; it != dataPipes.end(); ++it)
{
DataFifo *fifo = qobject_cast<DataFifo*>((*it)->m_element);
if (fifo)
{
fifo->write(
(quint8*) &m_demodBuffer[0],
m_demodBuffer.size() * sizeof(qint16),
m_settings.m_audioBinaural ? DataFifo::DataTypeCI16 : DataFifo::DataTypeI16
);
}
}
}
m_demodBufferFill = 0;
}
} // audio sample
if (++m_audioBufferFill == m_audioBuffer.size())
{
std::size_t res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], std::min(m_audioBufferFill, m_audioBuffer.size()));
if (res != m_audioBufferFill) {
qDebug("WDSPRxSink::processOneSample: %lu/%lu samples written", res, m_audioBufferFill);
}
m_audioBufferFill = 0;
}
} // result loop
if (m_spectrumSink && (m_sampleBuffer.size() != 0))
{
m_spectrumSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), !m_settings.m_dsb);
m_sampleBuffer.clear();
}
m_inCount = 0;
}
}
void WDSPRxSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "WDSPRxSink::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset;
if ((m_channelFrequencyOffset != channelFrequencyOffset) ||
(m_channelSampleRate != channelSampleRate) || force)
{
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
}
if ((m_channelSampleRate != channelSampleRate) || force)
{
Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > channelSampleRate ? channelSampleRate : (m_Bandwidth * 1.5f);
m_interpolator.create(16, channelSampleRate, interpolatorBandwidth, 2.0f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) channelSampleRate / (Real) m_wdspSampleRate;
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
}
void WDSPRxSink::applyAudioSampleRate(int sampleRate)
{
qDebug("WDSPRxSink::applyAudioSampleRate: %d", sampleRate);
Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > m_channelSampleRate ? m_channelSampleRate : (m_Bandwidth * 1.5f);
m_interpolator.create(16, m_channelSampleRate, interpolatorBandwidth, 2.0f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) m_wdspSampleRate;
WDSP::RXA::setOutputSamplerate(m_rxa, sampleRate);
m_audioFifo.setSize(sampleRate);
m_audioSampleRate = sampleRate;
m_audioBuffer.resize(sampleRate / 10);
m_audioBufferFill = 0;
QList<ObjectPipe*> pipes;
MainCore::instance()->getMessagePipes().getMessagePipes(m_channel, "reportdemod", pipes);
if (pipes.size() > 0)
{
for (const auto& pipe : pipes)
{
MessageQueue* messageQueue = qobject_cast<MessageQueue*>(pipe->m_element);
if (messageQueue)
{
MainCore::MsgChannelDemodReport *msg = MainCore::MsgChannelDemodReport::create(m_channel, sampleRate);
messageQueue->push(msg);
}
}
}
}
void WDSPRxSink::applySettings(const WDSPRxSettings& settings, bool force)
{
qDebug() << "WDSPRxSink::applySettings:"
<< " m_demod: " << settings.m_demod
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
<< " m_profileIndex: " << settings.m_profileIndex
<< " m_spanLog2: " << settings.m_profiles[settings.m_profileIndex].m_spanLog2
<< " m_highCutoff: " << settings.m_profiles[settings.m_profileIndex].m_highCutoff
<< " m_lowCutoff: " << settings.m_profiles[settings.m_profileIndex].m_lowCutoff
<< " m_fftWindow: " << settings.m_profiles[settings.m_profileIndex].m_fftWindow << "]"
<< " m_volume: " << settings.m_volume
<< " m_audioBinaural: " << settings.m_audioBinaural
<< " m_audioFlipChannels: " << settings.m_audioFlipChannels
<< " m_dsb: " << settings.m_dsb
<< " m_audioMute: " << settings.m_audioMute
<< " m_agc: " << settings.m_agc
<< " m_agcMode: " << settings.m_agcMode
<< " m_agcGain: " << settings.m_agcGain
<< " m_agcSlope: " << settings.m_agcSlope
<< " m_agcHangThreshold: " << settings.m_agcHangThreshold
<< " m_audioDeviceName: " << settings.m_audioDeviceName
<< " m_anf: "<< settings.m_anf
<< " m_dnr: " << settings.m_dnr
<< " m_nrScheme: " << settings.m_nrScheme
<< " m_nrPosition: "<< settings.m_nrPosition
<< " m_nr2Gain: " << settings.m_nr2Gain
<< " m_nr2NPE: " << settings.m_nr2NPE
<< " m_nr2ArtifactReduction: " << settings.m_nr2ArtifactReduction
<< " m_streamIndex: " << settings.m_streamIndex
<< " m_useReverseAPI: " << settings.m_useReverseAPI
<< " m_reverseAPIAddress: " << settings.m_reverseAPIAddress
<< " m_reverseAPIPort: " << settings.m_reverseAPIPort
<< " m_reverseAPIDeviceIndex: " << settings.m_reverseAPIDeviceIndex
<< " m_reverseAPIChannelIndex: " << settings.m_reverseAPIChannelIndex
<< " force: " << force;
// Filter and mode
if((m_settings.m_profiles[m_settings.m_profileIndex].m_highCutoff != settings.m_profiles[settings.m_profileIndex].m_highCutoff) ||
(m_settings.m_profiles[m_settings.m_profileIndex].m_lowCutoff != settings.m_profiles[settings.m_profileIndex].m_lowCutoff) ||
(m_settings.m_profiles[m_settings.m_profileIndex].m_fftWindow != settings.m_profiles[settings.m_profileIndex].m_fftWindow) ||
(m_settings.m_demod != settings.m_demod) ||
(m_settings.m_dsb != settings.m_dsb) || force)
{
float band, low, high, fLow, fHigh;
bool usb, dsb;
band = settings.m_profiles[settings.m_profileIndex].m_highCutoff;
high = band;
low = settings.m_profiles[settings.m_profileIndex].m_lowCutoff;
if (band < 0)
{
band = -band;
m_spectrumProbe.setUSB(false);
usb = false;
}
else
{
m_spectrumProbe.setUSB(true);
usb = true;
}
m_Bandwidth = band;
if (high < low)
{
if (settings.m_dsb)
{
fLow = high;
fHigh = -high;
m_spectrumProbe.setDSB(true);
dsb = true;
}
else
{
fLow = high;
fHigh = low;
m_spectrumProbe.setDSB(false);
dsb = false;
}
}
else
{
if (settings.m_dsb)
{
fLow = -high;
fHigh = high;
m_spectrumProbe.setDSB(true);
dsb = true;
}
else
{
fLow = low;
fHigh = high;
m_spectrumProbe.setDSB(false);
dsb = false;
}
}
Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > m_channelSampleRate ? m_channelSampleRate : (m_Bandwidth * 1.5f);
m_interpolator.create(16, m_channelSampleRate, interpolatorBandwidth, 2.0f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) m_audioSampleRate;
WDSP::RXA::SetPassband(*m_rxa, fLow, fHigh);
WDSP::NBP::NBPSetWindow(*m_rxa, m_settings.m_profiles[m_settings.m_profileIndex].m_fftWindow);
if (settings.m_demod == WDSPRxProfile::DemodSSB)
{
if (dsb)
{
WDSP::RXA::SetMode(*m_rxa, WDSP::RXA::RXA_DSB);
}
else
{
if (usb) {
WDSP::RXA::SetMode(*m_rxa, WDSP::RXA::RXA_USB);
} else {
WDSP::RXA::SetMode(*m_rxa, WDSP::RXA::RXA_LSB);
}
}
}
else if (settings.m_demod == WDSPRxProfile::DemodAM)
{
WDSP::RXA::SetMode(*m_rxa, WDSP::RXA::RXA_AM);
}
else if (settings.m_demod == WDSPRxProfile::DemodSAM)
{
WDSP::RXA::SetMode(*m_rxa, WDSP::RXA::RXA_SAM);
}
else if (settings.m_demod == WDSPRxProfile::DemodFMN)
{
WDSP::RXA::SetMode(*m_rxa, WDSP::RXA::RXA_FM);
}
}
if ((m_settings.m_profiles[settings.m_profileIndex].m_spanLog2 != settings.m_profiles[settings.m_profileIndex].m_spanLog2) || force) {
m_spectrumProbe.setSpanLog2(settings.m_profiles[settings.m_profileIndex].m_spanLog2);
}
// Noise Reduction
if ((m_settings.m_dnr != settings.m_dnr)
|| (m_settings.m_nrScheme != settings.m_nrScheme) || force)
{
WDSP::ANR::SetANRRun(*m_rxa, 0);
WDSP::EMNR::SetEMNRRun(*m_rxa, 0);
if (settings.m_dnr)
{
switch (settings.m_nrScheme)
{
case WDSPRxProfile::NRSchemeNR:
WDSP::ANR::SetANRRun(*m_rxa, 1);
break;
case WDSPRxProfile::NRSchemeNR2:
WDSP::EMNR::SetEMNRRun(*m_rxa, 1);
break;
default:
break;
}
}
}
if ((m_settings.m_nrPosition != settings.m_nrPosition) || force)
{
switch (settings.m_nrPosition)
{
case WDSPRxProfile::NRPositionPreAGC:
WDSP::ANR::SetANRPosition(*m_rxa, 0);
WDSP::EMNR::SetEMNRPosition(*m_rxa, 0);
break;
case WDSPRxProfile::NRPositionPostAGC:
WDSP::ANR::SetANRPosition(*m_rxa, 1);
WDSP::EMNR::SetEMNRPosition(*m_rxa, 1);
break;
default:
break;
}
}
if ((m_settings.m_nr2Gain != settings.m_nr2Gain) || force)
{
switch (settings.m_nr2Gain)
{
case WDSPRxProfile::NR2GainLinear:
WDSP::EMNR::SetEMNRgainMethod(*m_rxa, 0);
break;
case WDSPRxProfile::NR2GainLog:
WDSP::EMNR::SetEMNRgainMethod(*m_rxa, 1);
break;
case WDSPRxProfile::NR2GainGamma:
WDSP::EMNR::SetEMNRgainMethod(*m_rxa, 2);
break;
default:
break;
}
}
if ((m_settings.m_nr2NPE != settings.m_nr2NPE) || force)
{
switch (settings.m_nr2NPE)
{
case WDSPRxProfile::NR2NPEOSMS:
WDSP::EMNR::SetEMNRnpeMethod(*m_rxa, 0);
break;
case WDSPRxProfile::NR2NPEMMSE:
WDSP::EMNR::SetEMNRnpeMethod(*m_rxa, 1);
break;
default:
break;
}
}
if ((m_settings.m_nr2ArtifactReduction != settings.m_nr2ArtifactReduction) || force) {
WDSP::EMNR::SetEMNRaeRun(*m_rxa, settings.m_nr2ArtifactReduction ? 1 : 0);
}
if ((m_settings.m_anf != settings.m_anf) || force) {
WDSP::ANF::SetANFRun(*m_rxa, settings.m_anf ? 1 : 0);
}
// CW Peaking
if ((m_settings.m_cwPeaking != settings.m_cwPeaking) || force) {
WDSP::SPEAK::SetSPCWRun(*m_rxa, settings.m_cwPeaking ? 1 : 0);
}
if ((m_settings.m_cwPeakFrequency != settings.m_cwPeakFrequency) || force) {
WDSP::SPEAK::SetSPCWFreq(*m_rxa, settings.m_cwPeakFrequency);
}
if ((m_settings.m_cwBandwidth != settings.m_cwBandwidth) || force) {
WDSP::SPEAK::SetSPCWBandwidth(*m_rxa, settings.m_cwBandwidth);
}
if ((m_settings.m_cwGain != settings.m_cwGain) || force) {
WDSP::SPEAK::SetSPCWGain(*m_rxa, settings.m_cwGain);
}
// Noise Blanker
if ((m_settings.m_dnb != settings.m_dnb)
|| (m_settings.m_nbScheme != settings.m_nbScheme) || force)
{
WDSP::ANB::SetANBRun(*m_rxa, 0);
WDSP::NOB::SetNOBRun(*m_rxa, 0);
if (settings.m_dnb)
{
switch(settings.m_nbScheme)
{
case WDSPRxProfile::NBSchemeNB:
WDSP::ANB::SetANBRun(*m_rxa, 1);
break;
case WDSPRxProfile::NBSchemeNB2:
WDSP::NOB::SetNOBRun(*m_rxa, 1);
break;
default:
break;
}
}
}
if ((m_settings.m_nbSlewTime != settings.m_nbSlewTime) || force)
{
WDSP::ANB::SetANBTau(*m_rxa, settings.m_nbSlewTime * 0.001);
WDSP::NOB::SetNOBTau(*m_rxa, settings.m_nbSlewTime * 0.001);
}
if ((m_settings.m_nbLeadTime != settings.m_nbLeadTime) || force)
{
WDSP::ANB::SetANBAdvtime(*m_rxa, settings.m_nbLeadTime * 0.001);
WDSP::NOB::SetNOBAdvtime(*m_rxa, settings.m_nbLeadTime * 0.001);
}
if ((m_settings.m_nbLagTime != settings.m_nbLagTime) || force)
{
WDSP::ANB::SetANBHangtime(*m_rxa, settings.m_nbLagTime * 0.001);
WDSP::NOB::SetNOBHangtime(*m_rxa, settings.m_nbLagTime * 0.001);
}
if ((m_settings.m_nbThreshold != settings.m_nbThreshold) || force)
{
WDSP::ANB::SetANBThreshold(*m_rxa, settings.m_nbThreshold);
WDSP::NOB::SetNOBThreshold(*m_rxa, settings.m_nbThreshold);
}
if ((m_settings.m_nbAvgTime != settings.m_nbAvgTime) || force)
{
WDSP::ANB::SetANBBacktau(*m_rxa, settings.m_nbAvgTime * 0.001);
WDSP::NOB::SetNOBBacktau(*m_rxa, settings.m_nbAvgTime * 0.001);
}
// AM option
if ((m_settings.m_amFadeLevel != settings.m_amFadeLevel) || force) {
WDSP::AMD::SetAMDFadeLevel(*m_rxa, settings.m_amFadeLevel);
}
// FM options
if ((m_settings.m_fmDeviation != settings.m_fmDeviation) || force) {
WDSP::FMD::SetFMDeviation(*m_rxa, settings.m_fmDeviation);
}
if ((m_settings.m_fmAFLow != settings.m_fmAFLow)
|| (m_settings.m_fmAFHigh != settings.m_fmAFHigh) || force)
{
WDSP::FMD::SetFMAFFilter(*m_rxa, settings.m_fmAFLow, settings.m_fmAFHigh);
}
if ((m_settings.m_fmAFLimiter != settings.m_fmAFLimiter) || force) {
WDSP::FMD::SetFMLimRun(*m_rxa, settings.m_fmAFLimiter ? 1 : 0);
}
if ((m_settings.m_fmAFLimiterGain != settings.m_fmAFLimiterGain) || force) {
WDSP::FMD::SetFMLimGain(*m_rxa, settings.m_fmAFLimiterGain);
}
if ((m_settings.m_fmCTCSSNotch != settings.m_fmCTCSSNotch) || force) {
WDSP::FMD::SetCTCSSRun(*m_rxa, settings.m_fmCTCSSNotch ? 1 : 0);
}
if ((m_settings.m_fmCTCSSNotchFrequency != settings.m_fmCTCSSNotchFrequency) || force) {
WDSP::FMD::SetCTCSSFreq(*m_rxa, settings.m_fmCTCSSNotchFrequency);
}
// Squelch
if ((m_settings.m_squelch != settings.m_squelch)
|| (m_settings.m_squelchThreshold != settings.m_squelchThreshold)
|| (m_settings.m_squelchMode != settings.m_squelchMode) || force)
{
WDSP::SSQL::SetSSQLRun(*m_rxa, 0);
WDSP::AMSQ::SetAMSQRun(*m_rxa, 0);
WDSP::FMSQ::SetFMSQRun(*m_rxa, 0);
if (settings.m_squelch)
{
switch(settings.m_squelchMode)
{
case WDSPRxProfile::SquelchModeVoice:
{
WDSP::SSQL::SetSSQLRun(*m_rxa, 1);
double threshold = 0.0075 * settings.m_squelchThreshold;
WDSP::SSQL::SetSSQLThreshold(*m_rxa, threshold);
}
break;
case WDSPRxProfile::SquelchModeAM:
{
WDSP::AMSQ::SetAMSQRun(*m_rxa, 1);
double threshold = ((settings.m_squelchThreshold / 100.0) * 160.0) - 160.0;
WDSP::AMSQ::SetAMSQThreshold(*m_rxa, threshold);
}
break;
case WDSPRxProfile::SquelchModeFM:
{
WDSP::FMSQ::SetFMSQRun(*m_rxa, 1);
double threshold = pow(10.0, -2.0 * ((double) settings.m_squelchThreshold) / 100.0);
qDebug("WDSPRxSink::applySettings: FM squelch %lf", threshold);
WDSP::FMSQ::SetFMSQThreshold(*m_rxa, threshold);
}
break;
default:
break;
}
}
}
if ((m_settings.m_ssqlTauMute != settings.m_ssqlTauMute) || force) {
WDSP::SSQL::SetSSQLTauMute(*m_rxa, settings.m_ssqlTauMute);
}
if ((m_settings.m_ssqlTauUnmute != settings.m_ssqlTauUnmute) || force) {
WDSP::SSQL::SetSSQLTauUnMute(*m_rxa, settings.m_ssqlTauUnmute);
}
if ((m_settings.m_amsqMaxTail != settings.m_amsqMaxTail) || force) {
WDSP::AMSQ::SetAMSQMaxTail(*m_rxa, settings.m_amsqMaxTail);
}
// Audio panel
if ((m_settings.m_volume != settings.m_volume) || force) {
WDSP::PANEL::SetPanelGain1(*m_rxa, settings.m_volume);
}
if ((m_settings.m_audioBinaural != settings.m_audioBinaural) || force) {
WDSP::PANEL::SetPanelBinaural(*m_rxa, settings.m_audioBinaural ? 1 : 0);
}
if ((m_settings.m_audioFlipChannels != settings.m_audioFlipChannels) || force) {
WDSP::PANEL::SetPanelCopy(*m_rxa, settings.m_audioFlipChannels ? 3 : 0);
}
// AGC
if ((m_settings.m_agc != settings.m_agc)
|| (m_settings.m_agcMode != settings.m_agcMode)
|| (m_settings.m_agcSlope != settings.m_agcSlope)
|| (m_settings.m_agcHangThreshold != settings.m_agcHangThreshold)
|| (m_settings.m_agcGain != settings.m_agcGain) || force)
{
WDSP::WCPAGC::SetAGCSlope(*m_rxa, settings.m_agcSlope); // SetRXAAGCSlope(id, rx->agc_slope);
WDSP::WCPAGC::SetAGCTop(*m_rxa, (float) settings.m_agcGain); // SetRXAAGCTop(id, rx->agc_gain);
if (settings.m_agc)
{
switch (settings.m_agcMode)
{
case WDSPRxProfile::WDSPRxAGCMode::AGCLong:
WDSP::WCPAGC::SetAGCMode(*m_rxa, 1);
WDSP::WCPAGC::SetAGCAttack(*m_rxa, 2); // SetRXAAGCAttack(id, 2);
WDSP::WCPAGC::SetAGCHang(*m_rxa, 2000); // SetRXAAGCHang(id, 2000);
WDSP::WCPAGC::SetAGCDecay(*m_rxa, 2000); // SetRXAAGCDecay(id, 2000);
WDSP::WCPAGC::SetAGCHangThreshold(*m_rxa, settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, (int)rx->agc_hang_threshold);
break;
case WDSPRxProfile::WDSPRxAGCMode::AGCSlow:
WDSP::WCPAGC::SetAGCMode(*m_rxa, 2);
WDSP::WCPAGC::SetAGCAttack(*m_rxa, 2); // SetRXAAGCAttack(id, 2);
WDSP::WCPAGC::SetAGCHang(*m_rxa, 1000); // SetRXAAGCHang(id, 1000);
WDSP::WCPAGC::SetAGCDecay(*m_rxa, 500); // SetRXAAGCDecay(id, 500);
WDSP::WCPAGC::SetAGCHangThreshold(*m_rxa, settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, (int)rx->agc_hang_threshold);
break;
case WDSPRxProfile::WDSPRxAGCMode::AGCMedium:
WDSP::WCPAGC::SetAGCMode(*m_rxa, 3);
WDSP::WCPAGC::SetAGCAttack(*m_rxa, 2); // SetRXAAGCAttack(id, 2);
WDSP::WCPAGC::SetAGCHang(*m_rxa, 0); // SetRXAAGCHang(id, 0);
WDSP::WCPAGC::SetAGCDecay(*m_rxa, 250); // SetRXAAGCDecay(id, 250);
WDSP::WCPAGC::SetAGCHangThreshold(*m_rxa, settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, 100);
break;
case WDSPRxProfile::WDSPRxAGCMode::AGCFast:
WDSP::WCPAGC::SetAGCMode(*m_rxa, 4);
WDSP::WCPAGC::SetAGCAttack(*m_rxa, 2); // SetRXAAGCAttack(id, 2);
WDSP::WCPAGC::SetAGCHang(*m_rxa, 0); // SetRXAAGCHang(id, 0);
WDSP::WCPAGC::SetAGCDecay(*m_rxa, 50); // SetRXAAGCDecay(id, 50);
WDSP::WCPAGC::SetAGCHangThreshold(*m_rxa, settings.m_agcHangThreshold); // SetRXAAGCHangThreshold(id, 100);
break;
}
}
else
{
WDSP::WCPAGC::SetAGCMode(*m_rxa, 0);
}
}
m_settings = settings;
}