mirror of
https://github.com/f4exb/sdrangel.git
synced 2025-04-04 18:48:34 -04:00
Imported Iowa Hills Software IIR and FIR calculator
This commit is contained in:
parent
d38d926a87
commit
c495f82235
@ -219,6 +219,7 @@ endif()
|
||||
|
||||
##############################################################################
|
||||
# base libraries
|
||||
add_subdirectory(kitiirfir)
|
||||
add_subdirectory(sdrbase)
|
||||
add_subdirectory(sdrgui)
|
||||
add_subdirectory(sdrsrv)
|
||||
|
38
kitiirfir/CMakeLists.txt
Normal file
38
kitiirfir/CMakeLists.txt
Normal file
@ -0,0 +1,38 @@
|
||||
project(kitiirfir)
|
||||
|
||||
set(kitiirfir_SOURCES
|
||||
FFTCode.cpp
|
||||
FIRFilterCode.cpp
|
||||
FreqSamplingCode.cpp
|
||||
IIRFilterCode.cpp
|
||||
LowPassPrototypes.cpp
|
||||
LowPassRoots.cpp
|
||||
NewParksMcClellan.cpp
|
||||
PFiftyOneRevE.cpp
|
||||
QuadRootsRevH.cpp
|
||||
)
|
||||
|
||||
set(kitiirfir_HEADERS
|
||||
FFTCode.h
|
||||
FIRFilterCode.h
|
||||
FreqSamplingCode.h
|
||||
IIRFilterCode.h
|
||||
LowPassPrototypes.h
|
||||
LowPassRoots.h
|
||||
NewParksMcClellan.h
|
||||
PFiftyOneRevE.h
|
||||
QuadRootsRevH.h
|
||||
)
|
||||
|
||||
include_directories(
|
||||
.
|
||||
${CMAKE_CURRENT_BINARY_DIR}
|
||||
)
|
||||
|
||||
add_definitions(-DQT_SHARED)
|
||||
|
||||
add_library(kitiirfir SHARED
|
||||
${kitiirfir_SOURCES}
|
||||
)
|
||||
|
||||
install(TARGETS kitiirfir DESTINATION lib)
|
770
kitiirfir/FFTCode.cpp
Normal file
770
kitiirfir/FFTCode.cpp
Normal file
@ -0,0 +1,770 @@
|
||||
/*
|
||||
By Daniel Klostermann
|
||||
Iowa Hills Software, LLC IowaHills.com
|
||||
If you find a problem, please leave a note at:
|
||||
http://www.iowahills.com/feedbackcomments.html
|
||||
June 6, 2016
|
||||
|
||||
ShowMessage is a C++ Builder function, and it usage has been commented out.
|
||||
If you are using C++ Builder, include vcl.h for ShowMessage.
|
||||
Otherwise replace ShowMessage with something appropriate for your compiler.
|
||||
*/
|
||||
|
||||
#include "FFTCode.h"
|
||||
#include <math.h>
|
||||
|
||||
namespace kitiirfir
|
||||
{
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// This calculates the required FFT size for a given number of points.
|
||||
int RequiredFFTSize(int NumPts) {
|
||||
int N = MINIMUM_FFT_SIZE;
|
||||
while (N < NumPts && N < MAXIMUM_FFT_SIZE) {
|
||||
N *= 2;
|
||||
}
|
||||
return N;
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This verifies that the FFT Size N = 2^M. M is returned
|
||||
// N must be >= 8 for the Twiddle calculations
|
||||
int IsValidFFTSize(int N) {
|
||||
if (N < MINIMUM_FFT_SIZE || N > MAXIMUM_FFT_SIZE || (N & (N - 1)) != 0)
|
||||
return (0); // N & (N - 1) ensures a power of 2
|
||||
return ((int) (log((double) N) / M_LN2 + 0.5)); // return M where N = 2^M
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// Fast Fourier Transform
|
||||
// This code puts DC in bin 0 and scales the output of a forward transform by 1/N.
|
||||
// InputR and InputI are the real and imaginary input arrays of length N.
|
||||
// The output values are returned in the Input arrays.
|
||||
// TTransFormType is either FORWARD or INVERSE (defined in the header file)
|
||||
// 256 pts in 50 us
|
||||
void FFT(double *InputR, double *InputI, int N, TTransFormType Type) {
|
||||
int j, LogTwoOfN, *RevBits;
|
||||
double *BufferR, *BufferI, *TwiddleR, *TwiddleI;
|
||||
double OneOverN;
|
||||
|
||||
// Verify the FFT size and type.
|
||||
LogTwoOfN = IsValidFFTSize(N);
|
||||
if (LogTwoOfN == 0 || (Type != FORWARD && Type != INVERSE)) {
|
||||
// ShowMessage("Invalid FFT type or size.");
|
||||
return;
|
||||
}
|
||||
|
||||
// Memory allocation for all the arrays.
|
||||
BufferR = new double[N];
|
||||
BufferI = new double[N];
|
||||
TwiddleR = new double[N / 2];
|
||||
TwiddleI = new double[N / 2];
|
||||
RevBits = new int[N];
|
||||
|
||||
if (BufferR == NULL || BufferI == NULL || TwiddleR == NULL
|
||||
|| TwiddleI == NULL || RevBits == NULL) {
|
||||
// ShowMessage("FFT Memory Allocation Error");
|
||||
return;
|
||||
}
|
||||
|
||||
ReArrangeInput(InputR, InputI, BufferR, BufferI, RevBits, N);
|
||||
FillTwiddleArray(TwiddleR, TwiddleI, N, Type);
|
||||
Transform(InputR, InputI, BufferR, BufferI, TwiddleR, TwiddleI, N);
|
||||
|
||||
// The ReArrangeInput function swapped Input[] and Buffer[]. Then Transform()
|
||||
// swapped them again, LogTwoOfN times. Ultimately, these swaps must be done
|
||||
// an even number of times, or the pointer to Buffer gets returned.
|
||||
// So we must do one more swap here, for N = 16, 64, 256, 1024, ...
|
||||
OneOverN = 1.0;
|
||||
if (Type == FORWARD)
|
||||
OneOverN = 1.0 / (double) N;
|
||||
|
||||
if (LogTwoOfN % 2 == 1) {
|
||||
for (j = 0; j < N; j++)
|
||||
InputR[j] = InputR[j] * OneOverN;
|
||||
for (j = 0; j < N; j++)
|
||||
InputI[j] = InputI[j] * OneOverN;
|
||||
} else // if(LogTwoOfN % 2 == 0) then the results are still in Buffer.
|
||||
{
|
||||
for (j = 0; j < N; j++)
|
||||
InputR[j] = BufferR[j] * OneOverN;
|
||||
for (j = 0; j < N; j++)
|
||||
InputI[j] = BufferI[j] * OneOverN;
|
||||
}
|
||||
|
||||
delete[] BufferR;
|
||||
delete[] BufferI;
|
||||
delete[] TwiddleR;
|
||||
delete[] TwiddleI;
|
||||
delete[] RevBits;
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This puts the input arrays in bit reversed order.
|
||||
// The while loop generates an array of bit reversed numbers. e.g.
|
||||
// e.g. N=8: RevBits = 0,4,2,6,1,5,3,7 N=16: RevBits = 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15
|
||||
void ReArrangeInput(double *InputR, double *InputI, double *BufferR,
|
||||
double *BufferI, int *RevBits, int N) {
|
||||
int j, k, J, K;
|
||||
|
||||
J = N / 2;
|
||||
K = 1;
|
||||
RevBits[0] = 0;
|
||||
while (J >= 1) {
|
||||
for (k = 0; k < K; k++) {
|
||||
RevBits[k + K] = RevBits[k] + J;
|
||||
}
|
||||
K *= 2;
|
||||
J /= 2;
|
||||
}
|
||||
|
||||
// Move the rearranged input values to Buffer.
|
||||
// Take note of the pointer swaps at the top of the transform algorithm.
|
||||
for (j = 0; j < N; j++) {
|
||||
BufferR[j] = InputR[RevBits[j]];
|
||||
BufferI[j] = InputI[RevBits[j]];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
/*
|
||||
The Pentium takes a surprising amount of time to calculate the sine and cosine.
|
||||
You may want to make the twiddle arrays static if doing repeated FFTs of the same size.
|
||||
This uses 4 fold symmetry to calculate the twiddle factors. As a result, this function
|
||||
requires a minimum FFT size of 8.
|
||||
*/
|
||||
void FillTwiddleArray(double *TwiddleR, double *TwiddleI, int N,
|
||||
TTransFormType Type) {
|
||||
int j;
|
||||
double Theta, TwoPiOverN;
|
||||
|
||||
TwoPiOverN = M_2PI / (double) N;
|
||||
|
||||
if (Type == FORWARD) {
|
||||
TwiddleR[0] = 1.0;
|
||||
TwiddleI[0] = 0.0;
|
||||
TwiddleR[N / 4] = 0.0;
|
||||
TwiddleI[N / 4] = -1.0;
|
||||
TwiddleR[N / 8] = M_SQRT_2;
|
||||
TwiddleI[N / 8] = -M_SQRT_2;
|
||||
TwiddleR[3 * N / 8] = -M_SQRT_2;
|
||||
TwiddleI[3 * N / 8] = -M_SQRT_2;
|
||||
for (j = 1; j < N / 8; j++) {
|
||||
Theta = (double) j * -TwoPiOverN;
|
||||
TwiddleR[j] = cos(Theta);
|
||||
TwiddleI[j] = sin(Theta);
|
||||
TwiddleR[N / 4 - j] = -TwiddleI[j];
|
||||
TwiddleI[N / 4 - j] = -TwiddleR[j];
|
||||
TwiddleR[N / 4 + j] = TwiddleI[j];
|
||||
TwiddleI[N / 4 + j] = -TwiddleR[j];
|
||||
TwiddleR[N / 2 - j] = -TwiddleR[j];
|
||||
TwiddleI[N / 2 - j] = TwiddleI[j];
|
||||
}
|
||||
}
|
||||
|
||||
else {
|
||||
TwiddleR[0] = 1.0;
|
||||
TwiddleI[0] = 0.0;
|
||||
TwiddleR[N / 4] = 0.0;
|
||||
TwiddleI[N / 4] = 1.0;
|
||||
TwiddleR[N / 8] = M_SQRT_2;
|
||||
TwiddleI[N / 8] = M_SQRT_2;
|
||||
TwiddleR[3 * N / 8] = -M_SQRT_2;
|
||||
TwiddleI[3 * N / 8] = M_SQRT_2;
|
||||
for (j = 1; j < N / 8; j++) {
|
||||
Theta = (double) j * TwoPiOverN;
|
||||
TwiddleR[j] = cos(Theta);
|
||||
TwiddleI[j] = sin(Theta);
|
||||
TwiddleR[N / 4 - j] = TwiddleI[j];
|
||||
TwiddleI[N / 4 - j] = TwiddleR[j];
|
||||
TwiddleR[N / 4 + j] = -TwiddleI[j];
|
||||
TwiddleI[N / 4 + j] = TwiddleR[j];
|
||||
TwiddleR[N / 2 - j] = -TwiddleR[j];
|
||||
TwiddleI[N / 2 - j] = TwiddleI[j];
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// The Fast Fourier Transform.
|
||||
void Transform(double *InputR, double *InputI, double *BufferR, double *BufferI,
|
||||
double *TwiddleR, double *TwiddleI, int N) {
|
||||
int j, k, J, K, I, T;
|
||||
double *TempPointer;
|
||||
double TempR, TempI;
|
||||
|
||||
J = N / 2; // J increments down to 1
|
||||
K = 1; // K increments up to N/2
|
||||
while (J > 0) // Loops Log2(N) times.
|
||||
{
|
||||
// Swap pointers, instead doing this: for(j=0; j<N; j++) Input[j] = Buffer[j];
|
||||
// We start with a swap because of the swap in ReArrangeInput.
|
||||
TempPointer = InputR;
|
||||
InputR = BufferR;
|
||||
BufferR = TempPointer;
|
||||
TempPointer = InputI;
|
||||
InputI = BufferI;
|
||||
BufferI = TempPointer;
|
||||
|
||||
I = 0;
|
||||
for (j = 0; j < J; j++) {
|
||||
T = 0;
|
||||
for (k = 0; k < K; k++) // Loops N/2 times for every value of J and K
|
||||
{
|
||||
TempR = InputR[K + I] * TwiddleR[T]
|
||||
- InputI[K + I] * TwiddleI[T];
|
||||
TempI = InputR[K + I] * TwiddleI[T]
|
||||
+ InputI[K + I] * TwiddleR[T];
|
||||
BufferR[I] = InputR[I] + TempR;
|
||||
BufferI[I] = InputI[I] + TempI;
|
||||
BufferR[I + K] = InputR[I] - TempR;
|
||||
BufferI[I + K] = InputI[I] - TempI;
|
||||
I++;
|
||||
T += J;
|
||||
}
|
||||
I += K;
|
||||
}
|
||||
K *= 2;
|
||||
J /= 2;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------------------------
|
||||
|
||||
/*
|
||||
The only difficulty in writing an FFT is figuring out how to calculate the various array indexes.
|
||||
This shows how the index values change when doing a 16 pt FFT.
|
||||
This print only has value if you compare it to a butterfly chart. Then you can
|
||||
see how an FFT works. Use a 16 point decimation in time butterfly chart. We have one here:
|
||||
http://www.iowahills.com/FFTCode.html
|
||||
|
||||
Note: The code above uses real variables. This print out came from code using complex variables as shown here.
|
||||
Buffer[I] = Input[I] + Input[K+I] * Twiddle[T];
|
||||
Buffer[I+K] = Input[I] - Input[K+I] * Twiddle[T];
|
||||
|
||||
N = 16
|
||||
J = 8 K = 1
|
||||
Buffer[0] = Input[0] + Input[1] * Twiddle[0] I = 0
|
||||
Buffer[1] = Input[0] - Input[1] * Twiddle[0] I = 0
|
||||
Buffer[2] = Input[2] + Input[3] * Twiddle[0] I = 2
|
||||
Buffer[3] = Input[2] - Input[3] * Twiddle[0] I = 2
|
||||
Buffer[4] = Input[4] + Input[5] * Twiddle[0] etc.
|
||||
Buffer[5] = Input[4] - Input[5] * Twiddle[0]
|
||||
Buffer[6] = Input[6] + Input[7] * Twiddle[0]
|
||||
Buffer[7] = Input[6] - Input[7] * Twiddle[0]
|
||||
Buffer[8] = Input[8] + Input[9] * Twiddle[0]
|
||||
Buffer[9] = Input[8] - Input[9] * Twiddle[0]
|
||||
Buffer[10] = Input[10] + Input[11] * Twiddle[0]
|
||||
Buffer[11] = Input[10] - Input[11] * Twiddle[0]
|
||||
Buffer[12] = Input[12] + Input[13] * Twiddle[0]
|
||||
Buffer[13] = Input[12] - Input[13] * Twiddle[0]
|
||||
Buffer[14] = Input[14] + Input[15] * Twiddle[0]
|
||||
Buffer[15] = Input[14] - Input[15] * Twiddle[0]
|
||||
|
||||
J = 4 K = 2
|
||||
Buffer[0] = Input[0] + Input[2] * Twiddle[0]
|
||||
Buffer[2] = Input[0] - Input[2] * Twiddle[0]
|
||||
Buffer[1] = Input[1] + Input[3] * Twiddle[4]
|
||||
Buffer[3] = Input[1] - Input[3] * Twiddle[4]
|
||||
Buffer[4] = Input[4] + Input[6] * Twiddle[0]
|
||||
Buffer[6] = Input[4] - Input[6] * Twiddle[0]
|
||||
Buffer[5] = Input[5] + Input[7] * Twiddle[4]
|
||||
Buffer[7] = Input[5] - Input[7] * Twiddle[4]
|
||||
Buffer[8] = Input[8] + Input[10] * Twiddle[0]
|
||||
Buffer[10] = Input[8] - Input[10] * Twiddle[0]
|
||||
Buffer[9] = Input[9] + Input[11] * Twiddle[4]
|
||||
Buffer[11] = Input[9] - Input[11] * Twiddle[4]
|
||||
Buffer[12] = Input[12] + Input[14] * Twiddle[0]
|
||||
Buffer[14] = Input[12] - Input[14] * Twiddle[0]
|
||||
Buffer[13] = Input[13] + Input[15] * Twiddle[4]
|
||||
Buffer[15] = Input[13] - Input[15] * Twiddle[4]
|
||||
|
||||
J = 2 K = 4
|
||||
Buffer[0] = Input[0] + Input[4] * Twiddle[0]
|
||||
Buffer[4] = Input[0] - Input[4] * Twiddle[0]
|
||||
Buffer[1] = Input[1] + Input[5] * Twiddle[2]
|
||||
Buffer[5] = Input[1] - Input[5] * Twiddle[2]
|
||||
Buffer[2] = Input[2] + Input[6] * Twiddle[4]
|
||||
Buffer[6] = Input[2] - Input[6] * Twiddle[4]
|
||||
Buffer[3] = Input[3] + Input[7] * Twiddle[6]
|
||||
Buffer[7] = Input[3] - Input[7] * Twiddle[6]
|
||||
Buffer[8] = Input[8] + Input[12] * Twiddle[0]
|
||||
Buffer[12] = Input[8] - Input[12] * Twiddle[0]
|
||||
Buffer[9] = Input[9] + Input[13] * Twiddle[2]
|
||||
Buffer[13] = Input[9] - Input[13] * Twiddle[2]
|
||||
Buffer[10] = Input[10] + Input[14] * Twiddle[4]
|
||||
Buffer[14] = Input[10] - Input[14] * Twiddle[4]
|
||||
Buffer[11] = Input[11] + Input[15] * Twiddle[6]
|
||||
Buffer[15] = Input[11] - Input[15] * Twiddle[6]
|
||||
|
||||
J = 1 K = 8
|
||||
Buffer[0] = Input[0] + Input[8] * Twiddle[0]
|
||||
Buffer[8] = Input[0] - Input[8] * Twiddle[0]
|
||||
Buffer[1] = Input[1] + Input[9] * Twiddle[1]
|
||||
Buffer[9] = Input[1] - Input[9] * Twiddle[1]
|
||||
Buffer[2] = Input[2] + Input[10] * Twiddle[2]
|
||||
Buffer[10] = Input[2] - Input[10] * Twiddle[2]
|
||||
Buffer[3] = Input[3] + Input[11] * Twiddle[3]
|
||||
Buffer[11] = Input[3] - Input[11] * Twiddle[3]
|
||||
Buffer[4] = Input[4] + Input[12] * Twiddle[4]
|
||||
Buffer[12] = Input[4] - Input[12] * Twiddle[4]
|
||||
Buffer[5] = Input[5] + Input[13] * Twiddle[5]
|
||||
Buffer[13] = Input[5] - Input[13] * Twiddle[5]
|
||||
Buffer[6] = Input[6] + Input[14] * Twiddle[6]
|
||||
Buffer[14] = Input[6] - Input[14] * Twiddle[6]
|
||||
Buffer[7] = Input[7] + Input[15] * Twiddle[7]
|
||||
Buffer[15] = Input[7] - Input[15] * Twiddle[7]
|
||||
|
||||
*/
|
||||
|
||||
//-----------------------------------------------------------------------------------------------
|
||||
|
||||
// Discrete Fourier Transform ( textbook code )
|
||||
// This takes the same arguments as the FFT function.
|
||||
// 256 pts in 1.720 ms
|
||||
void DFT(double *InputR, double *InputI, int N, int Type) {
|
||||
int j, k, n;
|
||||
double *SumR, *SumI, Sign, Arg;
|
||||
double *TwiddleReal, *TwiddleImag;
|
||||
|
||||
SumR = new double[N];
|
||||
SumI = new double[N];
|
||||
TwiddleReal = new double[N];
|
||||
TwiddleImag = new double[N];
|
||||
|
||||
if (SumR == NULL || SumI == NULL || TwiddleReal == NULL
|
||||
|| TwiddleImag == NULL || (Type != FORWARD && Type != INVERSE)) {
|
||||
// ShowMessage("Incorrect DFT Type or unable to allocate memory");
|
||||
return;
|
||||
}
|
||||
|
||||
// Calculate the twiddle factors and initialize the Sum arrays.
|
||||
if (Type == FORWARD)
|
||||
Sign = -1.0;
|
||||
else
|
||||
Sign = 1.0;
|
||||
|
||||
for (j = 0; j < N; j++) {
|
||||
Arg = M_2PI * (double) j / (double) N;
|
||||
TwiddleReal[j] = cos(Arg);
|
||||
TwiddleImag[j] = Sign * sin(Arg);
|
||||
SumR[j] = SumI[j] = 0.0;
|
||||
}
|
||||
|
||||
//Calculate the DFT
|
||||
for (j = 0; j < N; j++) // Sum index
|
||||
for (k = 0; k < N; k++) // Input index
|
||||
{
|
||||
n = (j * k) % N;
|
||||
SumR[j] += TwiddleReal[n] * InputR[k] - TwiddleImag[n] * InputI[k];
|
||||
SumI[j] += TwiddleReal[n] * InputI[k] + TwiddleImag[n] * InputR[k];
|
||||
}
|
||||
|
||||
// Scale the result if doing a forward DFT, and move the result to the input arrays.
|
||||
if (Type == FORWARD) {
|
||||
for (j = 0; j < N; j++)
|
||||
InputR[j] = SumR[j] / (double) N;
|
||||
for (j = 0; j < N; j++)
|
||||
InputI[j] = SumI[j] / (double) N;
|
||||
} else // Inverse DFT
|
||||
{
|
||||
for (j = 0; j < N; j++)
|
||||
InputR[j] = SumR[j];
|
||||
for (j = 0; j < N; j++)
|
||||
InputI[j] = SumI[j];
|
||||
}
|
||||
|
||||
delete[] SumR;
|
||||
delete[] SumI;
|
||||
delete[] TwiddleReal;
|
||||
delete[] TwiddleImag;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------------------------
|
||||
|
||||
// This is a DFT for real valued samples. Since Samples is real, it can only do a forward DFT.
|
||||
// The results are returned in OutputR OutputI
|
||||
// 256 pts in 700 us 30 us to calc the twiddles
|
||||
void RealSigDFT(double *Samples, double *OutputR, double *OutputI, int N) {
|
||||
int j, k;
|
||||
double Arg, *TwiddleReal, *TwiddleImag;
|
||||
|
||||
TwiddleReal = new double[N];
|
||||
TwiddleImag = new double[N];
|
||||
if (TwiddleReal == NULL || TwiddleImag == NULL) {
|
||||
// ShowMessage("Failed to allocate memory in RealSigDFT");
|
||||
return;
|
||||
}
|
||||
|
||||
for (j = 0; j < N; j++) {
|
||||
Arg = M_2PI * (double) j / (double) N;
|
||||
TwiddleReal[j] = cos(Arg);
|
||||
TwiddleImag[j] = -sin(Arg);
|
||||
}
|
||||
|
||||
// Compute the DFT.
|
||||
// We have a real input, so only do the pos frequencies. i.e. j<N/2
|
||||
for (j = 0; j <= N / 2; j++) {
|
||||
OutputR[j] = 0.0;
|
||||
OutputI[j] = 0.0;
|
||||
for (k = 0; k < N; k++) {
|
||||
OutputR[j] += Samples[k] * TwiddleReal[(j * k) % N];
|
||||
OutputI[j] += Samples[k] * TwiddleImag[(j * k) % N];
|
||||
}
|
||||
|
||||
// Scale the result
|
||||
OutputR[j] /= (double) N;
|
||||
OutputI[j] /= (double) N;
|
||||
}
|
||||
|
||||
// The neg freq components are the conj of the pos components because the input signal is real.
|
||||
for (j = 1; j < N / 2; j++) {
|
||||
OutputR[N - j] = OutputR[j];
|
||||
OutputI[N - j] = -OutputI[j];
|
||||
}
|
||||
|
||||
delete[] TwiddleReal;
|
||||
delete[] TwiddleImag;
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This is a single frequency DFT.
|
||||
// This code uses iteration to calculate the Twiddle factors.
|
||||
// To evaluate the frequency response of an FIR filter at Omega, set
|
||||
// Samples[] = FirCoeff[] N = NumTaps 0.0 <= Omega <= 1.0
|
||||
// 256 pts in 15.6 us
|
||||
double SingleFreqDFT(double *Samples, int N, double Omega) {
|
||||
int k;
|
||||
double SumR, SumI, zR, zI, TwiddleR, TwiddleI, Temp;
|
||||
|
||||
TwiddleR = cos(Omega * M_PI);
|
||||
TwiddleI = -sin(Omega * M_PI);
|
||||
zR = 1.0; // z, as in e^(j*omega)
|
||||
zI = 0.0;
|
||||
SumR = 0.0;
|
||||
SumI = 0.0;
|
||||
|
||||
for (k = 0; k < N; k++) {
|
||||
SumR += Samples[k] * zR;
|
||||
SumI += Samples[k] * zI;
|
||||
|
||||
// Calculate the complex exponential z by taking it to the kth power.
|
||||
Temp = zR * TwiddleR - zI * TwiddleI;
|
||||
zI = zR * TwiddleI + zI * TwiddleR;
|
||||
zR = Temp;
|
||||
}
|
||||
|
||||
/*
|
||||
// This is the more conventional implementation of the loop above.
|
||||
// It is a bit more accurate, but slower.
|
||||
for(k=0; k<N; k++)
|
||||
{
|
||||
SumR += Samples[k] * cos((double)k * Omega * M_PI);
|
||||
SumI += Samples[k] * -sin((double)k * Omega * M_PI);
|
||||
}
|
||||
*/
|
||||
|
||||
return (sqrt(SumR * SumR + SumI * SumI));
|
||||
// return( ComplexD(SumR, SumI) );// if phase is needed.
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// Goertzel is essentially a single frequency DFT, but without phase information.
|
||||
// Its simplicity allows it to run about 3 times faster than a single frequency DFT.
|
||||
// It is typically used to find a tone embedded in a signal. A DTMF tone for example.
|
||||
// 256 pts in 6 us
|
||||
double Goertzel(double *Samples, int N, double Omega) {
|
||||
int j;
|
||||
double Reg0, Reg1, Reg2; // 3 shift registers
|
||||
double CosVal, Mag;
|
||||
Reg1 = Reg2 = 0.0;
|
||||
|
||||
CosVal = 2.0 * cos(M_PI * Omega);
|
||||
for (j = 0; j < N; j++) {
|
||||
Reg0 = Samples[j] + CosVal * Reg1 - Reg2;
|
||||
Reg2 = Reg1; // Shift the values.
|
||||
Reg1 = Reg0;
|
||||
}
|
||||
Mag = Reg2 * Reg2 + Reg1 * Reg1 - CosVal * Reg1 * Reg2;
|
||||
|
||||
if (Mag > 0.0)
|
||||
Mag = sqrt(Mag);
|
||||
else
|
||||
Mag = 1.0E-12;
|
||||
|
||||
return (Mag);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
/*
|
||||
These are the window definitions. These windows can be used for either
|
||||
FIR filter design or with an FFT for spectral analysis.
|
||||
For definitions, see this article: http://en.wikipedia.org/wiki/Window_function
|
||||
|
||||
This function has 6 inputs
|
||||
Data is the array, of length N, containing the data to to be windowed.
|
||||
This data is either an FIR filter sinc pulse, or the data to be analyzed by an fft.
|
||||
|
||||
WindowType is an enum defined in the header file.
|
||||
e.g. wtKAISER, wtSINC, wtHANNING, wtHAMMING, wtBLACKMAN, ...
|
||||
|
||||
Alpha sets the width of the flat top.
|
||||
Windows such as the Tukey and Trapezoid are defined to have a variably wide flat top.
|
||||
As can be seen by its definition, the Tukey is just a Hanning window with a flat top.
|
||||
Alpha can be used to give any of these windows a partial flat top, except the Flattop and Kaiser.
|
||||
Alpha = 0 gives the original window. (i.e. no flat top)
|
||||
To generate a Tukey window, use a Hanning with 0 < Alpha < 1
|
||||
To generate a Bartlett window (triangular), use a Trapezoid window with Alpha = 0.
|
||||
Alpha = 1 generates a rectangular window in all cases. (except the Flattop and Kaiser)
|
||||
|
||||
|
||||
Beta is used with the Kaiser, Sinc, and Sine windows only.
|
||||
These three windows are used primarily for FIR filter design. Then
|
||||
Beta controls the filter's transition bandwidth and the sidelobe levels.
|
||||
All other windows ignore Beta.
|
||||
|
||||
UnityGain controls whether the gain of these windows is set to unity.
|
||||
Only the Flattop window has unity gain by design. The Hanning window, for example, has a gain
|
||||
of 1/2. UnityGain = true sets the gain to 1, which preserves the signal's energy level
|
||||
when these windows are used for spectral analysis.
|
||||
|
||||
Don't use this with FIR filter design however. Since most of the enegy in an FIR sinc pulse
|
||||
is in the middle of the window, the window needs a peak amplitude of one, not unity gain.
|
||||
Setting UnityGain = true will simply cause the resulting FIR filter to have excess gain.
|
||||
|
||||
If using these windows for FIR filters, start with the Kaiser, Sinc, or Sine windows and
|
||||
adjust Beta for the desired transition BW and sidelobe levels (set Alpha = 0).
|
||||
While the FlatTop is an excellent window for spectral analysis, don't use it for FIR filter design.
|
||||
It has a peak amplitude of ~ 4.7 which causes the resulting FIR filter to have about this much gain.
|
||||
It works poorly for FIR filters even if you adjust its peak amplitude.
|
||||
The Trapezoid also works poorly for FIR filter design.
|
||||
|
||||
If using these windows with an fft for spectral analysis, start with the Hanning, Gauss, or Flattop.
|
||||
When choosing a window for spectral analysis, you must trade off between resolution and amplitude
|
||||
accuracy. The Hanning has the best resolution while the Flatop has the best amplitude accuracy.
|
||||
The Gauss is midway between these two for both accuracy and resolution. These three were
|
||||
the only windows available in the HP 89410A Vector Signal Analyzer. Which is to say, these three
|
||||
are the probably the best windows for general purpose signal analysis.
|
||||
*/
|
||||
|
||||
void WindowData(double *Data, int N, TWindowType WindowType, double Alpha,
|
||||
double Beta, bool UnityGain) {
|
||||
if (WindowType == wtNONE)
|
||||
return;
|
||||
|
||||
int j, M, TopWidth;
|
||||
double dM, *WinCoeff;
|
||||
|
||||
if (WindowType == wtKAISER || WindowType == wtFLATTOP)
|
||||
Alpha = 0.0;
|
||||
|
||||
if (Alpha < 0.0)
|
||||
Alpha = 0.0;
|
||||
if (Alpha > 1.0)
|
||||
Alpha = 1.0;
|
||||
|
||||
if (Beta < 0.0)
|
||||
Beta = 0.0;
|
||||
if (Beta > 10.0)
|
||||
Beta = 10.0;
|
||||
|
||||
WinCoeff = new double[N + 2];
|
||||
if (WinCoeff == NULL) {
|
||||
// ShowMessage("Failed to allocate memory in WindowData() ");
|
||||
return;
|
||||
}
|
||||
|
||||
TopWidth = (int) (Alpha * (double) N);
|
||||
if (TopWidth % 2 != 0)
|
||||
TopWidth++;
|
||||
if (TopWidth > N)
|
||||
TopWidth = N;
|
||||
M = N - TopWidth;
|
||||
dM = M + 1;
|
||||
|
||||
// Calculate the window for N/2 points, then fold the window over (at the bottom).
|
||||
// TopWidth points will be set to 1.
|
||||
if (WindowType == wtKAISER) {
|
||||
double Arg;
|
||||
for (j = 0; j < M; j++) {
|
||||
Arg = Beta * sqrt(1.0 - pow(((double) (2 * j + 2) - dM) / dM, 2.0));
|
||||
WinCoeff[j] = Bessel(Arg) / Bessel(Beta);
|
||||
}
|
||||
}
|
||||
|
||||
else if (WindowType == wtSINC) // Lanczos
|
||||
{
|
||||
for (j = 0; j < M; j++)
|
||||
WinCoeff[j] = Sinc((double) (2 * j + 1 - M) / dM * M_PI);
|
||||
for (j = 0; j < M; j++)
|
||||
WinCoeff[j] = pow(WinCoeff[j], Beta);
|
||||
}
|
||||
|
||||
else if (WindowType == wtSINE) // Hanning if Beta = 2
|
||||
{
|
||||
for (j = 0; j < M / 2; j++)
|
||||
WinCoeff[j] = sin((double) (j + 1) * M_PI / dM);
|
||||
for (j = 0; j < M / 2; j++)
|
||||
WinCoeff[j] = pow(WinCoeff[j], Beta);
|
||||
}
|
||||
|
||||
else if (WindowType == wtHANNING) {
|
||||
for (j = 0; j < M / 2; j++)
|
||||
WinCoeff[j] = 0.5 - 0.5 * cos((double) (j + 1) * M_2PI / dM);
|
||||
}
|
||||
|
||||
else if (WindowType == wtHAMMING) {
|
||||
for (j = 0; j < M / 2; j++)
|
||||
WinCoeff[j] = 0.54 - 0.46 * cos((double) (j + 1) * M_2PI / dM);
|
||||
}
|
||||
|
||||
else if (WindowType == wtBLACKMAN) {
|
||||
for (j = 0; j < M / 2; j++) {
|
||||
WinCoeff[j] = 0.42 - 0.50 * cos((double) (j + 1) * M_2PI / dM)
|
||||
+ 0.08 * cos((double) (j + 1) * M_2PI * 2.0 / dM);
|
||||
}
|
||||
}
|
||||
|
||||
// Defined at: http://www.bth.se/fou/forskinfo.nsf/0/130c0940c5e7ffcdc1256f7f0065ac60/$file/ICOTA_2004_ttr_icl_mdh.pdf
|
||||
else if (WindowType == wtFLATTOP) {
|
||||
for (j = 0; j <= M / 2; j++) {
|
||||
WinCoeff[j] = 1.0
|
||||
- 1.93293488969227 * cos((double) (j + 1) * M_2PI / dM)
|
||||
+ 1.28349769674027
|
||||
* cos((double) (j + 1) * M_2PI * 2.0 / dM)
|
||||
- 0.38130801681619
|
||||
* cos((double) (j + 1) * M_2PI * 3.0 / dM)
|
||||
+ 0.02929730258511
|
||||
* cos((double) (j + 1) * M_2PI * 4.0 / dM);
|
||||
}
|
||||
}
|
||||
|
||||
else if (WindowType == wtBLACKMAN_HARRIS) {
|
||||
for (j = 0; j < M / 2; j++) {
|
||||
WinCoeff[j] = 0.35875 - 0.48829 * cos((double) (j + 1) * M_2PI / dM)
|
||||
+ 0.14128 * cos((double) (j + 1) * M_2PI * 2.0 / dM)
|
||||
- 0.01168 * cos((double) (j + 1) * M_2PI * 3.0 / dM);
|
||||
}
|
||||
}
|
||||
|
||||
else if (WindowType == wtBLACKMAN_NUTTALL) {
|
||||
for (j = 0; j < M / 2; j++) {
|
||||
WinCoeff[j] = 0.3535819
|
||||
- 0.4891775 * cos((double) (j + 1) * M_2PI / dM)
|
||||
+ 0.1365995 * cos((double) (j + 1) * M_2PI * 2.0 / dM)
|
||||
- 0.0106411 * cos((double) (j + 1) * M_2PI * 3.0 / dM);
|
||||
}
|
||||
}
|
||||
|
||||
else if (WindowType == wtNUTTALL) {
|
||||
for (j = 0; j < M / 2; j++) {
|
||||
WinCoeff[j] = 0.355768
|
||||
- 0.487396 * cos((double) (j + 1) * M_2PI / dM)
|
||||
+ 0.144232 * cos((double) (j + 1) * M_2PI * 2.0 / dM)
|
||||
- 0.012604 * cos((double) (j + 1) * M_2PI * 3.0 / dM);
|
||||
}
|
||||
}
|
||||
|
||||
else if (WindowType == wtKAISER_BESSEL) {
|
||||
for (j = 0; j <= M / 2; j++) {
|
||||
WinCoeff[j] = 0.402 - 0.498 * cos(M_2PI * (double) (j + 1) / dM)
|
||||
+ 0.098 * cos(2.0 * M_2PI * (double) (j + 1) / dM)
|
||||
+ 0.001 * cos(3.0 * M_2PI * (double) (j + 1) / dM);
|
||||
}
|
||||
}
|
||||
|
||||
else if (WindowType == wtTRAPEZOID) // Rectangle for Alpha = 1 Triangle for Alpha = 0
|
||||
{
|
||||
int K = M / 2;
|
||||
if (M % 2)
|
||||
K++;
|
||||
for (j = 0; j < K; j++)
|
||||
WinCoeff[j] = (double) (j + 1) / (double) K;
|
||||
}
|
||||
|
||||
// This definition is from http://en.wikipedia.org/wiki/Window_function (Gauss Generalized normal window)
|
||||
// We set their p = 2, and use Alpha in the numerator, instead of Sigma in the denominator, as most others do.
|
||||
// Alpha = 2.718 puts the Gauss window response midway between the Hanning and the Flattop (basically what we want).
|
||||
// It also gives the same BW as the Gauss window used in the HP 89410A Vector Signal Analyzer.
|
||||
else if (WindowType == wtGAUSS) {
|
||||
for (j = 0; j < M / 2; j++) {
|
||||
WinCoeff[j] = ((double) (j + 1) - dM / 2.0) / (dM / 2.0) * 2.7183;
|
||||
WinCoeff[j] *= WinCoeff[j];
|
||||
WinCoeff[j] = exp(-WinCoeff[j]);
|
||||
}
|
||||
}
|
||||
|
||||
else // Error.
|
||||
{
|
||||
// ShowMessage("Incorrect window type in WindowFFTData");
|
||||
delete[] WinCoeff;
|
||||
return;
|
||||
}
|
||||
|
||||
// Fold the coefficients over.
|
||||
for (j = 0; j < M / 2; j++)
|
||||
WinCoeff[N - j - 1] = WinCoeff[j];
|
||||
|
||||
// This is the flat top if Alpha > 0. Cannot be applied to a Kaiser or Flat Top.
|
||||
if (WindowType != wtKAISER && WindowType != wtFLATTOP) {
|
||||
for (j = M / 2; j < N - M / 2; j++)
|
||||
WinCoeff[j] = 1.0;
|
||||
}
|
||||
|
||||
// UnityGain = true will set the gain of these windows to 1. Don't use this with FIR filter design.
|
||||
if (UnityGain) {
|
||||
double Sum = 0.0;
|
||||
for (j = 0; j < N; j++)
|
||||
Sum += WinCoeff[j];
|
||||
Sum /= (double) N;
|
||||
if (Sum != 0.0)
|
||||
for (j = 0; j < N; j++)
|
||||
WinCoeff[j] /= Sum;
|
||||
}
|
||||
|
||||
// Apply the window to the data.
|
||||
for (j = 0; j < N; j++)
|
||||
Data[j] *= WinCoeff[j];
|
||||
|
||||
delete[] WinCoeff;
|
||||
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This gets used with the Kaiser window.
|
||||
double Bessel(double x) {
|
||||
double Sum = 0.0, XtoIpower;
|
||||
int i, j, Factorial;
|
||||
for (i = 1; i < 10; i++) {
|
||||
XtoIpower = pow(x / 2.0, (double) i);
|
||||
Factorial = 1;
|
||||
for (j = 1; j <= i; j++)
|
||||
Factorial *= j;
|
||||
Sum += pow(XtoIpower / (double) Factorial, 2.0);
|
||||
}
|
||||
return (1.0 + Sum);
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
// This gets used with the Sinc window.
|
||||
double Sinc(double x) {
|
||||
if (x > -1.0E-5 && x < 1.0E-5)
|
||||
return (1.0);
|
||||
return (sin(x) / x);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
} // namespace
|
60
kitiirfir/FFTCode.h
Normal file
60
kitiirfir/FFTCode.h
Normal file
@ -0,0 +1,60 @@
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
#ifndef FFTCodeH
|
||||
#define FFTCodeH
|
||||
|
||||
#define M_2PI 6.28318530717958647692 // 2*Pi
|
||||
#define M_SQRT_2 0.707106781186547524401 // sqrt(2)/2
|
||||
#define MAXIMUM_FFT_SIZE 1048576
|
||||
#define MINIMUM_FFT_SIZE 8
|
||||
|
||||
namespace kitiirfir
|
||||
{
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// Must retain the order on the 1st line for legacy FIR code.
|
||||
enum TWindowType {
|
||||
wtFIRSTWINDOW,
|
||||
wtNONE,
|
||||
wtKAISER,
|
||||
wtSINC,
|
||||
wtHANNING,
|
||||
wtHAMMING,
|
||||
wtBLACKMAN,
|
||||
wtFLATTOP,
|
||||
wtBLACKMAN_HARRIS,
|
||||
wtBLACKMAN_NUTTALL,
|
||||
wtNUTTALL,
|
||||
wtKAISER_BESSEL,
|
||||
wtTRAPEZOID,
|
||||
wtGAUSS,
|
||||
wtSINE,
|
||||
wtTEST
|
||||
};
|
||||
|
||||
enum TTransFormType {
|
||||
FORWARD, INVERSE
|
||||
};
|
||||
|
||||
int RequiredFFTSize(int NumPts);
|
||||
int IsValidFFTSize(int x);
|
||||
void FFT(double *InputR, double *InputI, int N, TTransFormType Type);
|
||||
void ReArrangeInput(double *InputR, double *InputI, double *BufferR,
|
||||
double *BufferI, int *RevBits, int N);
|
||||
void FillTwiddleArray(double *TwiddleR, double *TwiddleI, int N,
|
||||
TTransFormType Type);
|
||||
void Transform(double *InputR, double *InputI, double *BufferR, double *BufferI,
|
||||
double *TwiddleR, double *TwiddleI, int N);
|
||||
void DFT(double *InputR, double *InputI, int N, int Type);
|
||||
void RealSigDFT(double *Samples, double *OutputR, double *OutputI, int N);
|
||||
double SingleFreqDFT(double *Samples, int N, double Omega);
|
||||
double Goertzel(double *Samples, int N, double Omega);
|
||||
void WindowData(double *Data, int N, TWindowType WindowType, double Alpha,
|
||||
double Beta, bool UnityGain);
|
||||
double Bessel(double x);
|
||||
double Sinc(double x);
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif
|
||||
|
401
kitiirfir/FIRFilterCode.cpp
Normal file
401
kitiirfir/FIRFilterCode.cpp
Normal file
@ -0,0 +1,401 @@
|
||||
/*
|
||||
By Daniel Klostermann
|
||||
Iowa Hills Software, LLC IowaHills.com
|
||||
If you find a problem, please leave a note at:
|
||||
http://www.iowahills.com/feedbackcomments.html
|
||||
May 1, 2016
|
||||
|
||||
ShowMessage is a C++ Builder function, and it usage has been commented out.
|
||||
If you are using C++ Builder, include vcl.h for ShowMessage.
|
||||
Otherwise replace ShowMessage with something appropriate for yor compiler.
|
||||
|
||||
RectWinFIR() generates the impulse response for a rectangular windowed low pass, high pass,
|
||||
band pass, or notch filter. Then a window, such as the Kaiser, is applied to the FIR coefficients.
|
||||
See the FilterKitMain.cpp file for an example on how to use this code.
|
||||
|
||||
double FirCoeff[MAXNUMTAPS];
|
||||
int NumTaps; NumTaps can be even or odd and < MAXNUMTAPS
|
||||
TPassTypeName PassType; PassType is defined in the header file. firLPF, firHPF, firBPF, firNOTCH, firALLPASS
|
||||
double OmegaC 0.0 < OmegaC < 1.0 The corner freq, or center freq if BPF or NOTCH
|
||||
double BW 0.0 < BW < 1.0 The band width if BPF or NOTCH
|
||||
*/
|
||||
|
||||
#include "FIRFilterCode.h"
|
||||
#include <math.h>
|
||||
|
||||
namespace kitiirfir
|
||||
{
|
||||
|
||||
// Rectangular Windowed FIR. The equations used here are developed in numerous textbooks.
|
||||
void RectWinFIR(double *FirCoeff, int NumTaps, TFIRPassTypes PassType,
|
||||
double OmegaC, double BW) {
|
||||
int j;
|
||||
double Arg, OmegaLow, OmegaHigh;
|
||||
|
||||
switch (PassType) {
|
||||
case firLPF: // Low Pass
|
||||
for (j = 0; j < NumTaps; j++) {
|
||||
Arg = (double) j - (double) (NumTaps - 1) / 2.0;
|
||||
FirCoeff[j] = OmegaC * Sinc(OmegaC * Arg * M_PI);
|
||||
}
|
||||
break;
|
||||
|
||||
case firHPF: // High Pass
|
||||
if (NumTaps % 2 == 1) // Odd tap counts
|
||||
{
|
||||
for (j = 0; j < NumTaps; j++) {
|
||||
Arg = (double) j - (double) (NumTaps - 1) / 2.0;
|
||||
FirCoeff[j] = Sinc(Arg * M_PI)
|
||||
- OmegaC * Sinc(OmegaC * Arg * M_PI);
|
||||
}
|
||||
}
|
||||
|
||||
else // Even tap counts
|
||||
{
|
||||
for (j = 0; j < NumTaps; j++) {
|
||||
Arg = (double) j - (double) (NumTaps - 1) / 2.0;
|
||||
if (Arg == 0.0)
|
||||
FirCoeff[j] = 0.0;
|
||||
else
|
||||
FirCoeff[j] = cos(OmegaC * Arg * M_PI) / M_PI / Arg
|
||||
+ cos(Arg * M_PI);
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case firBPF: // Band Pass
|
||||
OmegaLow = OmegaC - BW / 2.0;
|
||||
OmegaHigh = OmegaC + BW / 2.0;
|
||||
for (j = 0; j < NumTaps; j++) {
|
||||
Arg = (double) j - (double) (NumTaps - 1) / 2.0;
|
||||
if (Arg == 0.0)
|
||||
FirCoeff[j] = 0.0;
|
||||
else
|
||||
FirCoeff[j] = (cos(OmegaLow * Arg * M_PI)
|
||||
- cos(OmegaHigh * Arg * M_PI)) / M_PI / Arg;
|
||||
}
|
||||
break;
|
||||
|
||||
case firNOTCH: // Notch, if NumTaps is even, the response at Pi is attenuated.
|
||||
OmegaLow = OmegaC - BW / 2.0;
|
||||
OmegaHigh = OmegaC + BW / 2.0;
|
||||
for (j = 0; j < NumTaps; j++) {
|
||||
Arg = (double) j - (double) (NumTaps - 1) / 2.0;
|
||||
FirCoeff[j] = Sinc(Arg * M_PI)
|
||||
- OmegaHigh * Sinc(OmegaHigh * Arg * M_PI)
|
||||
- OmegaLow * Sinc(OmegaLow * Arg * M_PI);
|
||||
}
|
||||
break;
|
||||
|
||||
case firALLPASS: // All Pass, this is trivial, but it shows how an fir all pass (delay) can be done.
|
||||
for (j = 0; j < NumTaps; j++)
|
||||
FirCoeff[j] = 0.0;
|
||||
FirCoeff[(NumTaps - 1) / 2] = 1.0;
|
||||
break;
|
||||
case firNOT_FIR:
|
||||
default:
|
||||
break;
|
||||
}
|
||||
// Now use the FIRFilterWindow() function to reduce the sinc(x) effects.
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// Used to reduce the sinc(x) effects on a set of FIR coefficients. This will, unfortunately,
|
||||
// widen the filter's transition band, but the stop band attenuation will improve dramatically.
|
||||
void FIRFilterWindow(double *FIRCoeff, int N, TWindowType WindowType,
|
||||
double Beta) {
|
||||
if (WindowType == wtNONE)
|
||||
return;
|
||||
|
||||
int j;
|
||||
double dN, *WinCoeff;
|
||||
|
||||
if (Beta < 0.0)
|
||||
Beta = 0.0;
|
||||
if (Beta > 10.0)
|
||||
Beta = 10.0;
|
||||
|
||||
WinCoeff = new double[N + 2];
|
||||
if (WinCoeff == NULL) {
|
||||
// ShowMessage("Failed to allocate memory in WindowData() ");
|
||||
return;
|
||||
}
|
||||
|
||||
// Calculate the window for N/2 points, then fold the window over (at the bottom).
|
||||
dN = N + 1; // a double
|
||||
if (WindowType == wtKAISER) {
|
||||
double Arg;
|
||||
for (j = 0; j < N; j++) {
|
||||
Arg = Beta * sqrt(1.0 - pow(((double) (2 * j + 2) - dN) / dN, 2.0));
|
||||
WinCoeff[j] = Bessel(Arg) / Bessel(Beta);
|
||||
}
|
||||
}
|
||||
|
||||
else if (WindowType == wtSINC) // Lanczos
|
||||
{
|
||||
for (j = 0; j < N; j++)
|
||||
WinCoeff[j] = Sinc((double) (2 * j + 1 - N) / dN * M_PI);
|
||||
for (j = 0; j < N; j++)
|
||||
WinCoeff[j] = pow(WinCoeff[j], Beta);
|
||||
}
|
||||
|
||||
else if (WindowType == wtSINE) // Hanning if Beta = 2
|
||||
{
|
||||
for (j = 0; j < N / 2; j++)
|
||||
WinCoeff[j] = sin((double) (j + 1) * M_PI / dN);
|
||||
for (j = 0; j < N / 2; j++)
|
||||
WinCoeff[j] = pow(WinCoeff[j], Beta);
|
||||
}
|
||||
|
||||
else // Error.
|
||||
{
|
||||
// ShowMessage("Incorrect window type in WindowFFTData");
|
||||
delete[] WinCoeff;
|
||||
return;
|
||||
}
|
||||
|
||||
// Fold the coefficients over.
|
||||
for (j = 0; j < N / 2; j++)
|
||||
WinCoeff[N - j - 1] = WinCoeff[j];
|
||||
|
||||
// Apply the window to the FIR coefficients.
|
||||
for (j = 0; j < N; j++)
|
||||
FIRCoeff[j] *= WinCoeff[j];
|
||||
|
||||
delete[] WinCoeff;
|
||||
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This implements an FIR filter. The register shifts are done by rotating the indexes.
|
||||
void FilterWithFIR(double *FirCoeff, int NumTaps, double *Signal,
|
||||
double *FilteredSignal, int NumSigPts) {
|
||||
int j, k, n, Top = 0;
|
||||
double y, Reg[MAX_NUMTAPS];
|
||||
|
||||
for (j = 0; j < NumTaps; j++)
|
||||
Reg[j] = 0.0;
|
||||
|
||||
for (j = 0; j < NumSigPts; j++) {
|
||||
Reg[Top] = Signal[j];
|
||||
y = 0.0;
|
||||
n = 0;
|
||||
|
||||
// The FirCoeff index increases while the Reg index decreases.
|
||||
for (k = Top; k >= 0; k--) {
|
||||
y += FirCoeff[n++] * Reg[k];
|
||||
}
|
||||
for (k = NumTaps - 1; k > Top; k--) {
|
||||
y += FirCoeff[n++] * Reg[k];
|
||||
}
|
||||
FilteredSignal[j] = y;
|
||||
|
||||
Top++;
|
||||
if (Top >= NumTaps)
|
||||
Top = 0;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This code is equivalent to the code above. It uses register shifts, which makes it
|
||||
// less efficient, but it is easier to follow (i.e. compare to a FIR flow chart).
|
||||
void FilterWithFIR2(double *FirCoeff, int NumTaps, double *Signal,
|
||||
double *FilteredSignal, int NumSigPts) {
|
||||
int j, k;
|
||||
double y, Reg[MAX_NUMTAPS];
|
||||
|
||||
for (j = 0; j < NumTaps; j++)
|
||||
Reg[j] = 0.0; // Init the delay registers.
|
||||
|
||||
for (j = 0; j < NumSigPts; j++) {
|
||||
// Shift the register values down and set Reg[0].
|
||||
for (k = NumTaps; k > 1; k--)
|
||||
Reg[k - 1] = Reg[k - 2];
|
||||
Reg[0] = Signal[j];
|
||||
|
||||
y = 0.0;
|
||||
for (k = 0; k < NumTaps; k++)
|
||||
y += FirCoeff[k] * Reg[k];
|
||||
FilteredSignal[j] = y;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This function is used to correct the corner frequency values on FIR filters.
|
||||
// We normally specify the 3 dB frequencies when specifing a filter. The Parks McClellan routine
|
||||
// uses OmegaC and BW to set the 0 dB band edges, so its final OmegaC and BW values are not close
|
||||
// to -3 dB. The Rectangular Windowed filters are better for high tap counts, but for low tap counts,
|
||||
// their 3 dB frequencies are also well off the mark.
|
||||
|
||||
// To use this function, first calculate a set of FIR coefficients, then pass them here, along with
|
||||
// OmegaC and BW. This calculates a corrected OmegaC for low and high pass filters. It calcultes a
|
||||
// corrected BW for band pass and notch filters. Use these corrected values to recalculate the FIR filter.
|
||||
|
||||
// The Goertzel algorithm is used to calculate the filter's magnitude response at the single
|
||||
// frequency defined in the loop. We start in the pass band and work out to the -20dB freq.
|
||||
|
||||
void FIRFreqError(double *Coeff, int NumTaps, int PassType, double *OmegaC,
|
||||
double *BW) {
|
||||
int j, J3dB, CenterJ;
|
||||
double Omega, CorrectedOmega, CorrectedBW, Omega1, Omega2, Mag;
|
||||
|
||||
// In these loops, we break at -20 dB to ensure that large ripple is ignored.
|
||||
if (PassType == firLPF) {
|
||||
J3dB = 10;
|
||||
for (j = 0; j < NUM_FREQ_ERR_PTS; j++) {
|
||||
Omega = (double) j / dNUM_FREQ_ERR_PTS;
|
||||
Mag = Goertzel(Coeff, NumTaps, Omega);
|
||||
if (Mag > 0.707)
|
||||
J3dB = j; // J3dB will be the last j where the response was > -3 dB
|
||||
if (Mag < 0.1)
|
||||
break; // Stop when the response is down to -20 dB.
|
||||
}
|
||||
Omega = (double) J3dB / dNUM_FREQ_ERR_PTS;
|
||||
}
|
||||
|
||||
else if (PassType == firHPF) {
|
||||
J3dB = NUM_FREQ_ERR_PTS - 10;
|
||||
for (j = NUM_FREQ_ERR_PTS - 1; j >= 0; j--) {
|
||||
Omega = (double) j / dNUM_FREQ_ERR_PTS;
|
||||
Mag = Goertzel(Coeff, NumTaps, Omega);
|
||||
if (Mag > 0.707)
|
||||
J3dB = j; // J3dB will be the last j where the response was > -3 dB
|
||||
if (Mag < 0.1)
|
||||
break; // Stop when the response is down to -20 dB.
|
||||
}
|
||||
Omega = (double) J3dB / dNUM_FREQ_ERR_PTS;
|
||||
}
|
||||
|
||||
else if (PassType == firBPF) {
|
||||
CenterJ = (int) (dNUM_FREQ_ERR_PTS * *OmegaC);
|
||||
J3dB = CenterJ;
|
||||
for (j = CenterJ; j >= 0; j--) {
|
||||
Omega = (double) j / dNUM_FREQ_ERR_PTS;
|
||||
Mag = Goertzel(Coeff, NumTaps, Omega);
|
||||
if (Mag > 0.707)
|
||||
J3dB = j;
|
||||
if (Mag < 0.1)
|
||||
break;
|
||||
}
|
||||
Omega1 = (double) J3dB / dNUM_FREQ_ERR_PTS;
|
||||
|
||||
J3dB = CenterJ;
|
||||
for (j = CenterJ; j < NUM_FREQ_ERR_PTS; j++) {
|
||||
Omega = (double) j / dNUM_FREQ_ERR_PTS;
|
||||
Mag = Goertzel(Coeff, NumTaps, Omega);
|
||||
if (Mag > 0.707)
|
||||
J3dB = j;
|
||||
if (Mag < 0.1)
|
||||
break;
|
||||
}
|
||||
Omega2 = (double) J3dB / dNUM_FREQ_ERR_PTS;
|
||||
}
|
||||
|
||||
// The code above starts in the pass band. This starts in the stop band.
|
||||
else // PassType == firNOTCH
|
||||
{
|
||||
CenterJ = (int) (dNUM_FREQ_ERR_PTS * *OmegaC);
|
||||
J3dB = CenterJ;
|
||||
for (j = CenterJ; j >= 0; j--) {
|
||||
Omega = (double) j / dNUM_FREQ_ERR_PTS;
|
||||
Mag = Goertzel(Coeff, NumTaps, Omega);
|
||||
if (Mag <= 0.707)
|
||||
J3dB = j;
|
||||
if (Mag > 0.99)
|
||||
break;
|
||||
}
|
||||
Omega1 = (double) J3dB / dNUM_FREQ_ERR_PTS;
|
||||
|
||||
J3dB = CenterJ;
|
||||
for (j = CenterJ; j < NUM_FREQ_ERR_PTS; j++) {
|
||||
Omega = (double) j / dNUM_FREQ_ERR_PTS;
|
||||
Mag = Goertzel(Coeff, NumTaps, Omega);
|
||||
if (Mag <= 0.707)
|
||||
J3dB = j;
|
||||
if (Mag > 0.99)
|
||||
break;
|
||||
}
|
||||
Omega2 = (double) J3dB / dNUM_FREQ_ERR_PTS;
|
||||
}
|
||||
|
||||
// This calculates the corrected OmegaC and BW and error checks the values.
|
||||
if (PassType == firLPF || PassType == firHPF) {
|
||||
CorrectedOmega = *OmegaC * 2.0 - Omega; // This is usually OK.
|
||||
if (CorrectedOmega < 0.001)
|
||||
CorrectedOmega = 0.001;
|
||||
if (CorrectedOmega > 0.99)
|
||||
CorrectedOmega = 0.99;
|
||||
*OmegaC = CorrectedOmega;
|
||||
}
|
||||
|
||||
else // PassType == firBPF || PassType == firNOTCH
|
||||
{
|
||||
CorrectedBW = *BW * 2.0 - (Omega2 - Omega1); // This routinely goes neg with Notch.
|
||||
if (CorrectedBW < 0.01)
|
||||
CorrectedBW = 0.01;
|
||||
if (CorrectedBW > *BW * 2.0)
|
||||
CorrectedBW = *BW * 2.0;
|
||||
if (CorrectedBW > 0.98)
|
||||
CorrectedBW = 0.98;
|
||||
*BW = CorrectedBW;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
// This shows how to adjust the delay of an FIR by a fractional amount.
|
||||
// We take the FFT of the FIR coefficients to get to the frequency domain,
|
||||
// then apply the Laplace delay operator, and then do an inverse FFT.
|
||||
|
||||
// Use this function last. i.e. After the window was applied to the coefficients.
|
||||
// The Delay value is in terms of a fraction of a sample (not in terms of sampling freq).
|
||||
// Delay may be pos or neg. Typically a filter's delay can be adjusted by +/- NumTaps/20
|
||||
// without affecting its performance significantly. A typical Delay value would be 0.75
|
||||
void AdjustDelay(double *FirCoeff, int NumTaps, double Delay) {
|
||||
int j, FFTSize;
|
||||
double *FFTInputR, *FFTInputI, Arg, Temp;
|
||||
FFTSize = RequiredFFTSize(NumTaps + (int) fabs(Delay) + 1); // Zero pad by at least Delay + 1 to prevent the impulse response from wrapping around.
|
||||
|
||||
FFTInputR = new double[FFTSize]; // Real part
|
||||
FFTInputI = new double[FFTSize]; // Imag part
|
||||
if (FFTInputR == NULL || FFTInputI == NULL) {
|
||||
//ShowMessage("Unable to allocate memory in AdjustDelay");
|
||||
return;
|
||||
}
|
||||
for (j = 0; j < FFTSize; j++)
|
||||
FFTInputR[j] = FFTInputI[j] = 0.0; // A mandatory init.
|
||||
for (j = 0; j < NumTaps; j++)
|
||||
FFTInputR[j] = FirCoeff[j]; // Fill the real part with the FIR coeff.
|
||||
|
||||
FFT(FFTInputR, FFTInputI, FFTSize, FORWARD); // Do an FFT
|
||||
for (j = 0; j <= FFTSize / 2; j++) // Apply the Laplace Delay operator e^(-j*omega*Delay).
|
||||
{
|
||||
Arg = -Delay * (double) j / (double) FFTSize * M_2PI; // This is -Delay * (the FFT bin frequency).
|
||||
Temp = cos(Arg) * FFTInputR[j] - sin(Arg) * FFTInputI[j];
|
||||
FFTInputI[j] = cos(Arg) * FFTInputI[j] + sin(Arg) * FFTInputR[j];
|
||||
FFTInputR[j] = Temp;
|
||||
}
|
||||
for (j = 1; j < FFTSize / 2; j++) // Fill the neg freq bins with the conjugate values.
|
||||
{
|
||||
FFTInputR[FFTSize - j] = FFTInputR[j];
|
||||
FFTInputI[FFTSize - j] = -FFTInputI[j];
|
||||
}
|
||||
|
||||
FFT(FFTInputR, FFTInputI, FFTSize, INVERSE); // Inverse FFT
|
||||
for (j = 0; j < NumTaps; j++) {
|
||||
FirCoeff[j] = FFTInputR[j];
|
||||
}
|
||||
|
||||
delete[] FFTInputR;
|
||||
delete[] FFTInputI;
|
||||
}
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
} //namedspace
|
36
kitiirfir/FIRFilterCode.h
Normal file
36
kitiirfir/FIRFilterCode.h
Normal file
@ -0,0 +1,36 @@
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
#ifndef FIRFilterCodeH
|
||||
#define FIRFilterCodeH
|
||||
#include "FFTCode.h" // For the definition of TWindowType
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
#define MAX_NUMTAPS 256
|
||||
#define M_2PI 6.28318530717958647692
|
||||
#define NUM_FREQ_ERR_PTS 1000 // these are only used in the FIRFreqError function.
|
||||
#define dNUM_FREQ_ERR_PTS 1000.0
|
||||
|
||||
namespace kitiirfir
|
||||
{
|
||||
|
||||
enum TFIRPassTypes {
|
||||
firLPF, firHPF, firBPF, firNOTCH, firALLPASS, firNOT_FIR
|
||||
};
|
||||
|
||||
void FilterWithFIR(double *FirCoeff, int NumTaps, double *Signal,
|
||||
double *FilteredSignal, int NumSigPts);
|
||||
void FilterWithFIR2(double *FirCoeff, int NumTaps, double *Signal,
|
||||
double *FilteredSignal, int NumSigPts);
|
||||
void RectWinFIR(double *FirCoeff, int NumTaps, TFIRPassTypes PassType,
|
||||
double OmegaC, double BW);
|
||||
void WindowData(double *Data, int N, TWindowType WindowType, double Alpha,
|
||||
double Beta, bool UnityGain);
|
||||
void FIRFreqError(double *Coeff, int NumTaps, int PassType, double *OmegaC,
|
||||
double *BW);
|
||||
void FIRFilterWindow(double *FIRCoeff, int N, TWindowType WindowType,
|
||||
double Beta);
|
||||
void AdjustDelay(double *FirCoeff, int NumTaps, double Delay);
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif
|
228
kitiirfir/FreqSamplingCode.cpp
Normal file
228
kitiirfir/FreqSamplingCode.cpp
Normal file
@ -0,0 +1,228 @@
|
||||
#include <math.h>
|
||||
#include <complex>
|
||||
#include "FreqSamplingCode.h"
|
||||
#include "FIRFilterCode.h" // for the definition of TFIRPassTypes
|
||||
#include "FFTCode.h"
|
||||
#include "LowPassPrototypes.h"
|
||||
|
||||
namespace kitiirfir
|
||||
{
|
||||
|
||||
/*
|
||||
By Daniel Klostermann
|
||||
Iowa Hills Software, LLC IowaHills.com
|
||||
If you find a problem, please leave a note at:
|
||||
http://www.iowahills.com/feedbackcomments.html
|
||||
May 1, 2016
|
||||
|
||||
This code generates an FIR filter with the frequency over-sampling method. By this we
|
||||
mean that we always sample the frequency domain at least 1024 times (a large power of
|
||||
2 suitable for an FFT) even though we typically want a relatively small number of FIR
|
||||
coefficients (< 50).
|
||||
|
||||
Most authors use N frequency samples to generate N taps. While valid, this tends to loose a
|
||||
significant amount of frequency domain information if the tap count is small.
|
||||
|
||||
Using a large number of samples will generate a filter equivalent to those generated with
|
||||
the equations for a classic Rectangular Windowed FIR filter. Those equations were derived
|
||||
by using an infinite number of frequency samples, which is to say, performing an integral.
|
||||
|
||||
To see how well this works, use this code to sample a simple rectanglular low pass response
|
||||
and compare the results to the coefficients generated by Windowed FIR code used the
|
||||
BasicFIR() function in FIRFilterCode.cpp
|
||||
|
||||
See the example code in FilterKitMain for an example of using SampledFreqFIR().
|
||||
This function is called after the HofSReal array is filled with the desired magnitude response.
|
||||
The only trick to this method is getting the phase set correctly. There are two aspects to
|
||||
setting the phase. Using the correct slope, which is the same for all filters, but does
|
||||
depend on even or odd tap counts. And we must ensure that the phase value is correct at
|
||||
Omega = 0.0 and Pi.
|
||||
|
||||
If the filter has a low pass response (magnitude != 0.0 at DC), then the phase at Omega=0 must
|
||||
be zero. If the filter has a high pass response (magnitude != 0.0 at Pi), then the phase
|
||||
must be zero of Omega = Pi.
|
||||
|
||||
A band pass filter, which has neither a low or high pass response, can have any phase value at
|
||||
Omega = 0 and Pi. But a Notch filter, which has both a low and high pass response, must have
|
||||
zero phase at both zero and Pi. The code below should make this more clear.
|
||||
|
||||
NumTaps Number of FIR taps
|
||||
FirCoeff The output array for the FIR coefficients.
|
||||
HofSReal The array containing the desired magnitude response.
|
||||
HofSImag The imag part of the response (zero when this function is called).
|
||||
OmegaC The center frequency. (Only needed for notch filters.)
|
||||
PassType firLPF, firHPF, firBPF, firNOTCH Needed to set the phase properly. (defined in FIRFilterCode.h)
|
||||
*/
|
||||
|
||||
void SampledFreqFIR(int NumTaps, double *FirCoeff, double *HofSReal,
|
||||
double *HofSImag, double OmegaC, TFIRPassTypes PassType) {
|
||||
int j, CenterJ, NumSamples, StartJ;
|
||||
double dNumSamples, RadPerSample, Arg;
|
||||
NumSamples = NUM_POS_FREQ_SAMPLES;
|
||||
dNumSamples = (double) NumSamples;
|
||||
|
||||
// Limit test NumTaps
|
||||
if (NumTaps > MAX_NUMTAPS)
|
||||
NumTaps = MAX_NUMTAPS;
|
||||
if (NumTaps > 2 * NUM_POS_FREQ_SAMPLES)
|
||||
NumTaps = 2 * NUM_POS_FREQ_SAMPLES;
|
||||
|
||||
// Set the slope of the phase.
|
||||
RadPerSample = -M_PI_2 * (2.0 * dNumSamples - 1.0) / dNumSamples; // Even tap count.
|
||||
if (NumTaps % 2 == 1)
|
||||
RadPerSample = -M_PI; // Odd tap count.
|
||||
|
||||
// Set the phase according to the type of response.
|
||||
switch (PassType) {
|
||||
case firLPF: // Low pass and band pass phase = 0 at DC
|
||||
case firBPF:
|
||||
for (j = 0; j < NumSamples; j++) {
|
||||
Arg = RadPerSample * (double) j; // For band pass filters ONLY, an arbitrary amount of phase can be added to Arg. e.g. Add Pi/2 to generate a Hilbert filter, or +/- Pi/4 to 2 different filters to generate a pair of 45 degree Hilberts.
|
||||
HofSImag[j] = HofSReal[j] * sin(Arg);
|
||||
HofSReal[j] = HofSReal[j] * cos(Arg);
|
||||
}
|
||||
break;
|
||||
|
||||
case firHPF: // High pass phase = 0 at Pi
|
||||
for (j = NumSamples; j >= 0; j--) {
|
||||
Arg = RadPerSample * (double) (j - NumSamples);
|
||||
HofSImag[j] = HofSReal[j] * sin(Arg);
|
||||
HofSReal[j] = HofSReal[j] * cos(Arg);
|
||||
}
|
||||
break;
|
||||
|
||||
case firNOTCH: // Notch phase = 0 at DC and Pi
|
||||
CenterJ = (int) (OmegaC * dNumSamples);
|
||||
for (j = 0; j <= CenterJ; j++) {
|
||||
Arg = RadPerSample * (double) j;
|
||||
HofSImag[j] = HofSReal[j] * sin(Arg);
|
||||
HofSReal[j] = HofSReal[j] * cos(Arg);
|
||||
}
|
||||
for (j = NumSamples; j >= CenterJ; j--) {
|
||||
Arg = RadPerSample * (double) (j - NumSamples);
|
||||
HofSImag[j] = HofSReal[j] * sin(Arg);
|
||||
HofSReal[j] = HofSReal[j] * cos(Arg);
|
||||
}
|
||||
break;
|
||||
case firALLPASS:
|
||||
case firNOT_FIR:
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
// Fill the negative frequency bins of HofS with the conjugate of HofS for the FFT.
|
||||
for (j = 1; j < NumSamples; j++)
|
||||
HofSReal[2 * NumSamples - j] = HofSReal[j];
|
||||
for (j = 1; j < NumSamples; j++)
|
||||
HofSImag[2 * NumSamples - j] = -HofSImag[j];
|
||||
|
||||
// The Fourier Transform requires the center freq bins to be 0 for LPF and BPF, 1 for HPF and Notch
|
||||
if (PassType == firLPF || PassType == firBPF) {
|
||||
HofSReal[NumSamples] = 0.0;
|
||||
HofSImag[NumSamples] = 0.0;
|
||||
} else {
|
||||
HofSReal[NumSamples] = 1.0;
|
||||
HofSImag[NumSamples] = 0.0;
|
||||
}
|
||||
|
||||
// Do an inverse FFT on HofS to generate the impulse response. On return, HofSImag will be zero.
|
||||
FFT(HofSReal, HofSImag, 2 * NumSamples, INVERSE);
|
||||
|
||||
// We just generated an impulse response that is 2*NumSamples long. Since we used linear phase
|
||||
// the response will be symmetric about the center. In general, we only need a small number
|
||||
// of these taps, so we use the taps from the center of HofSReal, starting at StartJ.
|
||||
// We also need to scale the FFT's output by the size of the FFT.
|
||||
StartJ = NumSamples - NumTaps / 2;
|
||||
for (j = 0; j < NumTaps; j++)
|
||||
FirCoeff[j] = HofSReal[StartJ + j] / (2.0 * dNumSamples);
|
||||
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This function shows how to sample an analog transfer function H(s) to generate an FIR filter.
|
||||
// We didn't put much effort into this example because, in general, an analog prototype generates
|
||||
// a rather poor FIR filter in the sense that it requires such a large number of taps to realize
|
||||
// the response. For a discussion on this, see this article:
|
||||
// http://iowahills.com/B2PolynomialFIRFilters.html
|
||||
// In this example, we generate an FIR low pass from an Inverse Chebyshev low pass prototype.
|
||||
// We sample the low pass prototype H(s) at frequencies determined by the bilinear transform.
|
||||
void SampledFreqAnalog(int NumTaps, double *FirCoeff, double *HofSReal,
|
||||
double *HofSImag, double OmegaC) {
|
||||
int j, k, NumSamples;
|
||||
double dNumSamples, Omega, Omega0;
|
||||
std::complex<double> s, H;
|
||||
TFIRPassTypes PassType = firLPF;
|
||||
NumSamples = NUM_POS_FREQ_SAMPLES;
|
||||
dNumSamples = (double) NumSamples;
|
||||
|
||||
// Limit test NumTaps
|
||||
if (NumTaps > MAX_NUMTAPS)
|
||||
NumTaps = MAX_NUMTAPS;
|
||||
if (NumTaps > 2 * NUM_POS_FREQ_SAMPLES)
|
||||
NumTaps = 2 * NUM_POS_FREQ_SAMPLES;
|
||||
|
||||
// Define the low pass filter prototype
|
||||
TLowPassParams LPFProto; // defined in LowPassPrototypes.h
|
||||
TSPlaneCoeff SCoeff; // defined in LowPassPrototypes.h
|
||||
LPFProto.ProtoType = INVERSE_CHEBY; // BUTTERWORTH, CHEBYSHEV, GAUSSIAN, BESSEL, ADJUSTABLE, INVERSE_CHEBY, PAPOULIS, ELLIPTIC (defined in LowPassPrototypes.h)
|
||||
LPFProto.NumPoles = 8; // 1 <= NumPoles <= 12, 15, 20 Depending on the filter.
|
||||
LPFProto.Ripple = 0.25; // 0.0 <= Ripple <= 1.0 dB Chebyshev and Elliptic (less for high order Chebyshev).
|
||||
LPFProto.StopBanddB = 60.0; // 20 <= StopBand <= 120 dB Inv Cheby and Elliptic
|
||||
LPFProto.Gamma = 0.0; // -1.0 <= Gamma <= 1.0 Adjustable Gauss Controls the transition BW.
|
||||
|
||||
// Get the prototype filter's 2nd order s plane coefficients.
|
||||
SCoeff = CalcLowPassProtoCoeff(LPFProto);
|
||||
|
||||
// Evaluate the prototype's H(s)
|
||||
Omega0 = 1.0 / tan(OmegaC * M_PI_2); // This sets the corner frequency.
|
||||
for (j = 0; j < NumSamples; j++) {
|
||||
Omega = Omega0 * tan(M_PI_2 * (double) j / dNumSamples); // Frequencies per the bilinear transform.
|
||||
s = std::complex<double>(0.0, Omega);
|
||||
H = std::complex<double>(1.0, 0.0);
|
||||
for (k = 0; k < SCoeff.NumSections; k++) {
|
||||
H *= SCoeff.N2[k] * s * s + SCoeff.N1[k] * s + SCoeff.N0[k]; // The numerator
|
||||
H /= SCoeff.D2[k] * s * s + SCoeff.D1[k] * s + SCoeff.D0[k]; // The denominator
|
||||
H *= SCoeff.D0[k] / SCoeff.N0[k]; // The gain constants.
|
||||
}
|
||||
HofSReal[j] = H.real(); // We need to do this for the FFT, which uses real arrays.
|
||||
HofSImag[j] = H.imag();
|
||||
}
|
||||
|
||||
// Fill the negative frequency bins of HofS with the conjugate of HofS for the FFT.
|
||||
for (j = 1; j < NumSamples; j++)
|
||||
HofSReal[2 * NumSamples - j] = HofSReal[j];
|
||||
for (j = 1; j < NumSamples; j++)
|
||||
HofSImag[2 * NumSamples - j] = -HofSImag[j];
|
||||
|
||||
// The Fourier Transform requires the center freq bins to be 0 for LPF and BPF, 1 for HPF and Notch
|
||||
if (PassType == firLPF || PassType == firBPF) {
|
||||
HofSReal[NumSamples] = 0.0;
|
||||
HofSImag[NumSamples] = 0.0;
|
||||
} else {
|
||||
HofSReal[NumSamples] = 1.0;
|
||||
HofSImag[NumSamples] = 0.0;
|
||||
}
|
||||
|
||||
// Do an inverse FFT on HofS to generate the impulse response. On return, HofSImag will be zero.
|
||||
FFT(HofSReal, HofSImag, 2 * NumSamples, INVERSE);
|
||||
|
||||
// We just generated an impulse response that is 2*NumSamples long. We can use as many of these
|
||||
// as we like, but if you look at HofSReal you will see that the tail of the response goes to
|
||||
// zero rather quickly. The desired part of impulse response is at the beginning of HofSReal
|
||||
// instead of the center because H(s) didn't have linear phase (more like minimum phase).
|
||||
|
||||
// Take the taps from the start of HofSReal and scale by the size of the FFT.
|
||||
for (j = 0; j < NumTaps; j++)
|
||||
FirCoeff[j] = HofSReal[j] / (2.0 * dNumSamples);
|
||||
|
||||
// Most FIR responses benefit from the application of a window to reduce the effects of
|
||||
// truncating the impulse response. But a typical window, such as the Kaiser, can't be used
|
||||
// because this impulse response isn't symmetric about the center tap.
|
||||
// A Half Cosine window works quite nicely with these types of responses.
|
||||
for (j = 0; j < NumTaps; j++)
|
||||
FirCoeff[j] = FirCoeff[j] * cos(M_PI_2 * j / (double) NumTaps);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
} // namespace
|
17
kitiirfir/FreqSamplingCode.h
Normal file
17
kitiirfir/FreqSamplingCode.h
Normal file
@ -0,0 +1,17 @@
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
#ifndef FreqSamplingCodeH
|
||||
#define FreqSamplingCodeH
|
||||
#include "FIRFilterCode.h" // for the definition of TFIRPassTypes
|
||||
|
||||
#define NUM_POS_FREQ_SAMPLES 1024 // needs to be 1024 for the kit test app
|
||||
|
||||
namespace kitiirfir
|
||||
{
|
||||
|
||||
void SampledFreqFIR(int NumTaps, double *FirCoeff, double *HofSReal, double *HofSImag, double OmegaC, TFIRPassTypes PassType);
|
||||
void SampledFreqAnalog(int NumTaps, double *FirCoeff, double *HofSReal, double *HofSImag, double OmegaC);
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif
|
526
kitiirfir/IIRFilterCode.cpp
Normal file
526
kitiirfir/IIRFilterCode.cpp
Normal file
@ -0,0 +1,526 @@
|
||||
/*
|
||||
By Daniel Klostermann
|
||||
Iowa Hills Software, LLC IowaHills.com
|
||||
If you find a problem, please leave a note at:
|
||||
http://www.iowahills.com/feedbackcomments.html
|
||||
May 1, 2016
|
||||
|
||||
ShowMessage is a C++ Builder function, and it usage has been commented out.
|
||||
If you are using C++ Builder, include vcl.h for ShowMessage.
|
||||
Otherwise replace ShowMessage with something appropriate for your compiler.
|
||||
|
||||
See the FilterKitMain.cpp file for an example on how to use this code.
|
||||
*/
|
||||
|
||||
#include "IIRFilterCode.h"
|
||||
#include "PFiftyOneRevE.h"
|
||||
#include "LowPassPrototypes.h"
|
||||
#include <complex>
|
||||
#include <math.h>
|
||||
|
||||
namespace kitiirfir
|
||||
{
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
/*
|
||||
This calculates the coefficients for IIR filters from a set of 2nd order s plane coefficients
|
||||
which are obtained by calling CalcLowPassProtoCoeff() in LowPassPrototypes.cpp.
|
||||
The s plane filters are frequency scaled so their 3 dB frequency is at s = omega = 1 rad/sec.
|
||||
The poles and zeros are also ordered in a manner appropriate for IIR filters.
|
||||
For a derivation of the formulas used here, see the IIREquationDerivations.pdf
|
||||
This shows how the various poly coefficients are defined.
|
||||
H(s) = ( Ds^2 + Es + F ) / ( As^2 + Bs + C )
|
||||
H(z) = ( b2z^2 + b1z + b0 ) / ( a2z^2 + a1z + a0 )
|
||||
*/
|
||||
TIIRCoeff CalcIIRFilterCoeff(TIIRFilterParams IIRFilt) {
|
||||
int j, k;
|
||||
double Scalar, SectionGain, Coeff[5];
|
||||
double A, B, C, D, E, F, T, Q, Arg;
|
||||
double a2[ARRAY_DIM], a1[ARRAY_DIM], a0[ARRAY_DIM];
|
||||
double b2[ARRAY_DIM], b1[ARRAY_DIM], b0[ARRAY_DIM];
|
||||
std::complex<double> Roots[5];
|
||||
|
||||
TIIRCoeff IIR; // Gets returned by this function.
|
||||
TLowPassParams LowPassFilt; // Passed to the CalcLowPassProtoCoeff() function.
|
||||
TSPlaneCoeff SPlaneCoeff; // Filled by the CalcLowPassProtoCoeff() function.
|
||||
|
||||
// We can set the TLowPassParams variables directly from the TIIRFilterParams variables.
|
||||
LowPassFilt.ProtoType = IIRFilt.ProtoType;
|
||||
LowPassFilt.NumPoles = IIRFilt.NumPoles;
|
||||
LowPassFilt.Ripple = IIRFilt.Ripple;
|
||||
LowPassFilt.Gamma = IIRFilt.Gamma;
|
||||
LowPassFilt.StopBanddB = IIRFilt.StopBanddB;
|
||||
|
||||
// Get the low pass prototype 2nd order s plane coefficients.
|
||||
SPlaneCoeff = CalcLowPassProtoCoeff(LowPassFilt);
|
||||
|
||||
// Init the IIR structure.
|
||||
for (j = 0; j < ARRAY_DIM; j++) {
|
||||
IIR.a0[j] = 0.0;
|
||||
IIR.b0[j] = 0.0;
|
||||
IIR.a1[j] = 0.0;
|
||||
IIR.b1[j] = 0.0;
|
||||
IIR.a2[j] = 0.0;
|
||||
IIR.b2[j] = 0.0;
|
||||
IIR.a3[j] = 0.0;
|
||||
IIR.b3[j] = 0.0;
|
||||
IIR.a4[j] = 0.0;
|
||||
IIR.b4[j] = 0.0;
|
||||
}
|
||||
|
||||
// Set the number of IIR filter sections we will be generating.
|
||||
IIR.NumSections = (IIRFilt.NumPoles + 1) / 2;
|
||||
if (IIRFilt.IIRPassType == iirBPF || IIRFilt.IIRPassType == iirNOTCH)
|
||||
IIR.NumSections = IIRFilt.NumPoles;
|
||||
|
||||
// For All Pass filters, the numerator is set to the denominator values as shown here.
|
||||
// If the prototype was an Inv Cheby or Elliptic, the S plane numerator is discarded.
|
||||
// Use the Gauss as the prototype for the best all pass results (most linear phase).
|
||||
// The all pass H(s) = ( As^2 - Bs + C ) / ( As^2 + Bs + C )
|
||||
if (IIRFilt.IIRPassType == iirALLPASS) {
|
||||
for (j = 0; j < SPlaneCoeff.NumSections; j++) {
|
||||
SPlaneCoeff.N2[j] = SPlaneCoeff.D2[j];
|
||||
SPlaneCoeff.N1[j] = -SPlaneCoeff.D1[j];
|
||||
SPlaneCoeff.N0[j] = SPlaneCoeff.D0[j];
|
||||
}
|
||||
}
|
||||
|
||||
// T sets the IIR filter's corner frequency, or center freqency.
|
||||
// The Bilinear transform is defined as: s = 2/T * tan(Omega/2) = 2/T * (1 - z)/(1 + z)
|
||||
T = 2.0 * tan(IIRFilt.OmegaC * M_PI_2);
|
||||
Q = 1.0 + IIRFilt.OmegaC; // Q is used for band pass and notch filters.
|
||||
if (Q > 1.95)
|
||||
Q = 1.95;
|
||||
Q = 0.8 * tan(Q * M_PI_4); // This is a correction factor for Q.
|
||||
Q = IIRFilt.OmegaC / IIRFilt.BW / Q; // This is the corrected Q.
|
||||
|
||||
// Calc the IIR coefficients.
|
||||
// SPlaneCoeff.NumSections is the number of 1st and 2nd order s plane factors.
|
||||
k = 0;
|
||||
for (j = 0; j < SPlaneCoeff.NumSections; j++) {
|
||||
A = SPlaneCoeff.D2[j]; // We use A - F to make the code easier to read.
|
||||
B = SPlaneCoeff.D1[j];
|
||||
C = SPlaneCoeff.D0[j];
|
||||
D = SPlaneCoeff.N2[j];
|
||||
E = SPlaneCoeff.N1[j]; // N1 is always zero, except for the all pass. Consequently, the equations below can be simplified a bit by removing E.
|
||||
F = SPlaneCoeff.N0[j];
|
||||
|
||||
// b's are the numerator a's are the denominator
|
||||
if (IIRFilt.IIRPassType == iirLPF || IIRFilt.IIRPassType == iirALLPASS) // Low Pass and All Pass
|
||||
{
|
||||
if (A == 0.0 && D == 0.0) // 1 pole case
|
||||
{
|
||||
Arg = (2.0 * B + C * T);
|
||||
IIR.a2[j] = 0.0;
|
||||
IIR.a1[j] = (-2.0 * B + C * T) / Arg;
|
||||
IIR.a0[j] = 1.0;
|
||||
|
||||
IIR.b2[j] = 0.0;
|
||||
IIR.b1[j] = (-2.0 * E + F * T) / Arg * C / F;
|
||||
IIR.b0[j] = (2.0 * E + F * T) / Arg * C / F;
|
||||
} else // 2 poles
|
||||
{
|
||||
Arg = (4.0 * A + 2.0 * B * T + C * T * T);
|
||||
IIR.a2[j] = (4.0 * A - 2.0 * B * T + C * T * T) / Arg;
|
||||
IIR.a1[j] = (2.0 * C * T * T - 8.0 * A) / Arg;
|
||||
IIR.a0[j] = 1.0;
|
||||
|
||||
// With all pole filters, our LPF numerator is (z+1)^2, so all our Z Plane zeros are at -1
|
||||
IIR.b2[j] = (4.0 * D - 2.0 * E * T + F * T * T) / Arg * C / F;
|
||||
IIR.b1[j] = (2.0 * F * T * T - 8.0 * D) / Arg * C / F;
|
||||
IIR.b0[j] = (4 * D + F * T * T + 2.0 * E * T) / Arg * C / F;
|
||||
}
|
||||
}
|
||||
|
||||
if (IIRFilt.IIRPassType == iirHPF) // High Pass
|
||||
{
|
||||
if (A == 0.0 && D == 0.0) // 1 pole
|
||||
{
|
||||
Arg = 2.0 * C + B * T;
|
||||
IIR.a2[j] = 0.0;
|
||||
IIR.a1[j] = (B * T - 2.0 * C) / Arg;
|
||||
IIR.a0[j] = 1.0;
|
||||
|
||||
IIR.b2[j] = 0.0;
|
||||
IIR.b1[j] = (E * T - 2.0 * F) / Arg * C / F;
|
||||
IIR.b0[j] = (E * T + 2.0 * F) / Arg * C / F;
|
||||
} else // 2 poles
|
||||
{
|
||||
Arg = A * T * T + 4.0 * C + 2.0 * B * T;
|
||||
IIR.a2[j] = (A * T * T + 4.0 * C - 2.0 * B * T) / Arg;
|
||||
IIR.a1[j] = (2.0 * A * T * T - 8.0 * C) / Arg;
|
||||
IIR.a0[j] = 1.0;
|
||||
|
||||
// With all pole filters, our HPF numerator is (z-1)^2, so all our Z Plane zeros are at 1
|
||||
IIR.b2[j] = (D * T * T - 2.0 * E * T + 4.0 * F) / Arg * C / F;
|
||||
IIR.b1[j] = (2.0 * D * T * T - 8.0 * F) / Arg * C / F;
|
||||
IIR.b0[j] = (D * T * T + 4.0 * F + 2.0 * E * T) / Arg * C / F;
|
||||
}
|
||||
}
|
||||
|
||||
if (IIRFilt.IIRPassType == iirBPF) // Band Pass
|
||||
{
|
||||
if (A == 0.0 && D == 0.0) // 1 pole
|
||||
{
|
||||
Arg = 4.0 * B * Q + 2.0 * C * T + B * Q * T * T;
|
||||
a2[k] = (B * Q * T * T + 4.0 * B * Q - 2.0 * C * T) / Arg;
|
||||
a1[k] = (2.0 * B * Q * T * T - 8.0 * B * Q) / Arg;
|
||||
a0[k] = 1.0;
|
||||
|
||||
b2[k] = (E * Q * T * T + 4.0 * E * Q - 2.0 * F * T) / Arg * C
|
||||
/ F;
|
||||
b1[k] = (2.0 * E * Q * T * T - 8.0 * E * Q) / Arg * C / F;
|
||||
b0[k] = (4.0 * E * Q + 2.0 * F * T + E * Q * T * T) / Arg * C
|
||||
/ F;
|
||||
k++;
|
||||
} else //2 Poles
|
||||
{
|
||||
IIR.a4[j] = (16.0 * A * Q * Q + A * Q * Q * T * T * T * T
|
||||
+ 8.0 * A * Q * Q * T * T - 2.0 * B * Q * T * T * T
|
||||
- 8.0 * B * Q * T + 4.0 * C * T * T) * F;
|
||||
IIR.a3[j] = (4.0 * T * T * T * T * A * Q * Q
|
||||
- 4.0 * Q * T * T * T * B + 16.0 * Q * B * T
|
||||
- 64.0 * A * Q * Q) * F;
|
||||
IIR.a2[j] = (96.0 * A * Q * Q - 16.0 * A * Q * Q * T * T
|
||||
+ 6.0 * A * Q * Q * T * T * T * T - 8.0 * C * T * T)
|
||||
* F;
|
||||
IIR.a1[j] = (4.0 * T * T * T * T * A * Q * Q
|
||||
+ 4.0 * Q * T * T * T * B - 16.0 * Q * B * T
|
||||
- 64.0 * A * Q * Q) * F;
|
||||
IIR.a0[j] = (16.0 * A * Q * Q + A * Q * Q * T * T * T * T
|
||||
+ 8.0 * A * Q * Q * T * T + 2.0 * B * Q * T * T * T
|
||||
+ 8.0 * B * Q * T + 4.0 * C * T * T) * F;
|
||||
|
||||
// With all pole filters, our BPF numerator is (z-1)^2 * (z+1)^2 so the zeros come back as +/- 1 pairs
|
||||
IIR.b4[j] = (8.0 * D * Q * Q * T * T - 8.0 * E * Q * T
|
||||
+ 16.0 * D * Q * Q - 2.0 * E * Q * T * T * T
|
||||
+ D * Q * Q * T * T * T * T + 4.0 * F * T * T) * C;
|
||||
IIR.b3[j] = (16.0 * E * Q * T - 4.0 * E * Q * T * T * T
|
||||
- 64.0 * D * Q * Q + 4.0 * D * Q * Q * T * T * T * T)
|
||||
* C;
|
||||
IIR.b2[j] = (96.0 * D * Q * Q - 8.0 * F * T * T
|
||||
+ 6.0 * D * Q * Q * T * T * T * T
|
||||
- 16.0 * D * Q * Q * T * T) * C;
|
||||
IIR.b1[j] = (4.0 * D * Q * Q * T * T * T * T - 64.0 * D * Q * Q
|
||||
+ 4.0 * E * Q * T * T * T - 16.0 * E * Q * T) * C;
|
||||
IIR.b0[j] = (16.0 * D * Q * Q + 8.0 * E * Q * T
|
||||
+ 8.0 * D * Q * Q * T * T + 2.0 * E * Q * T * T * T
|
||||
+ 4.0 * F * T * T + D * Q * Q * T * T * T * T) * C;
|
||||
|
||||
// T = 2 makes these values approach 0.0 (~ 1.0E-12) The root solver needs 0.0 for numerical reasons.
|
||||
if (fabs(T - 2.0) < 0.0005) {
|
||||
IIR.a3[j] = 0.0;
|
||||
IIR.a1[j] = 0.0;
|
||||
IIR.b3[j] = 0.0;
|
||||
IIR.b1[j] = 0.0;
|
||||
}
|
||||
|
||||
// We now have a 4th order poly in the form a4*s^4 + a3*s^3 + a2*s^2 + a2*s + a0
|
||||
// We find the roots of this so we can form two 2nd order polys.
|
||||
Coeff[0] = IIR.a4[j];
|
||||
Coeff[1] = IIR.a3[j];
|
||||
Coeff[2] = IIR.a2[j];
|
||||
Coeff[3] = IIR.a1[j];
|
||||
Coeff[4] = IIR.a0[j];
|
||||
FindRoots(4, Coeff, Roots);
|
||||
|
||||
// In effect, the root finder scales the poly by 1/a4 so we have to apply this factor back into
|
||||
// the two 2nd order equations we are forming.
|
||||
Scalar = sqrt(fabs(IIR.a4[j]));
|
||||
|
||||
// Form the two 2nd order polys from the roots.
|
||||
a2[k] = Scalar;
|
||||
a1[k] = -(Roots[0] + Roots[1]).real() * Scalar;
|
||||
a0[k] = (Roots[0] * Roots[1]).real() * Scalar;
|
||||
k++;
|
||||
a2[k] = Scalar;
|
||||
a1[k] = -(Roots[2] + Roots[3]).real() * Scalar;
|
||||
a0[k] = (Roots[2] * Roots[3]).real() * Scalar;
|
||||
k--;
|
||||
|
||||
// Now do the same with the numerator.
|
||||
Coeff[0] = IIR.b4[j];
|
||||
Coeff[1] = IIR.b3[j];
|
||||
Coeff[2] = IIR.b2[j];
|
||||
Coeff[3] = IIR.b1[j];
|
||||
Coeff[4] = IIR.b0[j];
|
||||
|
||||
if (IIRFilt.ProtoType == INVERSE_CHEBY
|
||||
|| IIRFilt.ProtoType == ELLIPTIC) {
|
||||
FindRoots(4, Coeff, Roots);
|
||||
} else // With all pole filters (Butter, Cheb, etc), we know we have these 4 real roots. The root finder won't necessarily pair real roots the way we need, so rather than compute these, we simply set them.
|
||||
{
|
||||
Roots[0] = std::complex<double>(-1.0, 0.0);
|
||||
Roots[1] = std::complex<double>(1.0, 0.0);
|
||||
Roots[2] = std::complex<double>(-1.0, 0.0);
|
||||
Roots[3] = std::complex<double>(1.0, 0.0);
|
||||
}
|
||||
|
||||
Scalar = sqrt(fabs(IIR.b4[j]));
|
||||
|
||||
b2[k] = Scalar;
|
||||
if (IIRFilt.ProtoType == INVERSE_CHEBY
|
||||
|| IIRFilt.ProtoType == ELLIPTIC) {
|
||||
b1[k] = -(Roots[0] + Roots[1]).real() * Scalar; // = 0.0
|
||||
} else // else the prototype is an all pole filter
|
||||
{
|
||||
b1[k] = 0.0; // b1 = 0 for all pole filters, but the addition above won't always equal zero exactly.
|
||||
}
|
||||
b0[k] = (Roots[0] * Roots[1]).real() * Scalar;
|
||||
|
||||
k++;
|
||||
|
||||
b2[k] = Scalar;
|
||||
if (IIRFilt.ProtoType == INVERSE_CHEBY
|
||||
|| IIRFilt.ProtoType == ELLIPTIC) {
|
||||
b1[k] = -(Roots[2] + Roots[3]).real() * Scalar;
|
||||
} else // All pole
|
||||
{
|
||||
b1[k] = 0.0;
|
||||
}
|
||||
b0[k] = (Roots[2] * Roots[3]).real() * Scalar;
|
||||
k++;
|
||||
// Go below to see where we store these 2nd order polys back into IIR
|
||||
}
|
||||
}
|
||||
|
||||
if (IIRFilt.IIRPassType == iirNOTCH) // Notch
|
||||
{
|
||||
if (A == 0.0 && D == 0.0) // 1 pole
|
||||
{
|
||||
Arg = 2.0 * B * T + C * Q * T * T + 4.0 * C * Q;
|
||||
a2[k] = (4.0 * C * Q - 2.0 * B * T + C * Q * T * T) / Arg;
|
||||
a1[k] = (2.0 * C * Q * T * T - 8.0 * C * Q) / Arg;
|
||||
a0[k] = 1.0;
|
||||
|
||||
b2[k] = (4.0 * F * Q - 2.0 * E * T + F * Q * T * T) / Arg * C
|
||||
/ F;
|
||||
b1[k] = (2.0 * F * Q * T * T - 8.0 * F * Q) / Arg * C / F;
|
||||
b0[k] = (2.0 * E * T + F * Q * T * T + 4.0 * F * Q) / Arg * C
|
||||
/ F;
|
||||
k++;
|
||||
} else {
|
||||
IIR.a4[j] = (4.0 * A * T * T - 2.0 * B * T * T * T * Q
|
||||
+ 8.0 * C * Q * Q * T * T - 8.0 * B * T * Q
|
||||
+ C * Q * Q * T * T * T * T + 16.0 * C * Q * Q) * -F;
|
||||
IIR.a3[j] = (16.0 * B * T * Q + 4.0 * C * Q * Q * T * T * T * T
|
||||
- 64.0 * C * Q * Q - 4.0 * B * T * T * T * Q) * -F;
|
||||
IIR.a2[j] = (96.0 * C * Q * Q - 8.0 * A * T * T
|
||||
- 16.0 * C * Q * Q * T * T
|
||||
+ 6.0 * C * Q * Q * T * T * T * T) * -F;
|
||||
IIR.a1[j] = (4.0 * B * T * T * T * Q - 16.0 * B * T * Q
|
||||
- 64.0 * C * Q * Q + 4.0 * C * Q * Q * T * T * T * T)
|
||||
* -F;
|
||||
IIR.a0[j] = (4.0 * A * T * T + 2.0 * B * T * T * T * Q
|
||||
+ 8.0 * C * Q * Q * T * T + 8.0 * B * T * Q
|
||||
+ C * Q * Q * T * T * T * T + 16.0 * C * Q * Q) * -F;
|
||||
|
||||
// Our Notch Numerator isn't simple. [ (4+T^2)*z^2 - 2*(4-T^2)*z + (4+T^2) ]^2
|
||||
IIR.b4[j] = (2.0 * E * T * T * T * Q - 4.0 * D * T * T
|
||||
- 8.0 * F * Q * Q * T * T + 8.0 * E * T * Q
|
||||
- 16.0 * F * Q * Q - F * Q * Q * T * T * T * T) * C;
|
||||
IIR.b3[j] = (64.0 * F * Q * Q + 4.0 * E * T * T * T * Q
|
||||
- 16.0 * E * T * Q - 4.0 * F * Q * Q * T * T * T * T)
|
||||
* C;
|
||||
IIR.b2[j] = (8.0 * D * T * T - 96.0 * F * Q * Q
|
||||
+ 16.0 * F * Q * Q * T * T
|
||||
- 6.0 * F * Q * Q * T * T * T * T) * C;
|
||||
IIR.b1[j] = (16.0 * E * T * Q - 4.0 * E * T * T * T * Q
|
||||
+ 64.0 * F * Q * Q - 4.0 * F * Q * Q * T * T * T * T)
|
||||
* C;
|
||||
IIR.b0[j] = (-4.0 * D * T * T - 2.0 * E * T * T * T * Q
|
||||
- 8.0 * E * T * Q - 8.0 * F * Q * Q * T * T
|
||||
- F * Q * Q * T * T * T * T - 16.0 * F * Q * Q) * C;
|
||||
|
||||
// T = 2 (OmegaC = 0.5) makes these values approach 0.0 (~ 1.0E-12). The root solver wants 0.0 for numerical reasons.
|
||||
if (fabs(T - 2.0) < 0.0005) {
|
||||
IIR.a3[j] = 0.0;
|
||||
IIR.a1[j] = 0.0;
|
||||
IIR.b3[j] = 0.0;
|
||||
IIR.b1[j] = 0.0;
|
||||
}
|
||||
|
||||
// We now have a 4th order poly in the form a4*s^4 + a3*s^3 + a2*s^2 + a2*s + a0
|
||||
// We find the roots of this so we can form two 2nd order polys.
|
||||
Coeff[0] = IIR.a4[j];
|
||||
Coeff[1] = IIR.a3[j];
|
||||
Coeff[2] = IIR.a2[j];
|
||||
Coeff[3] = IIR.a1[j];
|
||||
Coeff[4] = IIR.a0[j];
|
||||
|
||||
// In effect, the root finder scales the poly by 1/a4 so we have to apply this factor back into
|
||||
// the two 2nd order equations we are forming.
|
||||
FindRoots(4, Coeff, Roots);
|
||||
Scalar = sqrt(fabs(IIR.a4[j]));
|
||||
a2[k] = Scalar;
|
||||
a1[k] = -(Roots[0] + Roots[1]).real() * Scalar;
|
||||
a0[k] = (Roots[0] * Roots[1]).real() * Scalar;
|
||||
|
||||
k++;
|
||||
a2[k] = Scalar;
|
||||
a1[k] = -(Roots[2] + Roots[3]).real() * Scalar;
|
||||
a0[k] = (Roots[2] * Roots[3]).real() * Scalar;
|
||||
k--;
|
||||
|
||||
// Now do the same with the numerator.
|
||||
Coeff[0] = IIR.b4[j];
|
||||
Coeff[1] = IIR.b3[j];
|
||||
Coeff[2] = IIR.b2[j];
|
||||
Coeff[3] = IIR.b1[j];
|
||||
Coeff[4] = IIR.b0[j];
|
||||
FindRoots(4, Coeff, Roots);
|
||||
|
||||
Scalar = sqrt(fabs(IIR.b4[j]));
|
||||
b2[k] = Scalar;
|
||||
b1[k] = -(Roots[0] + Roots[1]).real() * Scalar;
|
||||
b0[k] = (Roots[0] * Roots[1]).real() * Scalar;
|
||||
|
||||
k++;
|
||||
b2[k] = Scalar;
|
||||
b1[k] = -(Roots[2] + Roots[3]).real() * Scalar;
|
||||
b0[k] = (Roots[2] * Roots[3]).real() * Scalar;
|
||||
k++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (IIRFilt.IIRPassType == iirBPF || IIRFilt.IIRPassType == iirNOTCH) {
|
||||
// In the calcs above for the BPF and Notch, we didn't set a0=1, so we do it here.
|
||||
for (j = 0; j < IIR.NumSections; j++) {
|
||||
b2[j] /= a0[j];
|
||||
b1[j] /= a0[j];
|
||||
b0[j] /= a0[j];
|
||||
a2[j] /= a0[j];
|
||||
a1[j] /= a0[j];
|
||||
a0[j] = 1.0;
|
||||
}
|
||||
|
||||
for (j = 0; j < IIR.NumSections; j++) {
|
||||
IIR.a0[j] = a0[j];
|
||||
IIR.a1[j] = a1[j];
|
||||
IIR.a2[j] = a2[j];
|
||||
IIR.b0[j] = b0[j];
|
||||
IIR.b1[j] = b1[j];
|
||||
IIR.b2[j] = b2[j];
|
||||
}
|
||||
}
|
||||
|
||||
// Adjust the b's or a0 for the desired Gain.
|
||||
SectionGain = pow(10.0, IIRFilt.dBGain / 20.0);
|
||||
SectionGain = pow(SectionGain, 1.0 / (double) IIR.NumSections);
|
||||
for (j = 0; j < IIR.NumSections; j++) {
|
||||
IIR.b0[j] *= SectionGain;
|
||||
IIR.b1[j] *= SectionGain;
|
||||
IIR.b2[j] *= SectionGain;
|
||||
// This is an alternative to adjusting the b's
|
||||
// IIR.a0[j] = SectionGain;
|
||||
}
|
||||
|
||||
return (IIR);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This code implements an IIR filter as a Form 1 Biquad.
|
||||
// It uses 2 sets of shift registers, RegX on the input side and RegY on the output side.
|
||||
// There are many ways to implement an IIR filter, some very good, and some extremely bad.
|
||||
// For numerical reasons, a Form 1 Biquad implementation is among the best.
|
||||
void FilterWithIIR(TIIRCoeff IIRCoeff, double *Signal, double *FilteredSignal,
|
||||
int NumSigPts) {
|
||||
double y;
|
||||
int j, k;
|
||||
|
||||
for (j = 0; j < NumSigPts; j++) {
|
||||
k = 0;
|
||||
y = SectCalc(j, k, Signal[j], IIRCoeff);
|
||||
for (k = 1; k < IIRCoeff.NumSections; k++) {
|
||||
y = SectCalc(j, k, y, IIRCoeff);
|
||||
}
|
||||
FilteredSignal[j] = y;
|
||||
}
|
||||
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This gets used with the function above, FilterWithIIR()
|
||||
// Note the use of MaxRegVal to avoid a math overflow condition.
|
||||
double SectCalc(int j, int k, double x, TIIRCoeff IIRCoeff) {
|
||||
double y, CenterTap;
|
||||
static double RegX1[ARRAY_DIM], RegX2[ARRAY_DIM], RegY1[ARRAY_DIM],
|
||||
RegY2[ARRAY_DIM], MaxRegVal;
|
||||
static bool MessageShown = false;
|
||||
|
||||
// Zero the regiisters on the 1st call or on an overflow condition. The overflow limit used
|
||||
// here is small for double variables, but a filter that reaches this threshold is broken.
|
||||
if ((j == 0 && k == 0) || MaxRegVal > OVERFLOW_LIMIT) {
|
||||
if (MaxRegVal > OVERFLOW_LIMIT && !MessageShown) {
|
||||
// ShowMessage("ERROR: Math Over Flow in IIR Section Calc. \nThe register values exceeded 1.0E20 \n");
|
||||
MessageShown = true; // So this message doesn't get shown thousands of times.
|
||||
}
|
||||
|
||||
MaxRegVal = 1.0E-12;
|
||||
for (int i = 0; i < ARRAY_DIM; i++) {
|
||||
RegX1[i] = 0.0;
|
||||
RegX2[i] = 0.0;
|
||||
RegY1[i] = 0.0;
|
||||
RegY2[i] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
CenterTap = x * IIRCoeff.b0[k] + IIRCoeff.b1[k] * RegX1[k]
|
||||
+ IIRCoeff.b2[k] * RegX2[k];
|
||||
y = IIRCoeff.a0[k] * CenterTap - IIRCoeff.a1[k] * RegY1[k]
|
||||
- IIRCoeff.a2[k] * RegY2[k];
|
||||
|
||||
RegX2[k] = RegX1[k];
|
||||
RegX1[k] = x;
|
||||
RegY2[k] = RegY1[k];
|
||||
RegY1[k] = y;
|
||||
|
||||
// MaxRegVal is used to prevent overflow. Overflow seldom occurs, but will
|
||||
// if the filter has faulty coefficients. MaxRegVal is usually less than 100.0
|
||||
if (fabs(CenterTap) > MaxRegVal)
|
||||
MaxRegVal = fabs(CenterTap);
|
||||
if (fabs(y) > MaxRegVal)
|
||||
MaxRegVal = fabs(y);
|
||||
return (y);
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This function calculates the frequency response of an IIR filter.
|
||||
// Probably the easiest way to determine the frequency response of an IIR filter is to send
|
||||
// an impulse through the filter and do an FFT on the output. This method does a DFT on
|
||||
// the coefficients of each biquad section. The results from the cascaded sections are
|
||||
// then multiplied together.
|
||||
|
||||
// This approach works better than an FFT when the filter is very narrow. To analyze highly selective
|
||||
// filters with an FFT can require a very large number of points, which can be quite cumbersome.
|
||||
// This approach allows you to set the range of frequencies to be analyzed by modifying the statement
|
||||
// Arg = M_PI * (double)j / (double)NumPts; .
|
||||
void IIRFreqResponse(TIIRCoeff IIR, int NumSections, double *RealHofZ,
|
||||
double *ImagHofZ, int NumPts) {
|
||||
int j, n;
|
||||
double Arg;
|
||||
std::complex<double> z1, z2, HofZ, Denom;
|
||||
for (j = 0; j < NumPts; j++) {
|
||||
Arg = M_PI * (double) j / (double) NumPts;
|
||||
z1 = std::complex<double>(cos(Arg), -sin(Arg)); // z = e^(j*omega)
|
||||
z2 = z1 * z1; // z squared
|
||||
|
||||
HofZ = std::complex<double>(1.0, 0.0);
|
||||
for (n = 0; n < NumSections; n++) {
|
||||
HofZ *= IIR.a0[n]; // This can be in the denominator, but only if a0=1. a0 can be other than 1.0 to adjust the filter's gain. See the bottom of the CalcIIRFilterCoeff() function.
|
||||
HofZ *= IIR.b0[n] + IIR.b1[n] * z1 + IIR.b2[n] * z2; // Numerator
|
||||
Denom = 1.0 + IIR.a1[n] * z1 + IIR.a2[n] * z2; // Denominator
|
||||
if (std::abs(Denom) < 1.0E-12)
|
||||
Denom = 1.0E-12; // A pole on the unit circle would cause this to be zero, so this should never happen. It could happen however if the filter also has a zero at this frequency. Then H(z) needs to be determined by L'Hopitals rule at this freq.
|
||||
HofZ /= Denom;
|
||||
}
|
||||
RealHofZ[j] = HofZ.real();
|
||||
ImagHofZ[j] = HofZ.imag();
|
||||
}
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
} // namespace
|
38
kitiirfir/IIRFilterCode.h
Normal file
38
kitiirfir/IIRFilterCode.h
Normal file
@ -0,0 +1,38 @@
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
#ifndef IIRFilterCodeH
|
||||
#define IIRFilterCodeH
|
||||
//---------------------------------------------------------------------------
|
||||
#include "LowPassPrototypes.h" // defines TFilterPoly and ARRAY_DIM
|
||||
#define OVERFLOW_LIMIT 1.0E20
|
||||
|
||||
namespace kitiirfir
|
||||
{
|
||||
|
||||
enum TIIRPassTypes {iirLPF, iirHPF, iirBPF, iirNOTCH, iirALLPASS};
|
||||
|
||||
struct TIIRCoeff {double a0[ARRAY_DIM]; double a1[ARRAY_DIM]; double a2[ARRAY_DIM]; double a3[ARRAY_DIM]; double a4[ARRAY_DIM];
|
||||
double b0[ARRAY_DIM]; double b1[ARRAY_DIM]; double b2[ARRAY_DIM]; double b3[ARRAY_DIM]; double b4[ARRAY_DIM];
|
||||
int NumSections; };
|
||||
|
||||
struct TIIRFilterParams { TIIRPassTypes IIRPassType; // Defined above: Low pass, High Pass, etc.
|
||||
double OmegaC; // The IIR filter's 3 dB corner freq for low pass and high pass, the center freq for band pass and notch.
|
||||
double BW; // The IIR filter's 3 dB bandwidth for band pass and notch filters.
|
||||
double dBGain; // Sets the Gain of the filter
|
||||
|
||||
// These define the low pass prototype to be used
|
||||
TFilterPoly ProtoType; // Butterworth, Cheby, etc.
|
||||
int NumPoles; // Pole count
|
||||
double Ripple; // Passband Ripple for the Elliptic and Chebyshev
|
||||
double StopBanddB; // Stop Band Attenuation in dB for the Elliptic and Inverse Chebyshev
|
||||
double Gamma; // Controls the transition bandwidth on the Adjustable Gauss. -1 <= Gamma <= 1
|
||||
};
|
||||
|
||||
TIIRCoeff CalcIIRFilterCoeff(TIIRFilterParams IIRFilt);
|
||||
void FilterWithIIR(TIIRCoeff IIRCoeff, double *Signal, double *FilteredSignal, int NumSigPts);
|
||||
double SectCalc(int j, int k, double x, TIIRCoeff IIRCoeff);
|
||||
void IIRFreqResponse(TIIRCoeff IIRCoeff, int NumSections, double *RealHofZ, double *ImagHofZ, int NumPts);
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif
|
469
kitiirfir/LowPassPrototypes.cpp
Normal file
469
kitiirfir/LowPassPrototypes.cpp
Normal file
@ -0,0 +1,469 @@
|
||||
/*
|
||||
By Daniel Klostermann
|
||||
Iowa Hills Software, LLC IowaHills.com
|
||||
If you find a problem, please leave a note at:
|
||||
http://www.iowahills.com/feedbackcomments.html
|
||||
May 1, 2016
|
||||
|
||||
ShowMessage is a C++ Builder function, and it usage has been commented out.
|
||||
If you are using C++ Builder, include vcl.h for ShowMessage.
|
||||
Otherwise replace ShowMessage with something appropriate for your compiler.
|
||||
|
||||
This code generates 2nd order S plane coefficients for the following low pass filter prototypes.
|
||||
Butterworth, Chebyshev, Bessel, Gauss, Adjustable Gauss, Inverse Chebyshev, Papoulis, and Elliptic.
|
||||
This code does 3 things.
|
||||
1. Gets the filter's roots from the code in LowPassRoots.cpp
|
||||
2. Uses the left hand plane roots to form 2nd order polynomials.
|
||||
3. Frequency scales the polynomials so the 3 dB corner frequency is at omege = 1 rad/sec.
|
||||
|
||||
Note that we range check the Filt struct variables here, but we don't report
|
||||
back any changes we make.
|
||||
*/
|
||||
|
||||
#include <complex>
|
||||
#include "LowPassPrototypes.h"
|
||||
#include "PFiftyOneRevE.h"
|
||||
#include "LowPassRoots.h"
|
||||
|
||||
namespace kitiirfir
|
||||
{
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// TLowPassParams defines the low pass prototype (NumPoles, Ripple, etc.).
|
||||
// We return SPlaneCoeff filled with the 2nd order S plane coefficients.
|
||||
TSPlaneCoeff CalcLowPassProtoCoeff(TLowPassParams Filt) {
|
||||
int j, DenomCount = 0, NumerCount, NumRoots, ZeroCount;
|
||||
std::complex<double> Poles[ARRAY_DIM], Zeros[ARRAY_DIM];
|
||||
TSPlaneCoeff Coeff; // The return value.
|
||||
|
||||
// Init the S Plane Coeff. H(s) = (N2*s^2 + N1*s + N0) / (D2*s^2 + D1*s + D0)
|
||||
for (j = 0; j < ARRAY_DIM; j++) {
|
||||
Coeff.N2[j] = 0.0;
|
||||
Coeff.N1[j] = 0.0;
|
||||
Coeff.N0[j] = 1.0;
|
||||
Coeff.D2[j] = 0.0;
|
||||
Coeff.D1[j] = 0.0;
|
||||
Coeff.D0[j] = 1.0;
|
||||
}
|
||||
Coeff.NumSections = 0;
|
||||
|
||||
// We need to range check the various argument values here.
|
||||
// These are the practical limits the max number of poles.
|
||||
if (Filt.NumPoles < 1)
|
||||
Filt.NumPoles = 1;
|
||||
if (Filt.NumPoles > MAX_POLE_COUNT)
|
||||
Filt.NumPoles = MAX_POLE_COUNT;
|
||||
if (Filt.ProtoType == ELLIPTIC || Filt.ProtoType == INVERSE_CHEBY) {
|
||||
if (Filt.NumPoles > 15)
|
||||
Filt.NumPoles = 15;
|
||||
}
|
||||
if (Filt.ProtoType == GAUSSIAN || Filt.ProtoType == BESSEL) {
|
||||
if (Filt.NumPoles > 12)
|
||||
Filt.NumPoles = 12;
|
||||
}
|
||||
|
||||
// Gamma is used by the Adjustable Gauss.
|
||||
if (Filt.Gamma < -1.0)
|
||||
Filt.Gamma = -1.0; // -1 gives ~ Gauss response
|
||||
if (Filt.Gamma > 1.0)
|
||||
Filt.Gamma = 1.0; // +1 gives ~ Butterworth response.
|
||||
|
||||
// Ripple is used by the Chebyshev and Elliptic
|
||||
if (Filt.Ripple < 0.0001)
|
||||
Filt.Ripple = 0.0001;
|
||||
if (Filt.Ripple > 1.0)
|
||||
Filt.Ripple = 1.0;
|
||||
|
||||
// With the Chebyshev we need to use less ripple for large pole counts to keep the poles out of the RHP.
|
||||
if (Filt.ProtoType == CHEBYSHEV && Filt.NumPoles > 15) {
|
||||
double MaxRipple = 1.0;
|
||||
if (Filt.NumPoles == 16)
|
||||
MaxRipple = 0.5;
|
||||
if (Filt.NumPoles == 17)
|
||||
MaxRipple = 0.4;
|
||||
if (Filt.NumPoles == 18)
|
||||
MaxRipple = 0.25;
|
||||
if (Filt.NumPoles == 19)
|
||||
MaxRipple = 0.125;
|
||||
if (Filt.NumPoles >= 20)
|
||||
MaxRipple = 0.10;
|
||||
if (Filt.Ripple > MaxRipple)
|
||||
Filt.Ripple = MaxRipple;
|
||||
}
|
||||
|
||||
// StopBanddB is used by the Inverse Chebyshev and the Elliptic
|
||||
// It is given in positive dB values.
|
||||
if (Filt.StopBanddB < 20.0)
|
||||
Filt.StopBanddB = 20.0;
|
||||
if (Filt.StopBanddB > 120.0)
|
||||
Filt.StopBanddB = 120.0;
|
||||
|
||||
// There isn't such a thing as a 1 pole Chebyshev, or 1 pole Bessel, etc.
|
||||
// A one pole filter is simply 1/(s+1).
|
||||
NumerCount = 0; // init
|
||||
if (Filt.NumPoles == 1) {
|
||||
Coeff.D1[0] = 1.0;
|
||||
DenomCount = 1; // DenomCount is the number of denominator factors (1st or 2nd order).
|
||||
} else if (Filt.ProtoType == BUTTERWORTH) {
|
||||
NumRoots = ButterworthPoly(Filt.NumPoles, Poles);
|
||||
DenomCount = GetFilterCoeff(NumRoots, Poles, Coeff.D2, Coeff.D1,
|
||||
Coeff.D0);
|
||||
// A Butterworth doesn't require frequncy scaling with SetCornerFreq().
|
||||
}
|
||||
|
||||
else if (Filt.ProtoType == ADJUSTABLE) // Adjustable Gauss
|
||||
{
|
||||
NumRoots = AdjustablePoly(Filt.NumPoles, Poles, Filt.Gamma);
|
||||
DenomCount = GetFilterCoeff(NumRoots, Poles, Coeff.D2, Coeff.D1,
|
||||
Coeff.D0);
|
||||
SetCornerFreq(DenomCount, Coeff.D2, Coeff.D1, Coeff.D0, Coeff.N2,
|
||||
Coeff.N1, Coeff.N0);
|
||||
}
|
||||
|
||||
else if (Filt.ProtoType == CHEBYSHEV) {
|
||||
NumRoots = ChebyshevPoly(Filt.NumPoles, Filt.Ripple, Poles);
|
||||
DenomCount = GetFilterCoeff(NumRoots, Poles, Coeff.D2, Coeff.D1,
|
||||
Coeff.D0);
|
||||
SetCornerFreq(DenomCount, Coeff.D2, Coeff.D1, Coeff.D0, Coeff.N2,
|
||||
Coeff.N1, Coeff.N0);
|
||||
}
|
||||
|
||||
else if (Filt.ProtoType == INVERSE_CHEBY) {
|
||||
NumRoots = InvChebyPoly(Filt.NumPoles, Filt.StopBanddB, Poles, Zeros,
|
||||
&ZeroCount);
|
||||
DenomCount = GetFilterCoeff(NumRoots, Poles, Coeff.D2, Coeff.D1,
|
||||
Coeff.D0);
|
||||
NumerCount = GetFilterCoeff(ZeroCount, Zeros, Coeff.N2, Coeff.N1,
|
||||
Coeff.N0);
|
||||
SetCornerFreq(DenomCount, Coeff.D2, Coeff.D1, Coeff.D0, Coeff.N2,
|
||||
Coeff.N1, Coeff.N0);
|
||||
}
|
||||
|
||||
else if (Filt.ProtoType == ELLIPTIC) {
|
||||
NumRoots = EllipticPoly(Filt.NumPoles, Filt.Ripple, Filt.StopBanddB,
|
||||
Poles, Zeros, &ZeroCount);
|
||||
DenomCount = GetFilterCoeff(NumRoots, Poles, Coeff.D2, Coeff.D1,
|
||||
Coeff.D0);
|
||||
NumerCount = GetFilterCoeff(ZeroCount, Zeros, Coeff.N2, Coeff.N1,
|
||||
Coeff.N0);
|
||||
SetCornerFreq(DenomCount, Coeff.D2, Coeff.D1, Coeff.D0, Coeff.N2,
|
||||
Coeff.N1, Coeff.N0);
|
||||
}
|
||||
|
||||
// Papoulis works OK, but it doesn't accomplish anything the Chebyshev can't.
|
||||
else if (Filt.ProtoType == PAPOULIS) {
|
||||
NumRoots = PapoulisPoly(Filt.NumPoles, Poles);
|
||||
DenomCount = GetFilterCoeff(NumRoots, Poles, Coeff.D2, Coeff.D1,
|
||||
Coeff.D0);
|
||||
SetCornerFreq(DenomCount, Coeff.D2, Coeff.D1, Coeff.D0, Coeff.N2,
|
||||
Coeff.N1, Coeff.N0);
|
||||
}
|
||||
|
||||
else if (Filt.ProtoType == BESSEL) {
|
||||
NumRoots = BesselPoly(Filt.NumPoles, Poles);
|
||||
DenomCount = GetFilterCoeff(NumRoots, Poles, Coeff.D2, Coeff.D1,
|
||||
Coeff.D0);
|
||||
SetCornerFreq(DenomCount, Coeff.D2, Coeff.D1, Coeff.D0, Coeff.N2,
|
||||
Coeff.N1, Coeff.N0);
|
||||
}
|
||||
|
||||
else if (Filt.ProtoType == GAUSSIAN) {
|
||||
NumRoots = GaussianPoly(Filt.NumPoles, Poles);
|
||||
DenomCount = GetFilterCoeff(NumRoots, Poles, Coeff.D2, Coeff.D1,
|
||||
Coeff.D0);
|
||||
SetCornerFreq(DenomCount, Coeff.D2, Coeff.D1, Coeff.D0, Coeff.N2,
|
||||
Coeff.N1, Coeff.N0);
|
||||
}
|
||||
|
||||
Coeff.NumSections = DenomCount;
|
||||
|
||||
// If we have an odd pole count, there will be 1 less zero than poles, so we need to shift the
|
||||
// zeros down in the arrays so the 1st zero (which is zero) and aligns with the real pole.
|
||||
if (NumerCount != 0 && Filt.NumPoles % 2 == 1) {
|
||||
for (j = NumerCount; j >= 0; j--) {
|
||||
Coeff.N2[j + 1] = Coeff.N2[j]; // Coeff.N1's are always zero
|
||||
Coeff.N0[j + 1] = Coeff.N0[j];
|
||||
}
|
||||
Coeff.N2[0] = 0.0; // Set the 1st zero to zero for odd pole counts.
|
||||
Coeff.N0[0] = 1.0;
|
||||
}
|
||||
|
||||
return (Coeff);
|
||||
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This sets the polynomial's the 3 dB corner to 1 rad/sec. This isn' required for a Butterworth,
|
||||
// but the rest of the polynomials need correction. Esp the Adj Gauss, Inv Cheby and Bessel.
|
||||
// Poly Count is the number of 2nd order sections. D and N are the Denom and Num coefficients.
|
||||
// H(s) = (N2*s^2 + N1*s + N0) / (D2*s^2 + D1*s + D0)
|
||||
void SetCornerFreq(int PolyCount, double *D2, double *D1, double *D0,
|
||||
double *N2, double *N1, double *N0) {
|
||||
int j, n;
|
||||
double Omega, FreqScalar, Zeta, Gain;
|
||||
std::complex<double> s, H;
|
||||
|
||||
Gain = 1.0;
|
||||
for (j = 0; j < PolyCount; j++)
|
||||
Gain *= D0[j] / N0[j];
|
||||
|
||||
// Evaluate H(s) by increasing Omega until |H(s)| < -3 dB
|
||||
for (j = 1; j < 6000; j++) {
|
||||
Omega = (double) j / 512.0; // The step size for Omega is 1/512 radians.
|
||||
s = std::complex<double>(0.0, Omega);
|
||||
|
||||
H = std::complex<double>(1.0, 0.0);
|
||||
for (n = 0; n < PolyCount; n++) {
|
||||
H = H * (N2[n] * s * s + N1[n] * s + N0[n])
|
||||
/ (D2[n] * s * s + D1[n] * s + D0[n]);
|
||||
}
|
||||
H *= Gain;
|
||||
if (std::abs(H) < 0.7071)
|
||||
break; // -3 dB
|
||||
}
|
||||
|
||||
FreqScalar = 1.0 / Omega;
|
||||
|
||||
// Freq scale the denominator. We hold the damping factor Zeta constant.
|
||||
for (j = 0; j < PolyCount; j++) {
|
||||
Omega = sqrt(D0[j]);
|
||||
if (Omega == 0.0)
|
||||
continue; // should never happen
|
||||
Zeta = D1[j] / Omega / 2.0;
|
||||
if (D2[j] != 0.0) // 2nd degree poly
|
||||
{
|
||||
D0[j] = Omega * Omega * FreqScalar * FreqScalar;
|
||||
D1[j] = 2.0 * Zeta * Omega * FreqScalar;
|
||||
} else // 1st degree poly
|
||||
{
|
||||
D0[j] *= FreqScalar;
|
||||
}
|
||||
}
|
||||
|
||||
// Scale the numerator. H(s) = (N2*s^2 + N1*s + N0) / (D2*s^2 + D1*s + D0)
|
||||
// N1 is always zero. N2 is either 1 or 0. If N2 = 0, then N0 = 1 and there isn't a zero to scale.
|
||||
// For all pole filters (Butter, Cheby, etc) N2 = 0 and N0 = 1.
|
||||
for (j = 0; j < PolyCount; j++) {
|
||||
if (N2[j] == 0.0)
|
||||
continue;
|
||||
N0[j] *= FreqScalar * FreqScalar;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// Some of the Polys generate both left hand and right hand plane roots.
|
||||
// We use this function to get the left hand plane poles and imag axis zeros to
|
||||
// create the 2nd order polynomials with coefficients A2, A1, A0.
|
||||
// We return the Polynomial count.
|
||||
|
||||
// We first sort the roots according the the real part (a zeta sort). Then all the left
|
||||
// hand plane roots are grouped and in the correct order for IIR and Opamp filters.
|
||||
// We then check for duplicate roots, and set an inconsequential real or imag part to zero.
|
||||
// Then the 2nd order coefficients are calculated.
|
||||
int GetFilterCoeff(int RootCount, std::complex<double> *Roots, double *A2, double *A1,
|
||||
double *A0) {
|
||||
int PolyCount, j, k;
|
||||
|
||||
SortRootsByZeta(Roots, RootCount, stMin); // stMin places the most negative real part 1st.
|
||||
|
||||
// Check for duplicate roots. The Inv Cheby generates duplcate imag roots, and the
|
||||
// Elliptic generates duplicate real roots. We set duplicates to a RHP value.
|
||||
for (j = 0; j < RootCount - 1; j++) {
|
||||
for (k = j + 1; k < RootCount; k++) {
|
||||
if (fabs(Roots[j].real() - Roots[k].real()) < 1.0E-3
|
||||
&& fabs(Roots[j].imag() - Roots[k].imag()) < 1.0E-3) {
|
||||
Roots[k] = std::complex<double>((double) k, 0.0); // RHP roots are ignored below, Use k is to prevent duplicate checks for matches.
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// This forms the 2nd order coefficients from the root value.
|
||||
// We ignore roots in the Right Hand Plane.
|
||||
PolyCount = 0;
|
||||
for (j = 0; j < RootCount; j++) {
|
||||
if (Roots[j].real() > 0.0)
|
||||
continue; // Right Hand Plane
|
||||
if (Roots[j].real() == 0.0 && Roots[j].imag() == 0.0)
|
||||
continue; // At the origin. This should never happen.
|
||||
|
||||
if (Roots[j].real() == 0.0) // Imag Root (A poly zero)
|
||||
{
|
||||
A2[PolyCount] = 1.0;
|
||||
A1[PolyCount] = 0.0;
|
||||
A0[PolyCount] = Roots[j].imag() * Roots[j].imag();
|
||||
j++;
|
||||
PolyCount++;
|
||||
} else if (Roots[j].imag() == 0.0) // Real Pole
|
||||
{
|
||||
A2[PolyCount] = 0.0;
|
||||
A1[PolyCount] = 1.0;
|
||||
A0[PolyCount] = -Roots[j].real();
|
||||
PolyCount++;
|
||||
} else // Complex Pole
|
||||
{
|
||||
A2[PolyCount] = 1.0;
|
||||
A1[PolyCount] = -2.0 * Roots[j].real();
|
||||
A0[PolyCount] = Roots[j].real() * Roots[j].real()
|
||||
+ Roots[j].imag() * Roots[j].imag();
|
||||
j++;
|
||||
PolyCount++;
|
||||
}
|
||||
}
|
||||
|
||||
return (PolyCount);
|
||||
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This rebuilds an Nth order poly from its 2nd order constituents.
|
||||
// PolyCount is the number of 2nd order polys. e.g. NumPoles = 7 PolyCount = 4
|
||||
// PolyCoeff gets filled such that PolyCoeff[5]*s^5 + PolyCoeff[4]*s^4 + PolyCoeff[3]*s^3 + ..
|
||||
// The poly order is returned.
|
||||
int RebuildPoly(int PolyCount, double *PolyCoeff, double *A2, double *A1,
|
||||
double *A0) {
|
||||
int j, k, n;
|
||||
double Sum[P51_ARRAY_SIZE];
|
||||
for (j = 0; j <= 2 * PolyCount; j++)
|
||||
PolyCoeff[j] = 0.0;
|
||||
for (j = 0; j < P51_ARRAY_SIZE; j++)
|
||||
Sum[j] = 0.0;
|
||||
|
||||
PolyCoeff[2] = A2[0];
|
||||
PolyCoeff[1] = A1[0];
|
||||
PolyCoeff[0] = A0[0];
|
||||
|
||||
for (j = 1; j < PolyCount; j++) {
|
||||
for (n = 0; n <= 2 * j; n++) {
|
||||
Sum[n + 2] += PolyCoeff[n] * A2[j];
|
||||
Sum[n + 1] += PolyCoeff[n] * A1[j];
|
||||
Sum[n + 0] += PolyCoeff[n] * A0[j];
|
||||
}
|
||||
for (k = 0; k <= 2 * j + 2; k++)
|
||||
PolyCoeff[k] = Sum[k];
|
||||
for (k = 0; k < P51_ARRAY_SIZE; k++)
|
||||
Sum[k] = 0.0;
|
||||
}
|
||||
|
||||
// Want to return the poly order. This will be 2 * PolyCount if there aren't any 1st order polys.
|
||||
// 1st order Polys create leading zeros. N 1st order polys Gives N leading zeros.
|
||||
for (j = 2 * PolyCount; j >= 0; j--)
|
||||
if (PolyCoeff[j] != 0.0)
|
||||
break;
|
||||
return (j);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// This sorts on the real part if the real part of the 1st root != 0 (a Zeta sort)
|
||||
// else we sort on the imag part. If SortType == stMin for both the poles and zeros, then
|
||||
// the poles and zeros will be properly matched.
|
||||
// This also sets an inconsequential real or imag part to zero.
|
||||
// A matched pair of z plane real roots, such as +/- 1, don't come out together.
|
||||
// Used above in GetFilterCoeff and the FIR zero plot.
|
||||
void SortRootsByZeta(std::complex<double> *Roots, int Count, TOurSortTypes SortType) {
|
||||
if (Count >= P51_MAXDEGREE) {
|
||||
//ShowMessage("Count > P51_MAXDEGREE in TPolyForm::SortRootsByZeta()");
|
||||
return;
|
||||
}
|
||||
|
||||
int j, k, RootJ[P51_ARRAY_SIZE];
|
||||
double SortValue[P51_ARRAY_SIZE];
|
||||
std::complex<double> TempRoots[P51_ARRAY_SIZE];
|
||||
|
||||
// Set an inconsequential real or imag part to zero.
|
||||
for (j = 0; j < Count; j++) {
|
||||
if (fabs(Roots[j].real()) * 1.0E3 < fabs(Roots[j].imag()))
|
||||
Roots[j].real(0.0);
|
||||
if (fabs(Roots[j].imag()) * 1.0E3 < fabs(Roots[j].real()))
|
||||
Roots[j].imag(0.0);
|
||||
}
|
||||
|
||||
// Sort the roots.
|
||||
for (j = 0; j < Count; j++)
|
||||
RootJ[j] = j; // Needed for HeapIndexSort
|
||||
if (Roots[0].real() != 0.0) // Cplx roots
|
||||
{
|
||||
for (j = 0; j < Count; j++)
|
||||
SortValue[j] = Roots[j].real();
|
||||
} else // Imag roots, so we sort on imag part.
|
||||
{
|
||||
for (j = 0; j < Count; j++)
|
||||
SortValue[j] = fabs(Roots[j].imag());
|
||||
}
|
||||
HeapIndexSort(SortValue, RootJ, Count, SortType); // stMin gives the most negative root on top
|
||||
|
||||
for (j = 0; j < Count; j++) {
|
||||
k = RootJ[j]; // RootJ is the sort index
|
||||
TempRoots[j] = Roots[k];
|
||||
}
|
||||
for (j = 0; j < Count; j++) {
|
||||
Roots[j] = TempRoots[j];
|
||||
}
|
||||
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// Remember to set the Index array to 0, 1, 2, 3, ... N-1
|
||||
bool HeapIndexSort(double *Data, int *Index, int N, TOurSortTypes SortType) {
|
||||
int i, j, k, m, IndexTemp;
|
||||
long long FailSafe, NSquared; // need this for big sorts
|
||||
|
||||
NSquared = (long long) N * (long long) N;
|
||||
m = N / 2;
|
||||
k = N - 1;
|
||||
for (FailSafe = 0; FailSafe < NSquared; FailSafe++) // typical FailSafe value on return is N*log2(N)
|
||||
{
|
||||
if (m > 0)
|
||||
IndexTemp = Index[--m];
|
||||
else {
|
||||
IndexTemp = Index[k];
|
||||
Index[k] = Index[0];
|
||||
if (--k == 0) {
|
||||
Index[0] = IndexTemp;
|
||||
return (true);
|
||||
}
|
||||
}
|
||||
|
||||
i = m + 1;
|
||||
j = 2 * i;
|
||||
|
||||
if (SortType == stMax)
|
||||
while (j < k + 2) {
|
||||
FailSafe++;
|
||||
if (j <= k && Data[Index[j - 1]] > Data[Index[j]])
|
||||
j++;
|
||||
if (Data[IndexTemp] > Data[Index[j - 1]]) {
|
||||
Index[i - 1] = Index[j - 1];
|
||||
i = j;
|
||||
j += i;
|
||||
} else
|
||||
break;
|
||||
}
|
||||
|
||||
else
|
||||
// SortType == stMin
|
||||
while (j < k + 2) {
|
||||
FailSafe++;
|
||||
if (j <= k && Data[Index[j - 1]] < Data[Index[j]])
|
||||
j++;
|
||||
if (Data[IndexTemp] < Data[Index[j - 1]]) {
|
||||
Index[i - 1] = Index[j - 1];
|
||||
i = j;
|
||||
j += i;
|
||||
} else
|
||||
break;
|
||||
}
|
||||
|
||||
Index[i - 1] = IndexTemp;
|
||||
}
|
||||
return (false);
|
||||
}
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
|
||||
} // namespace
|
||||
|
45
kitiirfir/LowPassPrototypes.h
Normal file
45
kitiirfir/LowPassPrototypes.h
Normal file
@ -0,0 +1,45 @@
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
#ifndef LowPassPrototypesH
|
||||
#define LowPassPrototypesH
|
||||
|
||||
#include <complex>
|
||||
|
||||
#define MAX_POLE_COUNT 20
|
||||
#define ARRAY_DIM 50 // This MUST be at least 2*MAX_POLE_COUNT because some filter polys are defined in terms of 2 * NumPoles
|
||||
|
||||
namespace kitiirfir
|
||||
{
|
||||
|
||||
enum TOurSortTypes{stMax, stMin};
|
||||
|
||||
// These coeff form H(s) = (N2*s^2 + N1*s + N0) / (D2*s^2 + D1*s + D0)
|
||||
// NumSections is the number of 1st and 2nd order polynomial factors .
|
||||
struct TSPlaneCoeff { double N2[ARRAY_DIM]; double N1[ARRAY_DIM]; double N0[ARRAY_DIM];
|
||||
double D2[ARRAY_DIM]; double D1[ARRAY_DIM]; double D0[ARRAY_DIM];
|
||||
int NumSections; };
|
||||
|
||||
// These are the available filter polynomials. NOT_IIR is for code testing.
|
||||
enum TFilterPoly {BUTTERWORTH, GAUSSIAN, BESSEL, ADJUSTABLE, CHEBYSHEV,
|
||||
INVERSE_CHEBY, PAPOULIS, ELLIPTIC, NOT_IIR};
|
||||
|
||||
// This structure defines the low pass filter prototype.
|
||||
// The 3 dB corner frequency is 1 rad/sec for all filters.
|
||||
struct TLowPassParams {TFilterPoly ProtoType; // Butterworth, Cheby, etc.
|
||||
int NumPoles; // Pole count
|
||||
double Ripple; // Passband Ripple for the Elliptic and Chebyshev
|
||||
double StopBanddB; // Stop Band Attenuation in dB for the Elliptic and Inverse Cheby
|
||||
double Gamma; // Controls the transition bandwidth on the Adjustable Gauss. -1 <= Gamma <= 1
|
||||
};
|
||||
|
||||
|
||||
TSPlaneCoeff CalcLowPassProtoCoeff(TLowPassParams Filt);
|
||||
void SetCornerFreq(int Count, double *D2, double *D1, double *D0, double *N2, double *N1, double *N0);
|
||||
int GetFilterCoeff(int RootCount, std::complex<double> *Roots, double *A2, double *A1, double *A0);
|
||||
int RebuildPoly(int PolyCount, double *PolyCoeff, double *A2, double *A1, double *A0 );
|
||||
void SortRootsByZeta(std::complex<double> *Roots, int Count, TOurSortTypes SortType);
|
||||
bool HeapIndexSort(double *Data, int *Index, int N, TOurSortTypes SortType);
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif
|
683
kitiirfir/LowPassRoots.cpp
Normal file
683
kitiirfir/LowPassRoots.cpp
Normal file
@ -0,0 +1,683 @@
|
||||
/*
|
||||
By Daniel Klostermann
|
||||
Iowa Hills Software, LLC IowaHills.com
|
||||
If you find a problem, please leave a note at:
|
||||
http://www.iowahills.com/feedbackcomments.html
|
||||
May 1, 2016
|
||||
|
||||
|
||||
This code calculates the roots for the following filter polynomials.
|
||||
Butterworth, Chebyshev, Bessel, Gauss, Adjustable Gauss, Inverse Chebyshev, Papoulis, and Elliptic.
|
||||
|
||||
These filters are described in most filter design texts, except the Papoulis and Adjustable Gauss.
|
||||
|
||||
The Adjustable Gauss is a transitional filter invented by Iowa Hills that can generate a response
|
||||
anywhere between a Gauss and a Butterworth. Use Gamma to control the response.
|
||||
Gamma = -1.0 nearly a Gauss
|
||||
Gamma = -0.7 nearly a Bessel
|
||||
Gamma = 1.0 nearly a Butterworth
|
||||
|
||||
The Papoulis (Classic L) provides a response between the Butterworth the Chebyshev.
|
||||
It has a faster roll off than the Butterworth but without the Chebyshev ripple.
|
||||
It does however have some roll off in the pass band, which can be controlled by the RollOff parameter.
|
||||
|
||||
The limits on the arguments for these functions (such as pole count or ripple) are not
|
||||
checked here. See the LowPassPrototypes.cpp for argument limits.
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <complex>
|
||||
#include "LowPassRoots.h"
|
||||
#include "PFiftyOneRevE.h"
|
||||
|
||||
namespace kitiirfir
|
||||
{
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// This used by several of the functions below. It returns a double so
|
||||
// we don't overflow and because we need a double for subsequent calculations.
|
||||
double Factorial(int N) {
|
||||
int j;
|
||||
double Fact = 1.0;
|
||||
for (j = 1; j <= N; j++)
|
||||
Fact *= (double) j;
|
||||
return (Fact);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// Some of the code below generates the coefficients in reverse order
|
||||
// needed for the root finder. This reverses the poly.
|
||||
void ReverseCoeff(double *P, int N) {
|
||||
int j;
|
||||
double Temp;
|
||||
for (j = 0; j <= N / 2; j++) {
|
||||
Temp = P[j];
|
||||
P[j] = P[N - j];
|
||||
P[N - j] = Temp;
|
||||
}
|
||||
|
||||
for (j = N; j >= 1; j--) {
|
||||
if (P[0] != 0.0)
|
||||
P[j] /= P[0];
|
||||
}
|
||||
P[0] = 1.0;
|
||||
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// We calculate the roots for a Butterwoth filter directly. (No root finder needed)
|
||||
// We fill the array Roots[] and return the number of roots.
|
||||
int ButterworthPoly(int NumPoles, std::complex<double> *Roots) {
|
||||
int j, n, N;
|
||||
double Theta;
|
||||
|
||||
N = NumPoles;
|
||||
n = 0;
|
||||
for (j = 0; j < N / 2; j++) {
|
||||
Theta = M_PI * (double) (2 * j + N + 1) / (double) (2 * N);
|
||||
Roots[n++] = std::complex<double>(cos(Theta), sin(Theta));
|
||||
Roots[n++] = std::complex<double>(cos(Theta), -sin(Theta));
|
||||
}
|
||||
if (N % 2 == 1)
|
||||
Roots[n++] = std::complex<double>(-1.0, 0.0); // The real root for odd pole counts.
|
||||
return (N);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This calculates the roots for a Chebyshev filter directly. (No root finder needed)
|
||||
int ChebyshevPoly(int NumPoles, double Ripple, std::complex<double> *Roots) {
|
||||
int j, n, N;
|
||||
double Sigma, Omega;
|
||||
double Arg, Theta, Epsilon;
|
||||
|
||||
N = NumPoles;
|
||||
Epsilon = pow(10.0, Ripple / 10.0) - 1.0;
|
||||
Epsilon = sqrt(Epsilon);
|
||||
if (Epsilon < 0.00001)
|
||||
Epsilon = 0.00001;
|
||||
if (Epsilon > 0.996)
|
||||
Epsilon = 0.996;
|
||||
Epsilon = 1.0 / Epsilon;
|
||||
Arg = log(Epsilon + sqrt(Epsilon * Epsilon + 1.0)) / (double) N; // = asinh(Epsilon) / (double)N;
|
||||
n = 0;
|
||||
for (j = 0; j < N / 2; j++) {
|
||||
Theta = (2 * j + 1) * M_PI_2 / (double) N;
|
||||
Sigma = -sinh(Arg) * sin(Theta);
|
||||
Omega = cosh(Arg) * cos(Theta);
|
||||
Roots[n++] = std::complex<double>(Sigma, Omega);
|
||||
Roots[n++] = std::complex<double>(Sigma, -Omega);
|
||||
}
|
||||
if (N % 2 == 1)
|
||||
Roots[n++] = std::complex<double>(-sinh(Arg), 0.0); // The real root for odd pole counts.
|
||||
return (N);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// The Gaussian Poly is simply 1 - s^2 + s^4 /2! - s^6 / 3! .... seeHumpherys p. 414.
|
||||
int GaussianPoly(int NumPoles, std::complex<double> *Roots) {
|
||||
int j, N, RootsCount;
|
||||
double GaussCoeff[P51_ARRAY_SIZE];
|
||||
|
||||
N = NumPoles;
|
||||
GaussCoeff[0] = 1.0;
|
||||
GaussCoeff[1] = 0.0;
|
||||
for (j = 2; j <= 2 * N; j += 2) {
|
||||
GaussCoeff[j] = 1.0 / Factorial(j / 2);
|
||||
GaussCoeff[j + 1] = 0.0;
|
||||
if ((j / 2) % 2 == 1)
|
||||
GaussCoeff[j] *= -1.0;
|
||||
}
|
||||
|
||||
// The coefficients are generated in reverse order needed for P51.
|
||||
ReverseCoeff(GaussCoeff, N * 2);
|
||||
RootsCount = FindRoots(N * 2, GaussCoeff, Roots);
|
||||
return (RootsCount);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This function starts with the Gauss and modifies the coefficients.
|
||||
// The Gaussian Poly is simply 1 - s^2 + s^4 /2! - s^6 / 3! .... seeHumpherys p. 414.
|
||||
int AdjustablePoly(int NumPoles, std::complex<double> *Roots, double Gamma) {
|
||||
int j, N, RootsCount;
|
||||
double GaussCoeff[P51_ARRAY_SIZE];
|
||||
|
||||
N = NumPoles;
|
||||
if (Gamma > 0.0)
|
||||
Gamma *= 2.0; // Gamma < 0 is the orig Gauss and Bessel responses. Gamma > 0 has an asymptotic response, so we double it, which also makes the user interface a bit nicer. i.e. -1 <= Gamma <= 1
|
||||
|
||||
GaussCoeff[0] = 1.0;
|
||||
GaussCoeff[1] = 0.0;
|
||||
for (j = 2; j <= 2 * N; j += 2) {
|
||||
GaussCoeff[j] = pow(Factorial(j / 2), Gamma); // Gamma = -1 is orig Gauss poly, Gamma = 1 approaches a Butterworth response.
|
||||
GaussCoeff[j + 1] = 0.0;
|
||||
if ((j / 2) % 2 == 1)
|
||||
GaussCoeff[j] *= -1.0;
|
||||
}
|
||||
|
||||
// The coefficients are generated in reverse order needed for P51.
|
||||
ReverseCoeff(GaussCoeff, N * 2);
|
||||
RootsCount = FindRoots(N * 2, GaussCoeff, Roots);
|
||||
|
||||
// Scale the imag part of the root by 1.1 to get a response closer to a Butterworth when Gamma = -2
|
||||
for (j = 0; j < N * 2; j++)
|
||||
Roots[j] = std::complex<double>(Roots[j].real(), Roots[j].imag() * 1.10);
|
||||
return (RootsCount);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// These Bessel coefficients are calc'd with the formula given in Johnson & Moore. Page 164. eq 7-26
|
||||
// The highet term is 1, the rest of the terms are calc'd
|
||||
int BesselPoly(int NumPoles, std::complex<double> *Roots) {
|
||||
int k, N, RootsCount;
|
||||
double b, PolyCoeff[P51_ARRAY_SIZE];
|
||||
|
||||
N = NumPoles;
|
||||
for (k = N - 1; k >= 0; k--) {
|
||||
// b is calc'd as a double because of all the division, but the result is essentially a large int.
|
||||
b = Factorial(2 * N - k) / Factorial(k) / Factorial(N - k)
|
||||
/ pow(2.0, (double) (N - k));
|
||||
PolyCoeff[k] = b;
|
||||
}
|
||||
PolyCoeff[N] = 1.0;
|
||||
|
||||
// The coefficients are generated in reverse order needed for P51.
|
||||
ReverseCoeff(PolyCoeff, N);
|
||||
RootsCount = FindRoots(N, PolyCoeff, Roots);
|
||||
return (RootsCount);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This Inverse Cheby code is identical to the Cheby code, except for two things.
|
||||
// First, epsilon represents stop band atten, not ripple, so this epsilon is 1/epsilon.
|
||||
// More importantly, the inverse cheby is defined in terms of F(1/s) instead of the usual F(s);
|
||||
// After a bit of algebra, it is easy to see that the 1/s terms can be made s terms by simply
|
||||
// multiplying the num and denom by s^2N. Then the 0th term becomes the highest term, so the
|
||||
// coefficients are simply fed to the root finder in reverse order.
|
||||
// Since 1 doesn't get added to the numerator, the lowest 1 or 2 terms will be 0, but we can't
|
||||
// feed the root finder 0's as the highest term, so we have to be sure not to feed them to the root finder.
|
||||
|
||||
int InvChebyPoly(int NumPoles, double StopBanddB, std::complex<double> *ChebyPoles,
|
||||
std::complex<double> *ChebyZeros, int *ZeroCount) {
|
||||
int j, k, N, PolesCount;
|
||||
double Arg, Epsilon, ChebPolyCoeff[P51_ARRAY_SIZE],
|
||||
PolyCoeff[P51_ARRAY_SIZE];
|
||||
std::complex<double> SquaredPolyCoeff[P51_ARRAY_SIZE], A, B;
|
||||
|
||||
N = NumPoles;
|
||||
Epsilon = 1.0 / (pow(10.0, StopBanddB / 10.0) - 1.0); // actually Epsilon Squared
|
||||
|
||||
// This algorithm is from the paper by Richard J Mathar. It generates the coefficients for the Cheb poly.
|
||||
// It stores the Nth order coefficient in ChebPolyCoeff[N], and so on. Every other Cheb coeff is 0. See Wikipedia for a table that this code will generate.
|
||||
for (j = 0; j <= N / 2; j++) {
|
||||
Arg = Factorial(N - j - 1) / Factorial(j) / Factorial(N - 2 * j);
|
||||
if (j % 2 == 1)
|
||||
Arg *= -1.0;
|
||||
Arg *= pow(2.0, (double) (N - 2 * j)) * (double) N / 2.0;
|
||||
ChebPolyCoeff[N - 2 * j] = Arg;
|
||||
if (N - (2 * j + 1) >= 0) {
|
||||
ChebPolyCoeff[N - (2 * j + 1)] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Now square the Chebshev polynomial where we assume s = jw. To get the signs correct,
|
||||
// we need to take j to the power. Then its a simple matter of adding powers and
|
||||
// multiplying coefficients. j and k represent the exponents. That is, j=3 is the x^3 coeff, and so on.
|
||||
for (j = 0; j <= 2 * N; j++)
|
||||
SquaredPolyCoeff[j] = std::complex<double>(0.0, 0.0);
|
||||
|
||||
for (j = 0; j <= N; j++)
|
||||
for (k = 0; k <= N; k++) {
|
||||
A = pow(std::complex<double>(0.0, 1.0), (double) j) * ChebPolyCoeff[j];
|
||||
B = pow(std::complex<double>(0.0, 1.0), (double) k) * ChebPolyCoeff[k];
|
||||
SquaredPolyCoeff[j + k] = SquaredPolyCoeff[j + k] + A * B; // these end up entirely real.
|
||||
}
|
||||
|
||||
// Denominator
|
||||
// Now we multiply the coefficients by Epsilon and add 1 to the denominator poly.
|
||||
k = 0;
|
||||
for (j = 0; j <= 2 * N; j++)
|
||||
ChebPolyCoeff[j] = SquaredPolyCoeff[j].real() * Epsilon;
|
||||
ChebPolyCoeff[0] += 1.0;
|
||||
for (j = 0; j <= 2 * N; j++)
|
||||
PolyCoeff[k++] = ChebPolyCoeff[j]; // Note this order is reversed from the Chebyshev routine.
|
||||
k--;
|
||||
PolesCount = FindRoots(k, PolyCoeff, ChebyPoles);
|
||||
|
||||
// Numerator
|
||||
k = 0;
|
||||
for (j = 0; j <= 2 * N; j++)
|
||||
ChebPolyCoeff[j] = SquaredPolyCoeff[j].real(); // Not using Epsilon here so the check for 0 on the next line is easier. Since the root finder normalizes the poly, it gets factored out anyway.
|
||||
for (j = 0; j <= 2 * N; j++)
|
||||
if (fabs(ChebPolyCoeff[j]) > 0.01)
|
||||
break; // Get rid of the high order zeros. There will be eithe 0ne or two zeros to delete.
|
||||
for (; j <= 2 * N; j++)
|
||||
PolyCoeff[k++] = ChebPolyCoeff[j];
|
||||
k--;
|
||||
*ZeroCount = FindRoots(k, PolyCoeff, ChebyZeros);
|
||||
|
||||
return (PolesCount);
|
||||
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// The complete Papouls poly is 1 + Epsilon * P(n) where P(n) is the 2*N Legendre poly.
|
||||
int PapoulisPoly(int NumPoles, std::complex<double> *Roots) {
|
||||
int j, N, RootsCount;
|
||||
double Epsilon, PolyCoeff[P51_ARRAY_SIZE];
|
||||
|
||||
N = NumPoles;
|
||||
for (j = 0; j < 2 * N; j++)
|
||||
PolyCoeff[j] = 0.0; // so we don't have to fill all the zero's.
|
||||
|
||||
switch (N) {
|
||||
case 1: // 1 pole
|
||||
PolyCoeff[2] = 1.0;
|
||||
break;
|
||||
|
||||
case 2: // 2 pole
|
||||
PolyCoeff[4] = 1.0;
|
||||
break;
|
||||
|
||||
case 3: // 3 pole
|
||||
PolyCoeff[6] = 3.0;
|
||||
PolyCoeff[4] = -3.0;
|
||||
PolyCoeff[2] = 1.0;
|
||||
break;
|
||||
|
||||
case 4:
|
||||
PolyCoeff[8] = 6.0;
|
||||
PolyCoeff[6] = -8.0;
|
||||
PolyCoeff[4] = 3.0;
|
||||
break;
|
||||
|
||||
case 5:
|
||||
PolyCoeff[10] = 20.0;
|
||||
PolyCoeff[8] = -40.0;
|
||||
PolyCoeff[6] = 28.0;
|
||||
PolyCoeff[4] = -8.0;
|
||||
PolyCoeff[2] = 1.0;
|
||||
break;
|
||||
|
||||
case 6:
|
||||
PolyCoeff[12] = 50.0;
|
||||
PolyCoeff[10] = -120.0;
|
||||
PolyCoeff[8] = 105.0;
|
||||
PolyCoeff[6] = -40.0;
|
||||
PolyCoeff[4] = 6.0;
|
||||
break;
|
||||
|
||||
case 7:
|
||||
PolyCoeff[14] = 175.0;
|
||||
PolyCoeff[12] = -525.0;
|
||||
PolyCoeff[10] = 615.0;
|
||||
PolyCoeff[8] = -355.0;
|
||||
PolyCoeff[6] = 105.0;
|
||||
PolyCoeff[4] = -15.0;
|
||||
PolyCoeff[2] = 1.0;
|
||||
break;
|
||||
|
||||
case 8:
|
||||
PolyCoeff[16] = 490.0;
|
||||
PolyCoeff[14] = -1680.0;
|
||||
PolyCoeff[12] = 2310.0;
|
||||
PolyCoeff[10] = -1624.0;
|
||||
PolyCoeff[8] = 615.0;
|
||||
PolyCoeff[6] = -120.0;
|
||||
PolyCoeff[4] = 10.0;
|
||||
break;
|
||||
|
||||
case 9:
|
||||
PolyCoeff[18] = 1764.0;
|
||||
PolyCoeff[16] = -7056.0;
|
||||
PolyCoeff[14] = 11704.0;
|
||||
PolyCoeff[12] = -10416.0;
|
||||
PolyCoeff[10] = 5376.0;
|
||||
PolyCoeff[8] = -1624.0;
|
||||
PolyCoeff[6] = 276.0;
|
||||
PolyCoeff[4] = -24.0;
|
||||
PolyCoeff[2] = 1.0;
|
||||
break;
|
||||
|
||||
case 10:
|
||||
PolyCoeff[20] = 5292.0;
|
||||
PolyCoeff[18] = -23520.0;
|
||||
PolyCoeff[16] = 44100.0;
|
||||
PolyCoeff[14] = -45360.0;
|
||||
PolyCoeff[12] = 27860.0;
|
||||
PolyCoeff[10] = -10416.0;
|
||||
PolyCoeff[8] = 2310.0;
|
||||
PolyCoeff[6] = -280.0;
|
||||
PolyCoeff[4] = 15.0;
|
||||
break;
|
||||
|
||||
case 11:
|
||||
PolyCoeff[22] = 19404;
|
||||
PolyCoeff[20] = -97020.0;
|
||||
PolyCoeff[18] = 208740.0;
|
||||
PolyCoeff[16] = -252840.0;
|
||||
PolyCoeff[14] = 189420.0;
|
||||
PolyCoeff[12] = -90804.0;
|
||||
PolyCoeff[10] = 27860.0;
|
||||
PolyCoeff[8] = -5320.0;
|
||||
PolyCoeff[6] = 595.0;
|
||||
PolyCoeff[4] = -35.0;
|
||||
PolyCoeff[2] = 1.0;
|
||||
break;
|
||||
|
||||
case 12:
|
||||
PolyCoeff[24] = 60984.0;
|
||||
PolyCoeff[22] = -332640.0;
|
||||
PolyCoeff[20] = 790020.0;
|
||||
PolyCoeff[18] = -1071840.0;
|
||||
PolyCoeff[16] = 916020.0;
|
||||
PolyCoeff[14] = -512784.0;
|
||||
PolyCoeff[12] = 189420.0;
|
||||
PolyCoeff[10] = -45360.0;
|
||||
PolyCoeff[8] = 6720.0;
|
||||
PolyCoeff[6] = -560.0;
|
||||
PolyCoeff[4] = 21.0;
|
||||
break;
|
||||
|
||||
case 13:
|
||||
PolyCoeff[26] = 226512.0;
|
||||
PolyCoeff[24] = -1359072.0;
|
||||
PolyCoeff[22] = 3597264.0;
|
||||
PolyCoeff[20] = -5528160.0;
|
||||
PolyCoeff[18] = 5462820.0;
|
||||
PolyCoeff[16] = -3632112.0;
|
||||
PolyCoeff[14] = 1652232.0;
|
||||
PolyCoeff[12] = -512784.0;
|
||||
PolyCoeff[10] = 106380.0;
|
||||
PolyCoeff[8] = -14160.0;
|
||||
PolyCoeff[6] = 1128.0;
|
||||
PolyCoeff[4] = -48.0;
|
||||
PolyCoeff[2] = 1.0;
|
||||
break;
|
||||
|
||||
case 14:
|
||||
PolyCoeff[28] = 736164.0;
|
||||
PolyCoeff[26] = -4756752.0;
|
||||
PolyCoeff[24] = 13675662.0;
|
||||
PolyCoeff[22] = -23063040.0;
|
||||
PolyCoeff[20] = 25322220.0;
|
||||
PolyCoeff[18] = -18993744.0;
|
||||
PolyCoeff[16] = 9934617.0;
|
||||
PolyCoeff[14] = -3632112.0;
|
||||
PolyCoeff[12] = 916020.0;
|
||||
PolyCoeff[10] = -154560.0;
|
||||
PolyCoeff[8] = 16506.0;
|
||||
PolyCoeff[6] = -1008.0;
|
||||
PolyCoeff[4] = 28.0;
|
||||
break;
|
||||
|
||||
case 15:
|
||||
PolyCoeff[30] = 2760615.0;
|
||||
PolyCoeff[28] = -19324305.0;
|
||||
PolyCoeff[26] = 60747687.0;
|
||||
PolyCoeff[24] = -113270157.0;
|
||||
PolyCoeff[22] = 139378239.0;
|
||||
PolyCoeff[20] = -119144025.0;
|
||||
PolyCoeff[18] = 72539775.0;
|
||||
PolyCoeff[16] = -31730787.0;
|
||||
PolyCoeff[14] = 9934617.0;
|
||||
PolyCoeff[12] = -2191959.0;
|
||||
PolyCoeff[10] = 331065.0;
|
||||
PolyCoeff[8] = -32655.0;
|
||||
PolyCoeff[6] = 1953.0;
|
||||
PolyCoeff[4] = -63.0;
|
||||
PolyCoeff[2] = 1.0;
|
||||
break;
|
||||
|
||||
case 16:
|
||||
PolyCoeff[32] = 9202050.0;
|
||||
PolyCoeff[30] = -68708640.0;
|
||||
PolyCoeff[28] = 231891660.0;
|
||||
PolyCoeff[26] = -467747280.0;
|
||||
PolyCoeff[24] = 628221594.0;
|
||||
PolyCoeff[22] = -592431840.0;
|
||||
PolyCoeff[20] = 403062660.0;
|
||||
PolyCoeff[18] = -200142800.0;
|
||||
PolyCoeff[16] = 72539775.0;
|
||||
PolyCoeff[14] = -18993744.0;
|
||||
PolyCoeff[12] = 3515820.0;
|
||||
PolyCoeff[10] = -443520.0;
|
||||
PolyCoeff[8] = 35910.0;
|
||||
PolyCoeff[6] = -1680.0;
|
||||
PolyCoeff[4] = 36.0;
|
||||
break;
|
||||
|
||||
case 17:
|
||||
PolyCoeff[34] = 34763300.0;
|
||||
PolyCoeff[32] = -278106400.0;
|
||||
PolyCoeff[30] = 1012634480.0;
|
||||
PolyCoeff[28] = -2221579360.0;
|
||||
PolyCoeff[26] = 3276433160.0;
|
||||
PolyCoeff[24] = -3431908480.0;
|
||||
PolyCoeff[22] = 2629731104.0;
|
||||
PolyCoeff[20] = -1496123200.0;
|
||||
PolyCoeff[18] = 634862800.0;
|
||||
PolyCoeff[16] = -200142800.0;
|
||||
PolyCoeff[14] = 46307800.0;
|
||||
PolyCoeff[12] = -7696304.0;
|
||||
PolyCoeff[10] = 888580.0;
|
||||
PolyCoeff[8] = -67760.0;
|
||||
PolyCoeff[6] = 3160.0;
|
||||
PolyCoeff[4] = -80.0;
|
||||
PolyCoeff[2] = 1.0;
|
||||
break;
|
||||
|
||||
case 18:
|
||||
PolyCoeff[36] = 118195220.0;
|
||||
PolyCoeff[34] = -1001183040.0;
|
||||
PolyCoeff[32] = 3879584280.0;
|
||||
PolyCoeff[30] = -9110765664.0;
|
||||
PolyCoeff[28] = 14480345880.0;
|
||||
PolyCoeff[26] = -16474217760.0;
|
||||
PolyCoeff[24] = 13838184360.0;
|
||||
PolyCoeff[22] = -8725654080.0;
|
||||
PolyCoeff[20] = 4158224928.0;
|
||||
PolyCoeff[18] = -1496123200.0;
|
||||
PolyCoeff[16] = 403062660.0;
|
||||
PolyCoeff[14] = -79999920.0;
|
||||
PolyCoeff[12] = 11397540.0;
|
||||
PolyCoeff[10] = -1119888.0;
|
||||
PolyCoeff[8] = 71280.0;
|
||||
PolyCoeff[6] = -2640.0;
|
||||
PolyCoeff[4] = 45.0;
|
||||
break;
|
||||
|
||||
case 19:
|
||||
PolyCoeff[38] = 449141836.0;
|
||||
PolyCoeff[36] = -4042276524.0;
|
||||
PolyCoeff[34] = 16732271556.0;
|
||||
PolyCoeff[32] = -42233237904.0;
|
||||
PolyCoeff[30] = 72660859128.0;
|
||||
PolyCoeff[28] = -90231621480.0;
|
||||
PolyCoeff[26] = 83545742280.0;
|
||||
PolyCoeff[24] = -58751550000.0;
|
||||
PolyCoeff[22] = 31671113760.0;
|
||||
PolyCoeff[20] = -13117232128.0;
|
||||
PolyCoeff[18] = 4158224928.0;
|
||||
PolyCoeff[16] = -999092952.0;
|
||||
PolyCoeff[14] = 178966788.0;
|
||||
PolyCoeff[12] = -23315292.0;
|
||||
PolyCoeff[10] = 2130876.0;
|
||||
PolyCoeff[8] = -129624.0;
|
||||
PolyCoeff[6] = 4851.0;
|
||||
PolyCoeff[4] = -99.0;
|
||||
PolyCoeff[2] = 1.0;
|
||||
break;
|
||||
|
||||
case 20:
|
||||
PolyCoeff[40] = 1551580888.0;
|
||||
PolyCoeff[38] = -14699187360.0;
|
||||
PolyCoeff[36] = 64308944700.0;
|
||||
PolyCoeff[34] = -172355177280.0;
|
||||
PolyCoeff[32] = 316521742680.0;
|
||||
PolyCoeff[30] = -422089668000.0;
|
||||
PolyCoeff[28] = 422594051880.0;
|
||||
PolyCoeff[26] = -323945724960.0;
|
||||
PolyCoeff[24] = 192167478360.0;
|
||||
PolyCoeff[22] = -88572527680.0;
|
||||
PolyCoeff[20] = 31671113760.0;
|
||||
PolyCoeff[18] = -8725654080.0;
|
||||
PolyCoeff[16] = 1829127300.0;
|
||||
PolyCoeff[14] = -286125840.0;
|
||||
PolyCoeff[12] = 32458140.0;
|
||||
PolyCoeff[10] = -2560272.0;
|
||||
PolyCoeff[8] = 131670.0;
|
||||
PolyCoeff[6] = -3960.0;
|
||||
PolyCoeff[4] = 55.0;
|
||||
break;
|
||||
}
|
||||
|
||||
Epsilon = 0.1; // This controls the amount of pass band roll off. 0.01 < Epsilon < 0.250
|
||||
|
||||
// The poly is in terms of omega, but we need it in term of s = jw. So we need to
|
||||
// multiply the approp coeff by neg 1 to account for j. Then mult by epsilon.
|
||||
for (j = 0; j <= 2 * N; j++) {
|
||||
if ((j / 2) % 2 == 1)
|
||||
PolyCoeff[j] *= -1.0;
|
||||
PolyCoeff[j] *= Epsilon;
|
||||
}
|
||||
|
||||
// Now add 1 to the poly.
|
||||
PolyCoeff[0] = 1.0;
|
||||
|
||||
// The coefficients are in reverse order needed for P51.
|
||||
ReverseCoeff(PolyCoeff, N * 2);
|
||||
RootsCount = FindRoots(N * 2, PolyCoeff, Roots);
|
||||
|
||||
return (RootsCount);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This code was described in "Elliptic Functions for Filter Design"
|
||||
// H J Orchard and Alan N Willson IEE Trans on Circuits and Systems April 97
|
||||
// The equation numbers in the comments are from the paper.
|
||||
// As the stop band attenuation -> infinity, the Elliptic -> Chebyshev.
|
||||
int EllipticPoly(int FiltOrder, double Ripple, double DesiredSBdB,
|
||||
std::complex<double> *EllipPoles, std::complex<double> *EllipZeros, int *ZeroCount) {
|
||||
int j, k, n, LastK;
|
||||
double K[ELLIPARRAYSIZE], G[ELLIPARRAYSIZE], Epsilon[ELLIPARRAYSIZE];
|
||||
double A, D, SBdB, dBErr, RealPart, ImagPart;
|
||||
double DeltaK, PrevErr, Deriv;
|
||||
std::complex<double> C;
|
||||
|
||||
for (j = 0; j < ELLIPARRAYSIZE; j++)
|
||||
K[j] = G[j] = Epsilon[j] = 0.0;
|
||||
if (Ripple < 0.001)
|
||||
Ripple = 0.001;
|
||||
if (Ripple > 1.0)
|
||||
Ripple = 1.0;
|
||||
Epsilon[0] = sqrt(pow(10.0, Ripple / 10.0) - 1.0);
|
||||
|
||||
// Estimate K[0] to get the algorithm started.
|
||||
K[0] = (double) (FiltOrder - 2) * 0.1605 + 0.016;
|
||||
if (K[0] < 0.01)
|
||||
K[0] = 0.01;
|
||||
if (K[0] > 0.7)
|
||||
K[0] = 0.7;
|
||||
|
||||
// This loop calculates K[0] for the desired stopband attenuation. It typically loops < 5 times.
|
||||
for (j = 0; j < MAX_ELLIP_ITER; j++) {
|
||||
// Compute K with a forward Landen Transformation.
|
||||
for (k = 1; k < 10; k++) {
|
||||
K[k] = pow(K[k - 1] / (1.0 + sqrt(1.0 - K[k - 1] * K[k - 1])), 2.0); // eq. 10
|
||||
if (K[k] <= 1.0E-6)
|
||||
break;
|
||||
}
|
||||
LastK = k;
|
||||
|
||||
// Compute G with a backwards Landen Transformation.
|
||||
G[LastK] = 4.0 * pow(K[LastK] / 4.0, (double) FiltOrder);
|
||||
for (k = LastK; k >= 1; k--) {
|
||||
G[k - 1] = 2.0 * sqrt(G[k]) / (1.0 + G[k]); // eq. 9
|
||||
}
|
||||
|
||||
if (G[0] <= 0.0)
|
||||
G[0] = 1.0E-10;
|
||||
SBdB = 10.0 * log10(1.0 + pow(Epsilon[0] / G[0], 2.0)); // Current stopband attenuation dB
|
||||
dBErr = DesiredSBdB - SBdB;
|
||||
|
||||
if (fabs(dBErr) < 0.1)
|
||||
break;
|
||||
if (j == 0) // Do this on the 1st loop so we can calc a derivative.
|
||||
{
|
||||
if (dBErr > 0)
|
||||
DeltaK = 0.005;
|
||||
else
|
||||
DeltaK = -0.005;
|
||||
PrevErr = dBErr;
|
||||
} else {
|
||||
// Use Newtons Method to adjust K[0].
|
||||
Deriv = (PrevErr - dBErr) / DeltaK;
|
||||
PrevErr = dBErr;
|
||||
if (Deriv == 0.0)
|
||||
break; // This happens when K[0] hits one of the limits set below.
|
||||
DeltaK = dBErr / Deriv;
|
||||
if (DeltaK > 0.1)
|
||||
DeltaK = 0.1;
|
||||
if (DeltaK < -0.1)
|
||||
DeltaK = -0.1;
|
||||
}
|
||||
K[0] -= DeltaK;
|
||||
if (K[0] < 0.001)
|
||||
K[0] = 0.001; // must not be < 0.0
|
||||
if (K[0] > 0.990)
|
||||
K[0] = 0.990; // if > 0.990 we get a pole in the RHP. This means we were unable to set the stop band atten to the desired level (the Ripple is too large for the Pole Count).
|
||||
}
|
||||
|
||||
// Epsilon[0] was calulated above, now calculate Epsilon[LastK] from G
|
||||
for (j = 1; j <= LastK; j++) {
|
||||
A = (1.0 + G[j]) * Epsilon[j - 1] / 2.0; // eq. 37
|
||||
Epsilon[j] = A + sqrt(A * A + G[j]);
|
||||
}
|
||||
|
||||
// Calulate the poles and zeros.
|
||||
ImagPart = log(
|
||||
(1.0 + sqrt(1.0 + Epsilon[LastK] * Epsilon[LastK]))
|
||||
/ Epsilon[LastK]) / (double) FiltOrder; // eq. 22
|
||||
n = 0;
|
||||
for (j = 1; j <= FiltOrder / 2; j++) {
|
||||
RealPart = (double) (2 * j - 1) * M_PI_2 / (double) FiltOrder; // eq. 19
|
||||
C = std::complex<double>(0.0, -1.0) / cos(std::complex<double>(-RealPart, ImagPart)); // eq. 20
|
||||
D = 1.0 / cos(RealPart);
|
||||
for (k = LastK; k >= 1; k--) {
|
||||
C = (C - K[k] / C) / (1.0 + K[k]); // eq. 36
|
||||
D = (D + K[k] / D) / (1.0 + K[k]);
|
||||
}
|
||||
|
||||
EllipPoles[n] = 1.0 / C;
|
||||
EllipPoles[n + 1] = std::conj(EllipPoles[n]);
|
||||
EllipZeros[n] = std::complex<double>(0.0, D / K[0]);
|
||||
EllipZeros[n + 1] = std::conj(EllipZeros[n]);
|
||||
n += 2;
|
||||
}
|
||||
*ZeroCount = n; // n is the num zeros
|
||||
|
||||
if (FiltOrder % 2 == 1) // The real pole for odd pole counts
|
||||
{
|
||||
A = 1.0 / sinh(ImagPart);
|
||||
for (k = LastK; k >= 1; k--) {
|
||||
A = (A - K[k] / A) / (1.0 + K[k]); // eq. 38
|
||||
}
|
||||
EllipPoles[n] = std::complex<double>(-1.0 / A, 0.0);
|
||||
n++;
|
||||
}
|
||||
|
||||
return (n); // n is the num poles. There will be 1 more pole than zeros for odd pole counts.
|
||||
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
} // namespace
|
27
kitiirfir/LowPassRoots.h
Normal file
27
kitiirfir/LowPassRoots.h
Normal file
@ -0,0 +1,27 @@
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
#ifndef LowPassRootsH
|
||||
#define LowPassRootsH
|
||||
|
||||
#include <complex>
|
||||
#define MAX_ELLIP_ITER 15
|
||||
#define ELLIPARRAYSIZE 20 // needs to be > 10 and >= Max Num Poles + 1
|
||||
|
||||
namespace kitiirfir
|
||||
{
|
||||
|
||||
void ReverseCoeff(double *P, int N);
|
||||
int ButterworthPoly(int NumPoles, std::complex<double> *Roots);
|
||||
int GaussianPoly(int NumPoles, std::complex<double> *Roots);
|
||||
int AdjustablePoly(int NumPoles, std::complex<double> *Roots, double Gamma);
|
||||
int ChebyshevPoly(int NumPoles, double Ripple, std::complex<double> *Roots);
|
||||
int BesselPoly(int NumPoles, std::complex<double> *Roots);
|
||||
int InvChebyPoly(int NumPoles, double StopBanddB, std::complex<double> *ChebyPoles, std::complex<double> *ChebyZeros, int *ZeroCount);
|
||||
int PapoulisPoly(int NumPoles, std::complex<double> *Roots);
|
||||
int EllipticPoly(int FiltOrder, double Ripple, double DesiredSBdB, std::complex<double> *EllipPoles, std::complex<double> *EllipZeros, int *ZeroCount);
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif
|
||||
|
||||
|
627
kitiirfir/NewParksMcClellan.cpp
Normal file
627
kitiirfir/NewParksMcClellan.cpp
Normal file
@ -0,0 +1,627 @@
|
||||
/*
|
||||
By Daniel Klostermann
|
||||
Iowa Hills Software, LLC IowaHills.com
|
||||
If you find a problem, please leave a note at:
|
||||
http://www.iowahills.com/feedbackcomments.html
|
||||
May 1, 2016
|
||||
|
||||
ShowMessage is a C++ Builder function, and it usage has been commented out.
|
||||
If you are using C++ Builder, include vcl.h for ShowMessage.
|
||||
Otherwise replace ShowMessage with something appropriate for your compiler.
|
||||
|
||||
This is a C translation of the Parks McClellan algorithm originally done in Fortran.
|
||||
|
||||
The original fortran code came from the Parks McClellan article on Wikipedia.
|
||||
http://en.wikipedia.org/wiki/Parks%E2%80%93McClellan_filter_design_algorithm
|
||||
|
||||
This code is quite different from the original. The original code had 69 goto statements,
|
||||
which made it nearly impossible to follow. And of course, it was Fortran code, so many changes
|
||||
had to be made regardless of style.
|
||||
|
||||
Apparently, Fortran doesn't use global variables. Instead, is uses something called
|
||||
common memory space. e.g. COMMON PI2,AD,DEV,X,Y,GRID,DES,WT,ALPHA,IEXT,NFCNS,NGRID
|
||||
I simply converted these to globals. It isn't pretty, but for this purpose, who cares?
|
||||
|
||||
The first step was to get a C version of the code working with as few changes as possible.
|
||||
That version is also available on: http://www.iowahills.com/A7ExampleCodePage.html
|
||||
Then, in our desire to see if the code could be made more understandable, we decided to
|
||||
remove as many goto statements as possible. We checked our work by comparing the coefficients
|
||||
between this code and our original translation on more than 1000 filters while varying all the parameters.
|
||||
|
||||
Ultimately, we were able to reduce the goto count from 69 to 7, all of which are in the Remez
|
||||
function. Of the 7 remaining, 3 of these are at the very bottom of the function, and go
|
||||
back to the very top of the function. These could have been removed, but our goal was to
|
||||
clarify the code, not restyle it, and since they are clear, we let them be.
|
||||
|
||||
The other 4 goto statements are intertwined in a rather nasty way. We recommend you print out
|
||||
the Remez code, tape the sheets end to end, and trace out the goto's. It wasn't apparent to
|
||||
us that they can be removed without an extensive study of the code.
|
||||
|
||||
For better or worse, we also removed any code that was obviously related to Hilbert transforms
|
||||
and Differentiators. We did this because we aren't interested in these, and we also don't
|
||||
believe this algorithm does a very good job with them (far too much ripple).
|
||||
|
||||
We added the functions CalcCoefficients() and ErrTest() as a way to simplify things a bit.
|
||||
|
||||
We also found 3 sections of code that never executed. Two of the sections were just a few lines
|
||||
that the goto's always went around. The third section represented nearly half of the CalcCoefficients()
|
||||
function. This statement always tested the same, which never allowed the code to execute.
|
||||
if(GRID[1] < 0.01 && GRID[NGRID] > 0.49) KKK = 1;
|
||||
This may be due to the 0.01 minimum width limit we set for the bands.
|
||||
|
||||
Note our use of MIN_TEST_VAL. The original code wasn't guarding against division by zero.
|
||||
Limiting the return values as we have also helped the algorithm's convergence behavior.
|
||||
|
||||
In an effort to improve readability, we made a large number of variable name changes and also
|
||||
deleted a large number of variables. We left many variable names in tact, in part as an aid when
|
||||
comparing to the original code, and in part because a better name wasn't obvious.
|
||||
|
||||
This code is essentially straight c, and should compile with few, if any changes. Note the error
|
||||
message in CalcParkCoeff2. It warns of the possibility of convergence failure, but you will
|
||||
find that the iteration count NITER, isn't always an indicator of convergence problems when
|
||||
it is less than 3, as stated in the original Fortran code comments.
|
||||
|
||||
If you find a problem with this code, please leave us a note on:
|
||||
http://www.iowahills.com/feedbackcomments.html
|
||||
|
||||
*/
|
||||
|
||||
#include "NewParksMcClellan.h"
|
||||
#include <math.h>
|
||||
#define M_2PI 6.28318530717958647692
|
||||
|
||||
namespace kitiirfir
|
||||
{
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// Global variables.
|
||||
int HalfTapCount, ExchangeIndex[PARKS_SMALL];
|
||||
double LeGrangeD[PARKS_SMALL], Alpha[PARKS_SMALL], CosOfGrid[PARKS_SMALL],
|
||||
DesPlus[PARKS_SMALL];
|
||||
double Coeff[PARKS_SMALL], Edge[PARKS_SMALL], BandMag[PARKS_SMALL],
|
||||
InitWeight[PARKS_SMALL];
|
||||
double DesiredMag[PARKS_BIG], Grid[PARKS_BIG], Weight[PARKS_BIG];
|
||||
|
||||
void NewParksMcClellan(double *FirCoeff, int NumTaps, TFIRPassTypes PassType,
|
||||
double OmegaC, double BW, double ParksWidth) {
|
||||
if (NumTaps > MAX_NUM_PARKS_TAPS)
|
||||
return;
|
||||
int j, NumBands;
|
||||
|
||||
// Note: There is no feedback to the caller if ParksWidth or NumTaps are modified here.
|
||||
if (PassType == firBPF || PassType == firNOTCH || NumTaps > 70) {
|
||||
if (ParksWidth > 0.15)
|
||||
ParksWidth = 0.15; // Else we have covergence problems.
|
||||
}
|
||||
|
||||
if (PassType == firNOTCH || PassType == firHPF) {
|
||||
if (NumTaps % 2 == 0)
|
||||
NumTaps++; // High pass and notch filters must have odd tap counts.
|
||||
}
|
||||
|
||||
if (NumTaps > MAX_NUM_PARKS_TAPS)
|
||||
NumTaps = MAX_NUM_PARKS_TAPS;
|
||||
|
||||
// It helps the algorithm a great deal if each band is at least 0.01 wide.
|
||||
// The weights used here came from the orig PM code.
|
||||
if (PassType == firLPF) {
|
||||
NumBands = 2;
|
||||
Edge[1] = 0.0; // Omega = 0
|
||||
Edge[2] = OmegaC; // Pass band edge
|
||||
if (Edge[2] < 0.01)
|
||||
Edge[2] = 0.01;
|
||||
if (Edge[2] > 0.98)
|
||||
Edge[2] = 0.98;
|
||||
Edge[3] = Edge[2] + ParksWidth; // Stop band edge
|
||||
if (Edge[3] > 0.99)
|
||||
Edge[3] = 0.99;
|
||||
Edge[4] = 1.0; // Omega = Pi
|
||||
BandMag[1] = 1.0;
|
||||
BandMag[2] = 0.0;
|
||||
InitWeight[1] = 1.0;
|
||||
InitWeight[2] = 10.0;
|
||||
}
|
||||
|
||||
if (PassType == firHPF) {
|
||||
NumBands = 2;
|
||||
Edge[1] = 0.0; // Omega = 0
|
||||
Edge[3] = OmegaC; // Pass band edge
|
||||
if (Edge[3] > 0.99)
|
||||
Edge[3] = 0.99;
|
||||
if (Edge[3] < 0.02)
|
||||
Edge[3] = 0.02;
|
||||
Edge[2] = Edge[3] - ParksWidth; // Stop band edge
|
||||
if (Edge[2] < 0.01)
|
||||
Edge[2] = 0.01;
|
||||
Edge[4] = 1.0; // Omega = Pi
|
||||
BandMag[1] = 0.0;
|
||||
BandMag[2] = 1.0;
|
||||
InitWeight[1] = 10.0;
|
||||
InitWeight[2] = 1.0;
|
||||
}
|
||||
|
||||
if (PassType == firBPF) {
|
||||
NumBands = 3;
|
||||
Edge[1] = 0.0; // Omega = 0
|
||||
Edge[3] = OmegaC - BW / 2.0; // Left pass band edge.
|
||||
if (Edge[3] < 0.02)
|
||||
Edge[3] = 0.02;
|
||||
Edge[2] = Edge[3] - ParksWidth; // Left stop band edge
|
||||
if (Edge[2] < 0.01)
|
||||
Edge[2] = 0.01;
|
||||
Edge[4] = OmegaC + BW / 2.0; // Right pass band edge
|
||||
if (Edge[4] > 0.98)
|
||||
Edge[4] = 0.98;
|
||||
Edge[5] = Edge[4] + ParksWidth; // Right stop band edge
|
||||
if (Edge[5] > 0.99)
|
||||
Edge[5] = 0.99;
|
||||
Edge[6] = 1.0; // Omega = Pi
|
||||
|
||||
BandMag[1] = 0.0;
|
||||
BandMag[2] = 1.0;
|
||||
BandMag[3] = 0.0;
|
||||
InitWeight[1] = 10.0;
|
||||
InitWeight[2] = 1.0;
|
||||
InitWeight[3] = 10.0;
|
||||
}
|
||||
|
||||
// This algorithm tends to have problems with narrow band notch filters.
|
||||
if (PassType == firNOTCH) {
|
||||
NumBands = 3;
|
||||
Edge[1] = 0.0; // Omega = 0
|
||||
Edge[3] = OmegaC - BW / 2.0; // Left stop band edge.
|
||||
if (Edge[3] < 0.02)
|
||||
Edge[3] = 0.02;
|
||||
Edge[2] = Edge[3] - ParksWidth; // Left pass band edge
|
||||
if (Edge[2] < 0.01)
|
||||
Edge[2] = 0.01;
|
||||
Edge[4] = OmegaC + BW / 2.0; // Right stop band edge
|
||||
if (Edge[4] > 0.98)
|
||||
Edge[4] = 0.98;
|
||||
Edge[5] = Edge[4] + ParksWidth; // Right pass band edge
|
||||
if (Edge[5] > 0.99)
|
||||
Edge[5] = 0.99;
|
||||
Edge[6] = 1.0; // Omega = Pi
|
||||
|
||||
BandMag[1] = 1.0;
|
||||
BandMag[2] = 0.0;
|
||||
BandMag[3] = 1.0;
|
||||
InitWeight[1] = 1.0;
|
||||
InitWeight[2] = 10.0;
|
||||
InitWeight[3] = 1.0;
|
||||
}
|
||||
|
||||
// Parks McClellan's edges are based on 2Pi, we are based on Pi.
|
||||
for (j = 1; j <= 2 * NumBands; j++)
|
||||
Edge[j] /= 2.0;
|
||||
|
||||
CalcParkCoeff2(NumBands, NumTaps, FirCoeff);
|
||||
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
void CalcParkCoeff2(int NumBands, int TapCount, double *FirCoeff) {
|
||||
int j, k, GridCount, GridIndex, BandIndex, NumIterations;
|
||||
double LowFreqEdge, UpperFreq, TempVar, Change;
|
||||
bool OddNumTaps;
|
||||
GridCount = 16; // Grid Density
|
||||
|
||||
if (TapCount % 2)
|
||||
OddNumTaps = true;
|
||||
else
|
||||
OddNumTaps = false;
|
||||
|
||||
HalfTapCount = TapCount / 2;
|
||||
if (OddNumTaps)
|
||||
HalfTapCount++;
|
||||
|
||||
Grid[1] = Edge[1];
|
||||
LowFreqEdge = GridCount * HalfTapCount;
|
||||
LowFreqEdge = 0.5 / LowFreqEdge;
|
||||
j = 1;
|
||||
k = 1;
|
||||
BandIndex = 1;
|
||||
while (BandIndex <= NumBands) {
|
||||
UpperFreq = Edge[k + 1];
|
||||
while (Grid[j] <= UpperFreq) {
|
||||
TempVar = Grid[j];
|
||||
DesiredMag[j] = BandMag[BandIndex];
|
||||
Weight[j] = InitWeight[BandIndex];
|
||||
j++;
|
||||
;
|
||||
Grid[j] = TempVar + LowFreqEdge;
|
||||
}
|
||||
|
||||
Grid[j - 1] = UpperFreq;
|
||||
DesiredMag[j - 1] = BandMag[BandIndex];
|
||||
Weight[j - 1] = InitWeight[BandIndex];
|
||||
k += 2;
|
||||
BandIndex++;
|
||||
if (BandIndex <= NumBands)
|
||||
Grid[j] = Edge[k];
|
||||
}
|
||||
|
||||
GridIndex = j - 1;
|
||||
if (!OddNumTaps && Grid[GridIndex] > (0.5 - LowFreqEdge))
|
||||
GridIndex--;
|
||||
|
||||
if (!OddNumTaps) {
|
||||
for (j = 1; j <= GridIndex; j++) {
|
||||
Change = cos(M_PI * Grid[j]);
|
||||
DesiredMag[j] = DesiredMag[j] / Change;
|
||||
Weight[j] = Weight[j] * Change;
|
||||
}
|
||||
}
|
||||
|
||||
TempVar = (double) (GridIndex - 1) / (double) HalfTapCount;
|
||||
for (j = 1; j <= HalfTapCount; j++) {
|
||||
ExchangeIndex[j] = (int) ((double) (j - 1) * TempVar + 1.0);
|
||||
}
|
||||
ExchangeIndex[HalfTapCount + 1] = GridIndex;
|
||||
|
||||
NumIterations = Remez2(GridIndex);
|
||||
CalcCoefficients();
|
||||
|
||||
// Calculate the impulse response.
|
||||
if (OddNumTaps) {
|
||||
for (j = 1; j <= HalfTapCount - 1; j++) {
|
||||
Coeff[j] = 0.5 * Alpha[HalfTapCount + 1 - j];
|
||||
}
|
||||
Coeff[HalfTapCount] = Alpha[1];
|
||||
} else {
|
||||
Coeff[1] = 0.25 * Alpha[HalfTapCount];
|
||||
for (j = 2; j <= HalfTapCount - 1; j++) {
|
||||
Coeff[j] =
|
||||
0.25
|
||||
* (Alpha[HalfTapCount + 1 - j]
|
||||
+ Alpha[HalfTapCount + 2 - j]);
|
||||
}
|
||||
Coeff[HalfTapCount] = 0.5 * Alpha[1] + 0.25 * Alpha[2];
|
||||
}
|
||||
|
||||
// Output section.
|
||||
for (j = 1; j <= HalfTapCount; j++)
|
||||
FirCoeff[j - 1] = Coeff[j];
|
||||
if (OddNumTaps)
|
||||
for (j = 1; j < HalfTapCount; j++)
|
||||
FirCoeff[HalfTapCount + j - 1] = Coeff[HalfTapCount - j];
|
||||
else
|
||||
for (j = 1; j <= HalfTapCount; j++)
|
||||
FirCoeff[HalfTapCount + j - 1] = Coeff[HalfTapCount - j + 1];
|
||||
|
||||
// Display the iteration count.
|
||||
if (NumIterations < 3) {
|
||||
// ShowMessage("Parks McClellan unable to coverge");
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------------------
|
||||
int Remez2(int GridIndex) {
|
||||
int j, JET, K, k, NU, JCHNGE, K1, KNZ, KLOW, NUT, KUP;
|
||||
int NUT1 = 0, LUCK, KN, NITER;
|
||||
double Deviation, DNUM, DDEN, TempVar;
|
||||
double DEVL, COMP = 0.0, YNZ = 0.0, Y1 = 0.0, ERR;
|
||||
|
||||
LUCK = 0;
|
||||
DEVL = -1.0;
|
||||
NITER = 1; // Init this to 1 to be consistent with the orig code.
|
||||
|
||||
TOP_LINE: // We come back to here from 3 places at the bottom.
|
||||
ExchangeIndex[HalfTapCount + 2] = GridIndex + 1;
|
||||
|
||||
for (j = 1; j <= HalfTapCount + 1; j++) {
|
||||
TempVar = Grid[ExchangeIndex[j]];
|
||||
CosOfGrid[j] = cos(TempVar * M_2PI);
|
||||
}
|
||||
|
||||
JET = (HalfTapCount - 1) / 15 + 1;
|
||||
for (j = 1; j <= HalfTapCount + 1; j++) {
|
||||
LeGrangeD[j] = LeGrangeInterp2(j, HalfTapCount + 1, JET);
|
||||
}
|
||||
|
||||
DNUM = 0.0;
|
||||
DDEN = 0.0;
|
||||
K = 1;
|
||||
for (j = 1; j <= HalfTapCount + 1; j++) {
|
||||
k = ExchangeIndex[j];
|
||||
DNUM += LeGrangeD[j] * DesiredMag[k];
|
||||
DDEN += (double) K * LeGrangeD[j] / Weight[k];
|
||||
K = -K;
|
||||
}
|
||||
Deviation = DNUM / DDEN;
|
||||
|
||||
NU = 1;
|
||||
if (Deviation > 0.0)
|
||||
NU = -1;
|
||||
Deviation = -(double) NU * Deviation;
|
||||
K = NU;
|
||||
for (j = 1; j <= HalfTapCount + 1; j++) {
|
||||
k = ExchangeIndex[j];
|
||||
TempVar = (double) K * Deviation / Weight[k];
|
||||
DesPlus[j] = DesiredMag[k] + TempVar;
|
||||
K = -K;
|
||||
}
|
||||
|
||||
if (Deviation <= DEVL)
|
||||
return (NITER); // Ouch
|
||||
|
||||
DEVL = Deviation;
|
||||
JCHNGE = 0;
|
||||
K1 = ExchangeIndex[1];
|
||||
KNZ = ExchangeIndex[HalfTapCount + 1];
|
||||
KLOW = 0;
|
||||
NUT = -NU;
|
||||
|
||||
//Search for the extremal frequencies of the best approximation.
|
||||
|
||||
j = 1;
|
||||
while (j < HalfTapCount + 2) {
|
||||
KUP = ExchangeIndex[j + 1];
|
||||
k = ExchangeIndex[j] + 1;
|
||||
NUT = -NUT;
|
||||
if (j == 2)
|
||||
Y1 = COMP;
|
||||
COMP = Deviation;
|
||||
|
||||
if (k < KUP && !ErrTest(k, NUT, COMP, &ERR)) {
|
||||
L210: COMP = (double) NUT * ERR;
|
||||
for (k++; k < KUP; k++) {
|
||||
if (ErrTest(k, NUT, COMP, &ERR))
|
||||
break; // for loop
|
||||
COMP = (double) NUT * ERR;
|
||||
}
|
||||
|
||||
ExchangeIndex[j] = k - 1;
|
||||
j++;
|
||||
KLOW = k - 1;
|
||||
JCHNGE++;
|
||||
continue; // while loop
|
||||
}
|
||||
|
||||
k--;
|
||||
|
||||
L225: k--;
|
||||
if (k <= KLOW) {
|
||||
k = ExchangeIndex[j] + 1;
|
||||
if (JCHNGE > 0) {
|
||||
ExchangeIndex[j] = k - 1;
|
||||
j++;
|
||||
KLOW = k - 1;
|
||||
JCHNGE++;
|
||||
continue; // while loop
|
||||
} else // JCHNGE <= 0
|
||||
{
|
||||
for (k++; k < KUP; k++) {
|
||||
if (ErrTest(k, NUT, COMP, &ERR))
|
||||
continue; // for loop
|
||||
goto L210;
|
||||
}
|
||||
|
||||
KLOW = ExchangeIndex[j];
|
||||
j++;
|
||||
continue; // while loop
|
||||
}
|
||||
}
|
||||
// Can't use a do while loop here, it would outdent the two continue statements.
|
||||
if (ErrTest(k, NUT, COMP, &ERR) && JCHNGE <= 0)
|
||||
goto L225;
|
||||
|
||||
if (ErrTest(k, NUT, COMP, &ERR)) {
|
||||
KLOW = ExchangeIndex[j];
|
||||
j++;
|
||||
continue; // while loop
|
||||
}
|
||||
|
||||
COMP = (double) NUT * ERR;
|
||||
|
||||
L235: for (k--; k > KLOW; k--) {
|
||||
if (ErrTest(k, NUT, COMP, &ERR))
|
||||
break; // for loop
|
||||
COMP = (double) NUT * ERR;
|
||||
}
|
||||
|
||||
KLOW = ExchangeIndex[j];
|
||||
ExchangeIndex[j] = k + 1;
|
||||
j++;
|
||||
JCHNGE++;
|
||||
} // end while(j<HalfTapCount
|
||||
|
||||
if (j == HalfTapCount + 2)
|
||||
YNZ = COMP;
|
||||
|
||||
while (j <= HalfTapCount + 2) {
|
||||
if (K1 > ExchangeIndex[1])
|
||||
K1 = ExchangeIndex[1];
|
||||
if (KNZ < ExchangeIndex[HalfTapCount + 1])
|
||||
KNZ = ExchangeIndex[HalfTapCount + 1];
|
||||
NUT1 = NUT;
|
||||
NUT = -NU;
|
||||
k = 0;
|
||||
KUP = K1;
|
||||
COMP = YNZ * 1.00001;
|
||||
LUCK = 1;
|
||||
|
||||
for (k++; k < KUP; k++) {
|
||||
if (ErrTest(k, NUT, COMP, &ERR))
|
||||
continue; // for loop
|
||||
j = HalfTapCount + 2;
|
||||
goto L210;
|
||||
}
|
||||
LUCK = 2;
|
||||
break; // break while(j <= HalfTapCount+2) loop
|
||||
} // end while(j <= HalfTapCount+2)
|
||||
|
||||
if (LUCK == 1 || LUCK == 2) {
|
||||
if (LUCK == 1) {
|
||||
if (COMP > Y1)
|
||||
Y1 = COMP;
|
||||
K1 = ExchangeIndex[HalfTapCount + 2];
|
||||
}
|
||||
|
||||
k = GridIndex + 1;
|
||||
KLOW = KNZ;
|
||||
NUT = -NUT1;
|
||||
COMP = Y1 * 1.00001;
|
||||
|
||||
for (k--; k > KLOW; k--) {
|
||||
if (ErrTest(k, NUT, COMP, &ERR))
|
||||
continue; // for loop
|
||||
j = HalfTapCount + 2;
|
||||
COMP = (double) NUT * ERR;
|
||||
LUCK = 3; // last time in this if(LUCK == 1 || LUCK == 2)
|
||||
goto L235;
|
||||
}
|
||||
|
||||
if (LUCK == 2) {
|
||||
if (JCHNGE > 0 && NITER++ < ITRMAX)
|
||||
goto TOP_LINE;
|
||||
else
|
||||
return (NITER);
|
||||
}
|
||||
|
||||
for (j = 1; j <= HalfTapCount; j++) {
|
||||
ExchangeIndex[HalfTapCount + 2 - j] = ExchangeIndex[HalfTapCount + 1
|
||||
- j];
|
||||
}
|
||||
ExchangeIndex[1] = K1;
|
||||
if (NITER++ < ITRMAX)
|
||||
goto TOP_LINE;
|
||||
} // end if(LUCK == 1 || LUCK == 2)
|
||||
|
||||
KN = ExchangeIndex[HalfTapCount + 2];
|
||||
for (j = 1; j <= HalfTapCount; j++) {
|
||||
ExchangeIndex[j] = ExchangeIndex[j + 1];
|
||||
}
|
||||
ExchangeIndex[HalfTapCount + 1] = KN;
|
||||
if (NITER++ < ITRMAX)
|
||||
goto TOP_LINE;
|
||||
|
||||
return (NITER);
|
||||
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------
|
||||
// Function to calculate the lagrange interpolation coefficients for use in the function gee.
|
||||
double LeGrangeInterp2(int K, int N, int M) // D
|
||||
{
|
||||
int j, k;
|
||||
double Dee, Q;
|
||||
Dee = 1.0;
|
||||
Q = CosOfGrid[K];
|
||||
for (k = 1; k <= M; k++)
|
||||
for (j = k; j <= N; j += M) {
|
||||
if (j != K)
|
||||
Dee = 2.0 * Dee * (Q - CosOfGrid[j]);
|
||||
}
|
||||
if (fabs(Dee) < MIN_TEST_VAL) {
|
||||
if (Dee < 0.0)
|
||||
Dee = -MIN_TEST_VAL;
|
||||
else
|
||||
Dee = MIN_TEST_VAL;
|
||||
}
|
||||
return (1.0 / Dee);
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------
|
||||
// Function to evaluate the frequency response using the Lagrange interpolation
|
||||
// formula in the barycentric form.
|
||||
double GEE2(int K, int N) {
|
||||
int j;
|
||||
double P, C, Dee, XF;
|
||||
P = 0.0;
|
||||
XF = Grid[K];
|
||||
XF = cos(M_2PI * XF);
|
||||
Dee = 0.0;
|
||||
for (j = 1; j <= N; j++) {
|
||||
C = XF - CosOfGrid[j];
|
||||
if (fabs(C) < MIN_TEST_VAL) {
|
||||
if (C < 0.0)
|
||||
C = -MIN_TEST_VAL;
|
||||
else
|
||||
C = MIN_TEST_VAL;
|
||||
}
|
||||
C = LeGrangeD[j] / C;
|
||||
Dee = Dee + C;
|
||||
P = P + C * DesPlus[j];
|
||||
}
|
||||
if (fabs(Dee) < MIN_TEST_VAL) {
|
||||
if (Dee < 0.0)
|
||||
Dee = -MIN_TEST_VAL;
|
||||
else
|
||||
Dee = MIN_TEST_VAL;
|
||||
}
|
||||
return (P / Dee);
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------
|
||||
|
||||
bool ErrTest(int k, int Nut, double Comp, double *Err) {
|
||||
*Err = GEE2(k, HalfTapCount + 1);
|
||||
*Err = (*Err - DesiredMag[k]) * Weight[k];
|
||||
if ((double) Nut * *Err - Comp <= 0.0)
|
||||
return (true);
|
||||
else
|
||||
return (false);
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------
|
||||
|
||||
// Calculation of the coefficients of the best approximation using the inverse discrete fourier transform.
|
||||
void CalcCoefficients(void) {
|
||||
int j, k, n;
|
||||
double GTempVar, OneOverNumTaps;
|
||||
double Omega, TempVar, FreqN, TempX, GridCos;
|
||||
double GeeArray[PARKS_SMALL];
|
||||
|
||||
GTempVar = Grid[1];
|
||||
CosOfGrid[HalfTapCount + 2] = -2.0;
|
||||
OneOverNumTaps = 1.0 / (double) (2 * HalfTapCount - 1);
|
||||
k = 1;
|
||||
|
||||
for (j = 1; j <= HalfTapCount; j++) {
|
||||
FreqN = (double) (j - 1) * OneOverNumTaps;
|
||||
TempX = cos(M_2PI * FreqN);
|
||||
|
||||
GridCos = CosOfGrid[k];
|
||||
if (TempX <= GridCos) {
|
||||
while (TempX <= GridCos && (GridCos - TempX) >= MIN_TEST_VAL) // MIN_TEST_VAL = 1.0E-6
|
||||
{
|
||||
k++;
|
||||
;
|
||||
GridCos = CosOfGrid[k];
|
||||
}
|
||||
}
|
||||
if (TempX <= GridCos || (TempX - GridCos) < MIN_TEST_VAL) {
|
||||
GeeArray[j] = DesPlus[k]; // Desired Response
|
||||
} else {
|
||||
Grid[1] = FreqN;
|
||||
GeeArray[j] = GEE2(1, HalfTapCount + 1);
|
||||
}
|
||||
if (k > 1)
|
||||
k--;
|
||||
}
|
||||
|
||||
Grid[1] = GTempVar;
|
||||
for (j = 1; j <= HalfTapCount; j++) {
|
||||
TempVar = 0.0;
|
||||
Omega = (double) (j - 1) * M_2PI * OneOverNumTaps;
|
||||
for (n = 1; n <= HalfTapCount - 1; n++) {
|
||||
TempVar += GeeArray[n + 1] * cos(Omega * (double) n);
|
||||
}
|
||||
TempVar = 2.0 * TempVar + GeeArray[1];
|
||||
Alpha[j] = TempVar;
|
||||
}
|
||||
|
||||
Alpha[1] = Alpha[1] * OneOverNumTaps;
|
||||
for (j = 2; j <= HalfTapCount; j++) {
|
||||
Alpha[j] = 2.0 * Alpha[j] * OneOverNumTaps;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------
|
||||
|
||||
} // namespace
|
||||
|
31
kitiirfir/NewParksMcClellan.h
Normal file
31
kitiirfir/NewParksMcClellan.h
Normal file
@ -0,0 +1,31 @@
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
#ifndef NewParksMcClellanH
|
||||
#define NewParksMcClellanH
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
#define PARKS_BIG 1100 // Per the original code, this must be > 8 * MaxNumTaps = 8 * 128 = 1024
|
||||
#define PARKS_SMALL 256 // This needs to be greater than or equal to MAX_NUM_PARKS_TAPS
|
||||
#define MAX_NUM_PARKS_TAPS 127 // This was the limit set in the original code.
|
||||
#define ITRMAX 50 // Max Number of Iterations. Some Notch and BPF are running ~ 43
|
||||
#define MIN_TEST_VAL 1.0E-6 // Min value used in LeGrangeInterp and GEE
|
||||
|
||||
// If the FIRFilterCode.cpp file is in the project along with this NewParksMcClellan file,
|
||||
// we need to include FIRFilterCode.h for the TFIRPassTypes enum.
|
||||
#include "FIRFilterCode.h"
|
||||
//enum TFIRPassTypes {firLPF, firHPF, firBPF, firNOTCH, ftNOT_FIR};
|
||||
|
||||
namespace kitiirfir
|
||||
{
|
||||
|
||||
void NewParksMcClellan(double *FirCoeff, int NumTaps, TFIRPassTypes PassType, double OmegaC, double BW, double ParksWidth);
|
||||
void CalcParkCoeff2(int NBANDS, int NFILT, double *FirCoeff);
|
||||
double LeGrangeInterp2(int K, int N, int M);
|
||||
double GEE2(int K, int N);
|
||||
int Remez2(int GridIndex);
|
||||
bool ErrTest(int k, int Nut, double Comp, double *Err);
|
||||
void CalcCoefficients(void);
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif
|
649
kitiirfir/PFiftyOneRevE.cpp
Normal file
649
kitiirfir/PFiftyOneRevE.cpp
Normal file
@ -0,0 +1,649 @@
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
#include "PFiftyOneRevE.h"
|
||||
#include "QuadRootsRevH.h"
|
||||
#include <math.h>
|
||||
#include <complex>
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
/*
|
||||
By Daniel Klostermann
|
||||
Iowa Hills Software, LLC IowaHills.com
|
||||
Sept 21, 2016 Rev E
|
||||
|
||||
If you find a problem with this code, please leave a note on:
|
||||
http://www.iowahills.com/feedbackcomments.html
|
||||
|
||||
This is for polynomials with real coefficients, up to 100th order.
|
||||
|
||||
PFiftyOne has 4 loops. The outermost while loop runs until the polynomial's order
|
||||
N, has been reduced to 1 or 2.
|
||||
|
||||
The TypeOfK loop controls how the K polynomial is initialized. About 99.999% of all
|
||||
roots are found with TypeOfK = 0.
|
||||
|
||||
The AngleNumber loop controls how we initialize the 2nd order polynomial TUV.
|
||||
The angles move between the 1st and 2nd quadrants and are defined in the
|
||||
SetTUVandK() function. About 99% of roots are found in the 1st 4 angles.
|
||||
|
||||
The Iter loop first calls the QuadIterate routine, which finds quadratic factors,
|
||||
real or complex. If QuadIterate fails to converge in QUAD_ITER_MAX iterations,
|
||||
the RealIterate routine is called to try to extract a single real root.
|
||||
|
||||
The input array Coeff[] contains the coefficients arranged in descending order.
|
||||
For example, a 4th order poly would be:
|
||||
P(x) = Coeff[0]*x^4 + Coeff[1]*x^3 + Coeff[2]*x^2 + Coeff[3]*x + Coeff[4]
|
||||
|
||||
On return, there is no particular ordering to the roots, but complex root pairs
|
||||
will be in adjacent array cells. It may be helpful to know that the complex root pairs
|
||||
are exact cunjugates of each other, meaning that you can use the == operator
|
||||
to search for complex pairs in the arrays.F
|
||||
|
||||
This returns Degree on success, 0 on failure.
|
||||
*/
|
||||
|
||||
namespace kitiirfir
|
||||
{
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// None of the code uses long double variables except for the P51 root finder code
|
||||
// where long doubles were essential. FindRoots is an interface to P51 for code that is
|
||||
// using complex variables CplxD.
|
||||
int FindRoots(int N, double *Coeff, std::complex<double> *Roots) {
|
||||
int j;
|
||||
long double P[P51_ARRAY_SIZE], RealRoot[P51_ARRAY_SIZE],
|
||||
ImagRoot[P51_ARRAY_SIZE];
|
||||
|
||||
for (j = 0; j <= N; j++)
|
||||
P[j] = Coeff[j]; // double to long double
|
||||
N = PFiftyOne(P, N, RealRoot, ImagRoot);
|
||||
for (j = 0; j < N; j++)
|
||||
Roots[j] = std::complex<double>((double) RealRoot[j],
|
||||
(double) ImagRoot[j]); // long double to double
|
||||
return (N);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
int PFiftyOne(long double *Coeff, int Degree, long double *RealRoot,
|
||||
long double *ImagRoot) {
|
||||
if (Degree > P51_MAXDEGREE || Degree < 0) {
|
||||
//ShowMessage("Poly Degree is out of range in the P51 Root Finder.");
|
||||
return (0);
|
||||
}
|
||||
|
||||
TUpdateStatus UpdateStatus;
|
||||
int N, NZ, j, Iter, AngleNumber, TypeOfK;
|
||||
long double RealZero, QuadX;
|
||||
long double TUV[3];
|
||||
long double *P, *QuadQP, *RealQP, *QuadK, *RealK, *QK;
|
||||
|
||||
N = Degree; // N is decremented as roots are found.
|
||||
|
||||
P = new (std::nothrow) long double[N + 2];
|
||||
QuadQP = new (std::nothrow) long double[N + 2];
|
||||
RealQP = new (std::nothrow) long double[N + 2];
|
||||
QuadK = new (std::nothrow) long double[N + 2];
|
||||
RealK = new (std::nothrow) long double[N + 2];
|
||||
QK = new (std::nothrow) long double[N + 2];
|
||||
if (P == NULL || QuadQP == NULL || RealQP == NULL || QuadK == NULL
|
||||
|| RealK == NULL || QK == NULL) {
|
||||
//ShowMessage("Memory not Allocated in PFiftyOne root finder.");
|
||||
return (0);
|
||||
}
|
||||
|
||||
for (j = 0; j <= N; j++)
|
||||
P[j] = Coeff[j]; // Copy the coeff. P gets modified.
|
||||
for (j = 0; j < N; j++)
|
||||
RealRoot[j] = ImagRoot[j] = 0.0; // Init to zero, in case any leading or trailing zeros are removed.
|
||||
|
||||
// Remove trailing zeros. A tiny P[N] relative to P[N-1] is not allowed.
|
||||
while (N > 0 && fabsl(P[N]) <= TINY_VALUE * fabsl(P[N - 1])) {
|
||||
N--;
|
||||
}
|
||||
|
||||
// Remove leading zeros.
|
||||
while (N > 0 && P[0] == 0.0) {
|
||||
for (j = 0; j < N; j++)
|
||||
P[j] = P[j + 1];
|
||||
N--;
|
||||
}
|
||||
|
||||
// P[0] must = 1
|
||||
if (P[0] != 1.0) {
|
||||
for (j = 1; j <= N; j++)
|
||||
P[j] /= P[0];
|
||||
P[0] = 1.0;
|
||||
}
|
||||
|
||||
TypeOfK = 0;
|
||||
while (N > 4 && TypeOfK < MAX_NUM_K) {
|
||||
NZ = 0; // Num Zeros found. (Used in the loop controls below.)
|
||||
QuadX = powl(fabsl(P[N]), 1.0 / (long double) N) / 2.0; // QuadX is used to init TUV
|
||||
|
||||
for (TypeOfK = 0; TypeOfK < MAX_NUM_K && NZ == 0; TypeOfK++) // Iterate on the different possible QuadK inits.
|
||||
{
|
||||
for (AngleNumber = 0; AngleNumber < MAX_NUM_ANGLES && NZ == 0;
|
||||
AngleNumber++) // Iterate on the angle used to init TUV.
|
||||
{
|
||||
SetTUVandK(P, N, TUV, RealK, QuadK, QuadX, AngleNumber,
|
||||
TypeOfK); // Init TUV and both K's
|
||||
for (Iter = 0; Iter < N && NZ == 0; Iter++) // Allow N calls to QuadIterate for N*QUAD_ITER_MAX iterations, then try a different angle.
|
||||
{
|
||||
NZ = QuadIterate(Iter, P, QuadQP, QuadK, QK, N, TUV,
|
||||
&UpdateStatus); // NZ = 2 for a pair of complex roots or 2 real roots.
|
||||
|
||||
if (NZ == 0) // Try for a real root.
|
||||
{
|
||||
if (fabsl(QuadK[N - 2]) > TINY_VALUE * fabsl(P[N]))
|
||||
RealZero = -P[N] / QuadK[N - 2]; // This value gets refined by QuadIterate.
|
||||
else
|
||||
RealZero = 0.0;
|
||||
NZ = RealIterate(Iter, P, RealQP, RealK, QK, N,
|
||||
&RealZero); // NZ = 1 for a single real root.
|
||||
}
|
||||
|
||||
if (NZ == 0 && UpdateStatus == BAD_ANGLE)
|
||||
break; // If RealIterate failed and UpdateTUV called this a bad angle, it's pointless to iterate further on this angle.
|
||||
|
||||
} // Iter loop Note the use of NZ in the loop controls.
|
||||
} // AngleNumber loop
|
||||
} // TypeOfK loop
|
||||
|
||||
// Done iterating. If NZ==0 at this point, we failed and will exit below.
|
||||
// Decrement N, and set P to the quotient QP. QP = P/TUV or QP = P/(x-RealZero)
|
||||
if (NZ == 2) // Store a pair of complex roots or 2 real roots.
|
||||
{
|
||||
j = Degree - N;
|
||||
QuadRoots(TUV, &RealRoot[j], &ImagRoot[j]);
|
||||
N -= NZ;
|
||||
for (j = 0; j <= N; j++)
|
||||
P[j] = QuadQP[j];
|
||||
TypeOfK = 0;
|
||||
}
|
||||
|
||||
if (NZ == 1) // Store a single real root
|
||||
{
|
||||
j = Degree - N;
|
||||
RealRoot[j] = RealZero;
|
||||
ImagRoot[j] = 0.0;
|
||||
N -= NZ;
|
||||
for (j = 0; j <= N; j++)
|
||||
P[j] = RealQP[j];
|
||||
TypeOfK = 0;
|
||||
}
|
||||
|
||||
// Remove any trailing zeros on P. P[N] should never equal zero, but can approach zero
|
||||
// because of roundoff errors. If P[N] is zero or tiny relative to P[N-1], we take the hit,
|
||||
// and place a root at the origin. This needs to be checked, but virtually never happens.
|
||||
while (fabsl(P[N]) <= TINY_VALUE * fabsl(P[N - 1]) && N > 0) {
|
||||
j = Degree - N;
|
||||
RealRoot[j] = 0.0;
|
||||
ImagRoot[j] = 0.0;
|
||||
N--;
|
||||
//ShowMessage("Removed a zero at the origin.");
|
||||
}
|
||||
|
||||
} // The outermost loop while(N > 2)
|
||||
|
||||
delete[] QuadQP;
|
||||
delete[] RealQP;
|
||||
delete[] QuadK;
|
||||
delete[] RealK;
|
||||
delete[] QK;
|
||||
|
||||
// Done, except for the last 1 or 2 roots. If N isn't 1 or 2 at this point, we failed.
|
||||
if (N == 1) {
|
||||
j = Degree - N;
|
||||
RealRoot[j] = -P[1] / P[0];
|
||||
ImagRoot[j] = 0.0;
|
||||
delete[] P;
|
||||
return (Degree);
|
||||
}
|
||||
|
||||
if (N == 2) {
|
||||
j = Degree - N;
|
||||
QuadRoots(P, &RealRoot[j], &ImagRoot[j]);
|
||||
delete[] P;
|
||||
return (Degree);
|
||||
}
|
||||
|
||||
if (N == 3) {
|
||||
j = Degree - N;
|
||||
CubicRoots(P, &RealRoot[j], &ImagRoot[j]);
|
||||
delete[] P;
|
||||
return (Degree);
|
||||
}
|
||||
|
||||
if (N == 4) {
|
||||
j = Degree - N;
|
||||
BiQuadRoots(P, &RealRoot[j], &ImagRoot[j]);
|
||||
delete[] P;
|
||||
return (Degree);
|
||||
}
|
||||
|
||||
// ShowMessage("The P51 root finder failed to converge on a solution.");
|
||||
return (0);
|
||||
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// The purpose of this function is to find a 2nd order polynomial, TUV, which is a factor of P.
|
||||
// When called, the TUV and K polynomials have been initialized to our best guess.
|
||||
// This function can call UpdateTUV() at most QUAD_ITER_MAX times. This returns 2 if we find
|
||||
// 2 roots, else 0. UpdateStatus has two possible values on return, UPDATED and BAD_ANGLE.
|
||||
// UPDATED means the UpdateTUV function is able to do its calculations with TUV at this angle.
|
||||
// BAD_ANGLE tells P51 to move TUV to a different angle before calling this function again.
|
||||
// We use ErrScalar to account for the wide variations in N and P[N]. ErrScalar can vary by
|
||||
// as much as 1E50 if all the root locations are much less than 1 or much greater than 1.
|
||||
// The ErrScalar equation was determined empirically. If this root finder is used in an app
|
||||
// where the root locations and poly orders fall within a narrow range, esp low order, then
|
||||
// ErrScalar can be modified to give more accurate results.
|
||||
|
||||
int QuadIterate(int P51_Iter, long double *P, long double *QP, long double *K,
|
||||
long double *QK, int N, long double *TUV, TUpdateStatus *UpdateStatus) {
|
||||
int Iter;
|
||||
long double Err, MinErr, ErrScalar, QKCheck;
|
||||
|
||||
ErrScalar = 1.0 / (16.0 * powl((long double) N, 3.0) * fabsl(P[N]));
|
||||
|
||||
P51_Iter *= QUAD_ITER_MAX;
|
||||
Err = MinErr = 1.0E100;
|
||||
*UpdateStatus = UPDATED;
|
||||
QuadSynDiv(P, N, TUV, QP); // Init QP
|
||||
QuadSynDiv(K, N - 1, TUV, QK); // Init QK
|
||||
|
||||
for (Iter = 0; Iter < QUAD_ITER_MAX; Iter++) {
|
||||
UpdateTUV(P51_Iter + Iter, P, N, QP, K, QK, TUV, UpdateStatus);
|
||||
if (*UpdateStatus == BAD_ANGLE) {
|
||||
return (0); // Failure, need a different angle.
|
||||
}
|
||||
|
||||
Err = fabsl(QP[N - 1]) + fabsl(QP[N + 1]); // QP[N-1] & QP[N+1] are the remainder terms of P/TUV.
|
||||
Err *= ErrScalar; // Normalize the error.
|
||||
|
||||
if (Err < LDBL_EPSILON) {
|
||||
return (2); // Success!! 2 roots have been found.
|
||||
}
|
||||
|
||||
// ZERO_DEL means both DelU and DelV were ~ 0 in UpdateTUV which means the algorithm has stalled.
|
||||
// It might be stalled in a dead zone with large error, or stalled because it can't adjust u and v with a resolution fine enough to meet our convergence criteria.
|
||||
if (*UpdateStatus == ZERO_DEL) {
|
||||
if (Err < 4.0 * (long double) N * LDBL_EPSILON) // Small error, this is the best we can do.
|
||||
{
|
||||
*UpdateStatus = UPDATED;
|
||||
return (2);
|
||||
} else // Large error, get a different angle
|
||||
{
|
||||
*UpdateStatus = BAD_ANGLE;
|
||||
return (0);
|
||||
}
|
||||
}
|
||||
|
||||
QKCheck = fabsl(QK[N - 2]) + fabsl(QK[N]); // QK[N-2] & QK[N] are the remainder terms of K/TUV.
|
||||
QKCheck *= ErrScalar;
|
||||
|
||||
// Huge values indicate the algorithm is diverging and overflow is imminent. This can indicate
|
||||
// a single real root, or that we simply need a different angle on TUV. This happens frequently.
|
||||
if (Err > HUGE_VALUE || QKCheck > HUGE_VALUE) {
|
||||
*UpdateStatus = BAD_ANGLE;
|
||||
return (0);
|
||||
}
|
||||
|
||||
// Record our best result thus far. We turn on the damper in UpdateTUV if the errs increase.
|
||||
if (Err < MinErr) {
|
||||
*UpdateStatus = DAMPER_OFF;
|
||||
MinErr = Err;
|
||||
} else if (Iter > 2) {
|
||||
*UpdateStatus = DAMPER_ON;
|
||||
}
|
||||
}
|
||||
|
||||
// If we get here, we didn't converge, but TUV is getting updated.
|
||||
// If RealIterate can't find a real zero, this function will get called again.
|
||||
*UpdateStatus = UPDATED;
|
||||
return (0);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This function updates TUV[1] and TUV[2] using the J-T mathematics.
|
||||
// When called, UpdateStatus equals either DAMPER_ON or DAMPER_OFF, which controls the damping factor.
|
||||
// On return UpdateStatus equals UPDATED, BAD_ANGLE or ZERO_DEL;
|
||||
// BAD_ANGLE indicates imminent overflow, or TUV[2] is going to zero. In either case the QuadIterate
|
||||
// function will immediately return to P51 which will change the angle on TUV. ZERO_DEL indicates
|
||||
// we have either stalled in a dead zone, or we lack the needed precision to further refine TUV.
|
||||
// TUV = tx^2 + ux + v t = 1 always. v = 0 (a root at the origin) isn't allowed.
|
||||
// The poly degrees are P[N] QP[N-2] K[N-1] QK[N-3]
|
||||
void UpdateTUV(int Iter, long double *P, int N, long double *QP, long double *K,
|
||||
long double *QK, long double *TUV, TUpdateStatus *UpdateStatus) {
|
||||
int j;
|
||||
long double DelU, DelV, Denom;
|
||||
long double E2, E3, E4, E5;
|
||||
static int FirstDamperlIter;
|
||||
|
||||
if (Iter == 0)
|
||||
FirstDamperlIter = 0; // Reset this static var.
|
||||
if (*UpdateStatus == DAMPER_ON)
|
||||
FirstDamperlIter = Iter;
|
||||
|
||||
// Update K, unless E3 is tiny relative to E2. The algorithm will work its way out of a tiny E3.
|
||||
// These equations are from the Jenkins and Traub paper "A Three Stage Algorithm for Real Polynomials Using Quadratic Iteration" Equation 9.8
|
||||
E2 = QP[N] * QP[N] + TUV[1] * QP[N] * QP[N - 1]
|
||||
+ TUV[2] * QP[N - 1] * QP[N - 1];
|
||||
E3 = QP[N] * QK[N - 1] + TUV[1] * QP[N] * QK[N - 2]
|
||||
+ TUV[2] * QP[N - 1] * QK[N - 2];
|
||||
|
||||
if (fabsl(E3) * HUGE_VALUE > fabsl(E2)) {
|
||||
E2 /= -E3;
|
||||
for (j = 1; j <= N - 2; j++)
|
||||
K[j] = E2 * QK[j - 1] + QP[j]; // At covergence, E2 ~ 0, so K ~ QP.
|
||||
} else {
|
||||
for (j = 1; j <= N - 2; j++)
|
||||
K[j] = QK[j - 1];
|
||||
}
|
||||
K[0] = QP[0]; // QP[0] = 1.0 always
|
||||
K[N - 1] = 0.0;
|
||||
|
||||
QuadSynDiv(K, N - 1, TUV, QK); // Update QK QK = K/TUV
|
||||
|
||||
// These equations are modified versions of those used in the original Jenkins Traub Fortran algorithm RealPoly, found at www.netlib.org/toms/493
|
||||
E3 = QP[N] * QK[N - 1] + TUV[1] * QP[N] * QK[N - 2]
|
||||
+ TUV[2] * QP[N - 1] * QK[N - 2];
|
||||
E4 = QK[N - 1] * QK[N - 1] + TUV[1] * QK[N - 1] * QK[N - 2]
|
||||
+ TUV[2] * QK[N - 2] * QK[N - 2];
|
||||
E5 = QP[N - 1] * QK[N - 1] - QP[N] * QK[N - 2];
|
||||
|
||||
Denom = E5 * K[N - 2] * TUV[2] + E4 * P[N];
|
||||
if (fabsl(Denom) * HUGE_VALUE < fabsl(P[N])) {
|
||||
*UpdateStatus = BAD_ANGLE; // Denom is tiny, overflow is imminent, get a new angle.
|
||||
return;
|
||||
}
|
||||
|
||||
// Calc DelU and DelV. If they are effectively zero, bump them by epsilon.
|
||||
DelU = E3 * K[N - 2] * TUV[2] / Denom;
|
||||
if (fabsl(DelU) < LDBL_EPSILON * fabsl(TUV[1])) {
|
||||
if (DelU < 0.0)
|
||||
DelU = -fabsl(TUV[1]) * LDBL_EPSILON;
|
||||
else
|
||||
DelU = fabsl(TUV[1]) * LDBL_EPSILON;
|
||||
}
|
||||
|
||||
DelV = -E5 * K[N - 2] * TUV[2] * TUV[2] / Denom;
|
||||
if (fabsl(DelV) < LDBL_EPSILON * fabsl(TUV[2])) {
|
||||
if (DelV < 0.0)
|
||||
DelV = -fabsl(TUV[2]) * LDBL_EPSILON;
|
||||
else
|
||||
DelV = fabsl(TUV[2]) * LDBL_EPSILON;
|
||||
}
|
||||
|
||||
// If we haven't converged by QUAD_ITER_MAX iters, we need to test DelU and DelV for effectiveness.
|
||||
if (Iter >= QUAD_ITER_MAX - 1) {
|
||||
// We can't improve u and v any further because both DelU and DelV ~ 0 This usually happens when we are near a solution, but we don't have the precision needed to ine u and v enough to meet our convergence criteria. This can also happen in a dead zone where the errors are large, which means we need a different angle on TUV. We test for this in the QuadIterate function.
|
||||
if (fabsl(DelU) < 8.0 * LDBL_EPSILON * fabsl(TUV[1])
|
||||
&& fabsl(DelV) < 8.0 * LDBL_EPSILON * fabsl(TUV[2])) {
|
||||
*UpdateStatus = ZERO_DEL;
|
||||
return;
|
||||
}
|
||||
// A big change after this many iterations means we are wasting our time on this angle.
|
||||
if (fabsl(DelU) > 10.0 * fabsl(TUV[1])
|
||||
|| fabsl(DelV) > 10.0 * fabsl(TUV[2])) {
|
||||
*UpdateStatus = BAD_ANGLE;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Dampen the changes for 3 iterations after Damper was set in QuadIterate.
|
||||
if (Iter - FirstDamperlIter < 3) {
|
||||
DelU *= 0.75;
|
||||
DelV *= 0.75;
|
||||
}
|
||||
|
||||
// Update U and V
|
||||
TUV[1] += DelU;
|
||||
if (fabsl(TUV[2] + DelV) < TINY_VALUE)
|
||||
DelV *= 0.9; // If this, we would set TUV[2] = 0 which we can't allow, so we use 90% of DelV.
|
||||
TUV[2] += DelV;
|
||||
|
||||
if (fabsl(TUV[2]) < fabsl(TUV[1]) * TINY_VALUE) {
|
||||
*UpdateStatus = BAD_ANGLE; // TUV[2] is effectively 0, which is never allowed.
|
||||
return;
|
||||
}
|
||||
|
||||
*UpdateStatus = UPDATED; // TUV was updated.
|
||||
QuadSynDiv(P, N, TUV, QP); // Update QP QP = P/TUV
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This function is used to find single real roots. It is similar to Newton's Method.
|
||||
// Horners method is used to calculate QK and QP. For an explanation of these methods, see these 2 links.
|
||||
// http://mathworld.wolfram.com/NewtonsMethod.html http://en.wikipedia.org/wiki/Horner%27s_method
|
||||
|
||||
// When called, RealZero contains our best guess for a root, and K is init to the 1st derivative of P.
|
||||
// The return value is either 1 or 0, the number of roots found. On return, RealZero contains
|
||||
// the root, and QP contains the next P (i.e. P with this root removed).
|
||||
// As with QuadIterate, at convergence, K = QP
|
||||
int RealIterate(int P51_Iter, long double *P, long double *QP, long double *K,
|
||||
long double *QK, int N, long double *RealZero) {
|
||||
int Iter, k;
|
||||
long double X, DelX, Damper, Err, ErrScalar;
|
||||
static long double PrevQPN;
|
||||
|
||||
ErrScalar = 1.0 / (16.0 * powl((long double) N, 2.0) * fabsl(P[N]));
|
||||
|
||||
X = *RealZero; // Init with our best guess for X.
|
||||
if (P51_Iter == 0)
|
||||
PrevQPN = 0.0;
|
||||
QK[0] = K[0];
|
||||
for (k = 1; k <= N - 1; k++) {
|
||||
QK[k] = QK[k - 1] * X + K[k];
|
||||
}
|
||||
|
||||
for (Iter = 0; Iter < REAL_ITER_MAX; Iter++) {
|
||||
// Calculate a new QP. This is poly division QP = P/(x+X) QP[0] to QP[N-1] is the quotient.
|
||||
// The remainder is QP[N], which is P(X), the error term.
|
||||
QP[0] = P[0];
|
||||
for (k = 1; k <= N; k++) {
|
||||
QP[k] = QP[k - 1] * X + P[k];
|
||||
}
|
||||
Err = fabsl(QP[N]) * ErrScalar; // QP[N] is the error. ErrScalar accounts for the wide variations in N and P[N].
|
||||
|
||||
if (Err < LDBL_EPSILON) {
|
||||
*RealZero = X;
|
||||
return (1); // Success!!
|
||||
} else if (Err > HUGE_VALUE)
|
||||
return (0); // Overflow is imminent.
|
||||
|
||||
// Calculate a new K. QK[N-1] is the remainder of K /(x-X).
|
||||
// QK[N-1] is approximately P'(X) when P(X) = QP[N] ~ 0
|
||||
if (fabsl(QK[N - 1]) > fabsl(P[N] * TINY_VALUE)) {
|
||||
DelX = -QP[N] / QK[N - 1];
|
||||
K[0] = QP[0];
|
||||
for (k = 1; k <= N - 1; k++) {
|
||||
K[k] = DelX * QK[k - 1] + QP[k];
|
||||
}
|
||||
} else // Use this if QK[N-1] ~ 0
|
||||
{
|
||||
K[0] = 0.0;
|
||||
for (k = 1; k <= N - 1; k++)
|
||||
K[k] = QK[k - 1];
|
||||
}
|
||||
|
||||
if (fabsl(K[N - 1]) > HUGE_VALUE)
|
||||
return (0); // Overflow is imminent.
|
||||
|
||||
// Calculate a new QK. This is poly division QK = K /(x+X). QK[0] to QK[N-2] is the quotient.
|
||||
QK[0] = K[0];
|
||||
for (k = 1; k <= N - 1; k++) {
|
||||
QK[k] = QK[k - 1] * X + K[k];
|
||||
}
|
||||
if (fabsl(QK[N - 1]) <= TINY_VALUE * fabsl(P[N]))
|
||||
return (0); // QK[N-1] ~ 0 will cause overflow below.
|
||||
|
||||
// This algorithm routinely oscillates back and forth about a zero with nearly equal pos and neg error magnitudes.
|
||||
// If the current and previous error add to give a value less than the current error, we dampen the change.
|
||||
Damper = 1.0;
|
||||
if (fabsl(QP[N] + PrevQPN) < fabsl(QP[N]))
|
||||
Damper = 0.5;
|
||||
PrevQPN = QP[N];
|
||||
|
||||
// QP[N] is P(X) and at convergence QK[N-1] ~ P'(X), so this is ~ Newtons Method.
|
||||
DelX = QP[N] / QK[N - 1] * Damper;
|
||||
if (X != 0.0) {
|
||||
if (fabsl(DelX) < LDBL_EPSILON * fabsl(X)) // If true, the algorithm is stalled, so bump X by 2 epsilons.
|
||||
{
|
||||
if (DelX < 0.0)
|
||||
DelX = -2.0 * X * LDBL_EPSILON;
|
||||
else
|
||||
DelX = 2.0 * X * LDBL_EPSILON;
|
||||
}
|
||||
} else // X = 0
|
||||
{
|
||||
if (DelX == 0.0)
|
||||
return (0); // Stalled at the origin, so exit.
|
||||
}
|
||||
X -= DelX; // Update X
|
||||
|
||||
} // end of loop
|
||||
|
||||
// If we get here, we failed to converge.
|
||||
return (0);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// Derivative of P. Called from SetTUVandK().
|
||||
void DerivOfP(long double *P, int N, long double *dP) {
|
||||
int j;
|
||||
long double Power;
|
||||
for (j = 0; j < N; j++) {
|
||||
Power = N - j;
|
||||
dP[j] = Power * P[j];
|
||||
}
|
||||
dP[N] = 0.0;
|
||||
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// Synthetic Division of P by x^2 + ux + v (TUV)
|
||||
// The qotient is Q[0] to Q[N-2]. The actual poly remainder terms are Q[N-1] and Q[N+1]
|
||||
// The JT math requires the values Q[N-1] and Q[N] to calculate K.
|
||||
// These form a 1st order remainder b*x + (b*u + a).
|
||||
void QuadSynDiv(long double *P, int N, long double *TUV, long double *Q) {
|
||||
int j;
|
||||
Q[0] = P[0];
|
||||
Q[1] = P[1] - TUV[1] * Q[0];
|
||||
for (j = 2; j <= N; j++) {
|
||||
Q[j] = P[j] - TUV[1] * Q[j - 1] - TUV[2] * Q[j - 2];
|
||||
}
|
||||
|
||||
// Here we calculate the final remainder term used to calculate the convergence error.
|
||||
// This and Q[N-1] are the remainder values you get if you do this poly division manually.
|
||||
Q[N + 1] = Q[N - 1] * TUV[1] + Q[N]; // = b*u + a
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This function intializes the TUV and K polynomials.
|
||||
void SetTUVandK(long double *P, int N, long double *TUV, long double *RealK,
|
||||
long double *QuadK, long double X, int AngleNumber, int TypeOfQuadK) {
|
||||
int j;
|
||||
long double a, Theta;
|
||||
|
||||
// These angles define our search pattern in the complex plane. We start in the 1st quadrant,
|
||||
// go to the 2nd, then the real axis, etc. The roots are conjugates, so there isn't a need
|
||||
// to go to the 3rd or 4th quadrants. The first 2 angles find about 99% of all roots.
|
||||
const long double Angle[] = { 45.0, 135.0, 0.0, 90.0, 15.0, 30.0, 60.0,
|
||||
75.0, 105.0, 120.0, 150.0,
|
||||
165.0, // 12 angles
|
||||
6.0, 51.0, 96.0, 141.0, 12.0, 57.0, 102.0, 147.0, 21.0, 66.0, 111.0,
|
||||
156.0, 27.0, 72.0, 117.0, 162.0, 36.0, 81.0, 126.0, 171.0, 42.0,
|
||||
87.0, 132.0, 177.0, 3.0, 48.0, 93.0, 138.0, 9.0, 54.0, 99.0, 144.0,
|
||||
18.0, 63.0, 108.0, 153.0, 24.0, 69.0, 114.0, 159.0, 33.0, 78.0,
|
||||
123.0, 168.0, 39.0, 84.0, 129.0,
|
||||
174.0, // 60 angles
|
||||
46.0, 136.0, 91.0, 1.0, 16.0, 31.0, 61.0, 76.0, 106.0, 121.0, 151.0,
|
||||
166.0, 7.0, 52.0, 97.0, 142.0, 13.0, 58.0, 103.0, 148.0, 22.0, 67.0,
|
||||
112.0, 157.0, 28.0, 73.0, 118.0, 163.0, 37.0, 82.0, 127.0, 172.0,
|
||||
43.0, 88.0, 133.0, 178.0, 4.0, 49.0, 94.0, 139.0, 10.0, 55.0, 100.0,
|
||||
145.0, 19.0, 64.0, 109.0, 154.0, 25.0, 70.0, 115.0, 160.0, 34.0,
|
||||
79.0, 124.0, 169.0, 40.0, 85.0, 130.0, 175.0, 47.0, 137.0, 92.0,
|
||||
2.0, 17.0, 32.0, 62.0, 77.0, 107.0, 122.0, 152.0, 167.0, 8.0, 53.0,
|
||||
98.0, 143.0, 14.0, 59.0, 104.0, 149.0, 23.0, 68.0, 113.0, 158.0,
|
||||
29.0, 74.0, 119.0, 164.0, 38.0, 83.0, 128.0, 173.0, 44.0, 89.0,
|
||||
134.0, 179.0, 5.0, 50.0, 95.0, 140.0, 11.0, 56.0, 101.0, 146.0,
|
||||
20.0, 65.0, 110.0, 155.0, 26.0, 71.0, 116.0, 161.0, 35.0, 80.0,
|
||||
125.0, 170.0, 41.0, 86.0, 131.0, 176.0 }; // 180 angles
|
||||
|
||||
// Initialize TUV to form (x - (a + jb)) * (x - (a - jb)) = x^2 - 2ax + a^2 + b^2
|
||||
// We init TUV for complex roots, except at angle 0, where we use real roots at +/- X
|
||||
if (AngleNumber == 2) // At 0 degrees we int to 2 real roots at +/- X.
|
||||
{
|
||||
TUV[0] = 1.0; // t
|
||||
TUV[1] = 0.0; // u
|
||||
TUV[2] = -(X * X); // v
|
||||
} else // We init to a complex root at a +/- jb
|
||||
{
|
||||
Theta = Angle[AngleNumber] / 180.0 * M_PI;
|
||||
a = X * cosl(Theta);
|
||||
//b = X * sinl(Theta);
|
||||
TUV[0] = 1.0;
|
||||
TUV[1] = -2.0 * a;
|
||||
TUV[2] = X * X; // = a*a + b*b because cos^2 + sin^2 = 1
|
||||
}
|
||||
|
||||
// The code below initializes the K polys used by RealIterate and QuadIterate.
|
||||
|
||||
// Initialize the K poly used in RealIterate to P'.
|
||||
DerivOfP(P, N, RealK);
|
||||
RealK[N] = 0.0;
|
||||
|
||||
// Initialize the K poly used in QuadIterate. Initializing QuadK to P" works virtually
|
||||
// 100% of the time, but if P51 stalls on a difficult root, these alternate inits give
|
||||
// us a way to work out of the stall. All these inits work almost as well as P".
|
||||
if (TypeOfQuadK == 0) // Init QuadK 2nd derivative of P
|
||||
{
|
||||
long double *Temp = new (std::nothrow) long double[N + 2];
|
||||
if (Temp == NULL) {
|
||||
//ShowMessage("Memory not Allocated in PFiftyOne SetTUVandK.");
|
||||
return;
|
||||
}
|
||||
|
||||
DerivOfP(P, N, Temp);
|
||||
DerivOfP(Temp, N - 1, QuadK);
|
||||
QuadK[N] = QuadK[N - 1] = 0.0;
|
||||
delete[] Temp;
|
||||
}
|
||||
|
||||
else if (TypeOfQuadK == 1) // Set QuadK to QP, because K = QP at convergence.
|
||||
{
|
||||
QuadSynDiv(P, N, TUV, QuadK);
|
||||
QuadK[N] = QuadK[N - 1] = 0.0;
|
||||
}
|
||||
|
||||
else if (TypeOfQuadK == 2) // Set QuadK to the 1st derivative of P
|
||||
{
|
||||
for (j = 0; j <= N - 2; j++)
|
||||
QuadK[j] = RealK[j + 1];
|
||||
QuadK[N] = QuadK[N - 1] = 0.0;
|
||||
}
|
||||
|
||||
else // Set QuadK to zero, except QuadK[0].
|
||||
{
|
||||
for (j = 1; j <= N; j++)
|
||||
QuadK[j] = 0.0;
|
||||
QuadK[0] = 1.0;
|
||||
}
|
||||
|
||||
if (QuadK[0] == 0.0)
|
||||
QuadK[0] = 1.0; // This can happen if TypeOfQuadK == 2 and P[1] == 0.0
|
||||
for (j = N - 2; j > 0; j--)
|
||||
QuadK[j] /= QuadK[0];
|
||||
QuadK[0] = 1.0;
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
} // namespace
|
43
kitiirfir/PFiftyOneRevE.h
Normal file
43
kitiirfir/PFiftyOneRevE.h
Normal file
@ -0,0 +1,43 @@
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
#ifndef PFiftyOneRevEH
|
||||
#define PFiftyOneRevEH
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
#include <complex>
|
||||
|
||||
// TUpdateStatus represent the status of the UpdateTUV function.
|
||||
// The first 3 are returned from UpdateTUV. The last two are sent to UpdateTUV.
|
||||
enum TUpdateStatus {UPDATED, BAD_ANGLE, ZERO_DEL, DAMPER_ON, DAMPER_OFF};
|
||||
|
||||
|
||||
// This value for LDBL_EPSILON is for an 80 bit variable (64 bit significand). It should be in float.h
|
||||
#define LDBL_EPSILON 1.084202172485504434E-19L // = 2^-63
|
||||
#define P51_MAXDEGREE 100 // The max poly order allowed. Used at the top of P51. This was set arbitrarily.
|
||||
#define P51_ARRAY_SIZE 102 // P51 uses the new operator. P51 arrays must be MaxDegree + 2
|
||||
#define MAX_NUM_ANGLES 180 // The number of defined angles for initializing TUV.
|
||||
#define REAL_ITER_MAX 20 // Max number of iterations in RealIterate.
|
||||
#define QUAD_ITER_MAX 20 // Max number of iterations in QuadIterate.
|
||||
#define MAX_NUM_K 4 // This is the number of methods we have to define K.
|
||||
#define MAX_NEWT_ITERS 10 // Used to limit the Newton Iterations in the GetX function.
|
||||
#define TINY_VALUE 1.0E-30 // This is what we use to test for zero. Usually to avoid divide by zero.
|
||||
#define HUGE_VALUE 1.0E200 // This gets used to test for imminent overflow.
|
||||
|
||||
namespace kitiirfir
|
||||
{
|
||||
|
||||
int FindRoots(int N, double *Coeff, std::complex<double> *Roots);
|
||||
int PFiftyOne(long double *Coeff, int Degree, long double *RealRoot, long double *ImagRoot);
|
||||
int QuadIterate(int Iter, long double *P, long double *QP, long double *K, long double *QK, int N, long double *TUV, TUpdateStatus *UpdateStatus);
|
||||
void UpdateTUV(int Iter, long double *P, int N, long double *QP, long double *K, long double *QK, long double *TUV, TUpdateStatus *UpdateStatus);
|
||||
int RealIterate(int P51_Iter, long double *P, long double *QP, long double *K, long double *QK, int N, long double *RealZero);
|
||||
void QuadraticFormula(long double *TUV, long double *RealRoot, long double *ImagRoot);
|
||||
void QuadSynDiv(long double *P, int N, long double *TUV, long double *Q);
|
||||
void DerivOfP(long double *P, int N, long double *dP);
|
||||
void SetTUVandK(long double *P, int N, long double *TUV, long double *RealK, long double *QuadK, long double X, int AngleNumber, int TypeOfQuadK);
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif
|
||||
|
||||
|
344
kitiirfir/QuadRootsRevH.cpp
Normal file
344
kitiirfir/QuadRootsRevH.cpp
Normal file
@ -0,0 +1,344 @@
|
||||
/*
|
||||
By Daniel Klostermann
|
||||
Iowa Hills Software, LLC IowaHills.com
|
||||
If you find a problem, please leave a note at:
|
||||
http://www.iowahills.com/feedbackcomments.html
|
||||
Sept 12, 2016 Rev H
|
||||
|
||||
This root solver code finds 1st, 2nd, 3rd, and 4th order roots algebraically, as
|
||||
opposed to iteration.
|
||||
|
||||
It is composed of the functions: QuadCubicRoots, QuadRoots, CubicRoots, and BiQuadRoots.
|
||||
This code originated at: http://www.netlib.org/toms/ Algorithm 326
|
||||
Roots of Low Order Polynomials by Terence R.F.Nonweiler CACM (Apr 1968) p269
|
||||
Original C translation by: M.Dow Australian National University, Canberra, Australia
|
||||
|
||||
We use the same basic mathematics used in that code, but in order to improve numerical
|
||||
accuracy we made extensive modifications to the test conditions that control the flow of
|
||||
the algorithm, and also added scaling and reversals.
|
||||
|
||||
The input array Coeff[] contains the coefficients arranged in descending order.
|
||||
For example, a 4th order poly would be:
|
||||
P(x) = Coeff[0]*x^4 + Coeff[1]*x^3 + Coeff[2]*x^2 + Coeff[3]*x + Coeff[4]
|
||||
|
||||
The roots are returned in RootsReal and RootsImag. N is the polynomial's order. 1 <= N <= 4
|
||||
N is modified if there are leading or trailing zeros. N is returned.
|
||||
Coeff needs to be length N+1. RealRoot and ImagRoot need to be length N.
|
||||
|
||||
Do not call QuadRoots, CubicRoots, and BiQuadRoots directly. They assume that QuadCubicRoots
|
||||
has removed leading and trailing zeros and normalized P.
|
||||
|
||||
On a 2 GHz Pentium it takes about 2 micro sec for QuadCubicRoots to return.
|
||||
|
||||
ShowMessage is a C++ Builder function, and it usage has been commented out.
|
||||
If you are using C++ Builder, include vcl.h for ShowMessage.
|
||||
Otherwise replace ShowMessage with something appropriate for your compiler.
|
||||
*/
|
||||
|
||||
#include "QuadRootsRevH.h"
|
||||
#include <math.h>
|
||||
|
||||
namespace kitiirfir
|
||||
{
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// Same interface as P51.
|
||||
int QuadCubicRoots(long double *Coeff, int N, long double *RealRoot,
|
||||
long double *ImagRoot) {
|
||||
if (N < 1 || N > 4) {
|
||||
//ShowMessage("Invalid Poly Order in QuadCubicRoots()");
|
||||
return (0);
|
||||
}
|
||||
|
||||
int j;
|
||||
long double P[5];
|
||||
|
||||
// Must init to zero, in case N is reduced.
|
||||
for (j = 0; j < N; j++)
|
||||
RealRoot[j] = ImagRoot[j] = 0.0;
|
||||
for (j = 0; j < 5; j++)
|
||||
P[j] = 0.0;
|
||||
|
||||
// The functions below modify the coeff array, so we pass P instead of Coeff.
|
||||
for (j = 0; j <= N; j++)
|
||||
P[j] = (long double) Coeff[j];
|
||||
|
||||
// Remove trailing zeros. A tiny P[N] relative to P[N-1] is not allowed.
|
||||
while (N > 0 && fabsl(P[N]) <= TINY_VALUE * fabsl(P[N - 1])) {
|
||||
N--;
|
||||
}
|
||||
|
||||
// Remove leading zeros.
|
||||
while (N > 0 && P[0] == 0.0) {
|
||||
for (j = 0; j < N; j++)
|
||||
P[j] = P[j + 1];
|
||||
N--;
|
||||
}
|
||||
|
||||
// P[0] must = 1
|
||||
if (P[0] != 1.0) {
|
||||
for (j = 1; j <= N; j++)
|
||||
P[j] /= P[0];
|
||||
P[0] = 1.0;
|
||||
}
|
||||
|
||||
// Calculate the roots.
|
||||
if (N == 4)
|
||||
BiQuadRoots(P, RealRoot, ImagRoot);
|
||||
else if (N == 3)
|
||||
CubicRoots(P, RealRoot, ImagRoot);
|
||||
else if (N == 2)
|
||||
QuadRoots(P, RealRoot, ImagRoot);
|
||||
else if (N == 1) {
|
||||
RealRoot[0] = -P[1] / P[0];
|
||||
ImagRoot[0] = 0.0;
|
||||
}
|
||||
|
||||
return (N);
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This function is the quadratic formula with P[0] = 1
|
||||
// y = P[0]*x^2 + P[1]*x + P[2]
|
||||
// Normally, we don't allow P[2] = 0, but this can happen in a call from BiQuadRoots.
|
||||
// If P[2] = 0, the zero is returned in RealRoot[0].
|
||||
void QuadRoots(long double *P, long double *RealRoot, long double *ImagRoot) {
|
||||
long double D;
|
||||
D = P[1] * P[1] - 4.0 * P[2];
|
||||
if (D >= 0.0) // 1 or 2 real roots
|
||||
{
|
||||
RealRoot[0] = (-P[1] - sqrtl(D)) * 0.5; // = -P[1] if P[2] = 0
|
||||
RealRoot[1] = (-P[1] + sqrtl(D)) * 0.5; // = 0 if P[2] = 0
|
||||
ImagRoot[0] = ImagRoot[1] = 0.0;
|
||||
} else // 2 complex roots
|
||||
{
|
||||
RealRoot[0] = RealRoot[1] = -P[1] * 0.5;
|
||||
ImagRoot[0] = sqrtl(-D) * 0.5;
|
||||
ImagRoot[1] = -ImagRoot[0];
|
||||
}
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// This finds the roots of y = P0x^3 + P1x^2 + P2x+ P3 P[0] = 1
|
||||
void CubicRoots(long double *P, long double *RealRoot, long double *ImagRoot) {
|
||||
int j;
|
||||
long double s, t, b, c, d, Scalar;
|
||||
bool CubicPolyReversed = false;
|
||||
|
||||
// Scale the polynomial so that P[N] = +/-1. This moves the roots toward unit circle.
|
||||
Scalar = powl(fabsl(P[3]), 1.0 / 3.0);
|
||||
for (j = 1; j <= 3; j++)
|
||||
P[j] /= powl(Scalar, (long double) j);
|
||||
|
||||
if (fabsl(P[3]) < fabsl(P[2]) && P[2] > 0.0) {
|
||||
ReversePoly(P, 3);
|
||||
CubicPolyReversed = true;
|
||||
}
|
||||
|
||||
s = P[1] / 3.0;
|
||||
b = (6.0 * P[1] * P[1] * P[1] - 27.0 * P[1] * P[2] + 81.0 * P[3]) / 162.0;
|
||||
t = (P[1] * P[1] - 3.0 * P[2]) / 9.0;
|
||||
c = t * t * t;
|
||||
d = 2.0 * P[1] * P[1] * P[1] - 9.0 * P[1] * P[2] + 27.0 * P[3];
|
||||
d = d * d / 2916.0 - c;
|
||||
|
||||
// if(d > 0) 1 complex and 1 real root. We use LDBL_EPSILON to account for round off err.
|
||||
if (d > LDBL_EPSILON) {
|
||||
d = powl((sqrtl(d) + fabsl(b)), 1.0 / 3.0);
|
||||
if (d != 0.0) {
|
||||
if (b > 0)
|
||||
b = -d;
|
||||
else
|
||||
b = d;
|
||||
c = t / b;
|
||||
}
|
||||
d = M_SQRT3_2 * (b - c);
|
||||
b = b + c;
|
||||
c = -b / 2.0 - s;
|
||||
|
||||
RealRoot[0] = (b - s);
|
||||
ImagRoot[0] = 0.0;
|
||||
RealRoot[1] = RealRoot[2] = c;
|
||||
ImagRoot[1] = d;
|
||||
ImagRoot[2] = -ImagRoot[1];
|
||||
}
|
||||
|
||||
else // d < 0.0 3 real roots
|
||||
{
|
||||
if (b == 0.0)
|
||||
d = M_PI_2 / 3.0; // b can be as small as 1.0E-25
|
||||
else
|
||||
d = atanl(sqrtl(fabsl(d)) / fabsl(b)) / 3.0;
|
||||
|
||||
if (b < 0.0)
|
||||
b = 2.0 * sqrtl(fabsl(t));
|
||||
else
|
||||
b = -2.0 * sqrtl(fabsl(t));
|
||||
|
||||
c = cosl(d) * b;
|
||||
t = -M_SQRT3_2 * sinl(d) * b - 0.5 * c;
|
||||
|
||||
RealRoot[0] = (t - s);
|
||||
RealRoot[1] = -(t + c + s);
|
||||
RealRoot[2] = (c - s);
|
||||
ImagRoot[0] = 0.0;
|
||||
ImagRoot[1] = 0.0;
|
||||
ImagRoot[2] = 0.0;
|
||||
}
|
||||
|
||||
// If we reversed the poly, the roots need to be inverted.
|
||||
if (CubicPolyReversed)
|
||||
InvertRoots(3, RealRoot, ImagRoot);
|
||||
|
||||
// Apply the Scalar to the roots.
|
||||
for (j = 0; j < 3; j++)
|
||||
RealRoot[j] *= Scalar;
|
||||
for (j = 0; j < 3; j++)
|
||||
ImagRoot[j] *= Scalar;
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// This finds the roots of y = P0x^4 + P1x^3 + P2x^2 + P3x + P4 P[0] = 1
|
||||
// This function calls CubicRoots and QuadRoots
|
||||
void BiQuadRoots(long double *P, long double *RealRoot, long double *ImagRoot) {
|
||||
int j;
|
||||
long double a, b, c, d, e, Q3Limit, Scalar, Q[4], MinRoot;
|
||||
bool QuadPolyReversed = false;
|
||||
|
||||
// Scale the polynomial so that P[N] = +/- 1. This moves the roots toward unit circle.
|
||||
Scalar = powl(fabsl(P[4]), 0.25);
|
||||
for (j = 1; j <= 4; j++)
|
||||
P[j] /= powl(Scalar, (long double) j);
|
||||
|
||||
// Having P[1] < P[3] helps with the Q[3] calculation and test.
|
||||
if (fabsl(P[1]) > fabsl(P[3])) {
|
||||
ReversePoly(P, 4);
|
||||
QuadPolyReversed = true;
|
||||
}
|
||||
|
||||
a = P[2] - P[1] * P[1] * 0.375;
|
||||
b = P[3] + P[1] * P[1] * P[1] * 0.125 - P[1] * P[2] * 0.5;
|
||||
c = P[4] + 0.0625 * P[1] * P[1] * P[2]
|
||||
- 0.01171875 * P[1] * P[1] * P[1] * P[1] - 0.25 * P[1] * P[3];
|
||||
e = P[1] * 0.25;
|
||||
|
||||
Q[0] = 1.0;
|
||||
Q[1] = P[2] * 0.5 - P[1] * P[1] * 0.1875;
|
||||
Q[2] = (P[2] * P[2] - P[1] * P[1] * P[2]
|
||||
+ 0.1875 * P[1] * P[1] * P[1] * P[1] - 4.0 * P[4] + P[1] * P[3])
|
||||
* 0.0625;
|
||||
Q[3] = -b * b * 0.015625;
|
||||
|
||||
/* The value of Q[3] can cause problems when it should have calculated to zero (just above) but
|
||||
is instead ~ -1.0E-17 because of round off errors. Consequently, we need to determine whether
|
||||
a tiny Q[3] is due to roundoff, or if it is legitimately small. It can legitimately have values
|
||||
of ~ -1E-28. When this happens, we assume Q[2] should also be small. Q[3] can also be tiny with
|
||||
2 sets of equal real roots. Then P[1] and P[3], are approx equal. */
|
||||
|
||||
Q3Limit = ZERO_MINUS;
|
||||
if (fabsl(fabsl(P[1]) - fabsl(P[3])) >= ZERO_PLUS && Q[3] > ZERO_MINUS
|
||||
&& fabsl(Q[2]) < 1.0E-5)
|
||||
Q3Limit = 0.0;
|
||||
|
||||
if (Q[3] < Q3Limit && fabsl(Q[2]) < 1.0E20 * fabsl(Q[3])) {
|
||||
CubicRoots(Q, RealRoot, ImagRoot);
|
||||
|
||||
// Find the smallest positive real root. One of the real roots is always positive.
|
||||
MinRoot = 1.0E100;
|
||||
for (j = 0; j < 3; j++) {
|
||||
if (ImagRoot[j] == 0.0 && RealRoot[j] > 0 && RealRoot[j] < MinRoot)
|
||||
MinRoot = RealRoot[j];
|
||||
}
|
||||
|
||||
d = 4.0 * MinRoot;
|
||||
a += d;
|
||||
if (a * b < 0.0)
|
||||
Q[1] = -sqrtl(d);
|
||||
else
|
||||
Q[1] = sqrtl(d);
|
||||
b = 0.5 * (a + b / Q[1]);
|
||||
} else {
|
||||
if (Q[2] < 0.0) // 2 sets of equal imag roots
|
||||
{
|
||||
b = sqrtl(fabsl(c));
|
||||
d = b + b - a;
|
||||
if (d > 0.0)
|
||||
Q[1] = sqrtl(fabsl(d));
|
||||
else
|
||||
Q[1] = 0.0;
|
||||
} else {
|
||||
if (Q[1] > 0.0)
|
||||
b = 2.0 * sqrtl(fabsl(Q[2])) + Q[1];
|
||||
else
|
||||
b = -2.0 * sqrtl(fabsl(Q[2])) + Q[1];
|
||||
Q[1] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Calc the roots from two 2nd order polys and subtract e from the real part.
|
||||
if (fabsl(b) > 1.0E-8) {
|
||||
Q[2] = c / b;
|
||||
QuadRoots(Q, RealRoot, ImagRoot);
|
||||
|
||||
Q[1] = -Q[1];
|
||||
Q[2] = b;
|
||||
QuadRoots(Q, RealRoot + 2, ImagRoot + 2);
|
||||
|
||||
for (j = 0; j < 4; j++)
|
||||
RealRoot[j] -= e;
|
||||
} else // b==0 with 4 equal real roots
|
||||
{
|
||||
for (j = 0; j < 4; j++)
|
||||
RealRoot[j] = -e;
|
||||
for (j = 0; j < 4; j++)
|
||||
ImagRoot[j] = 0.0;
|
||||
}
|
||||
|
||||
// If we reversed the poly, the roots need to be inverted.
|
||||
if (QuadPolyReversed)
|
||||
InvertRoots(4, RealRoot, ImagRoot);
|
||||
|
||||
// Apply the Scalar to the roots.
|
||||
for (j = 0; j < 4; j++)
|
||||
RealRoot[j] *= Scalar;
|
||||
for (j = 0; j < 4; j++)
|
||||
ImagRoot[j] *= Scalar;
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
// A reversed polynomial has its roots at the same angle, but reflected about the unit circle.
|
||||
void ReversePoly(long double *P, int N) {
|
||||
int j;
|
||||
long double Temp;
|
||||
for (j = 0; j <= N / 2; j++) {
|
||||
Temp = P[j];
|
||||
P[j] = P[N - j];
|
||||
P[N - j] = Temp;
|
||||
}
|
||||
if (P[0] != 0.0) {
|
||||
for (j = N; j >= 0; j--)
|
||||
P[j] /= P[0];
|
||||
}
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// This is used in conjunction with ReversePoly
|
||||
void InvertRoots(int N, long double *RealRoot, long double *ImagRoot) {
|
||||
int j;
|
||||
long double Mag;
|
||||
for (j = 0; j < N; j++) {
|
||||
// complex math for 1/x
|
||||
Mag = RealRoot[j] * RealRoot[j] + ImagRoot[j] * ImagRoot[j];
|
||||
if (Mag != 0.0) {
|
||||
RealRoot[j] /= Mag;
|
||||
ImagRoot[j] /= -Mag;
|
||||
}
|
||||
}
|
||||
}
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
} // namespace
|
27
kitiirfir/QuadRootsRevH.h
Normal file
27
kitiirfir/QuadRootsRevH.h
Normal file
@ -0,0 +1,27 @@
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
#ifndef QuadRootsRevHH
|
||||
#define QuadRootsRevHH
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
#define LDBL_EPSILON 1.084202172485504434E-19L
|
||||
// #define M_SQRT3 1.7320508075688772935274463L // sqrt(3)
|
||||
#define M_SQRT3_2 0.8660254037844386467637231L // sqrt(3)/2
|
||||
// #define DBL_EPSILON 2.2204460492503131E-16 // 2^-52 typically defined in the compiler's float.h
|
||||
#define ZERO_PLUS 8.88178419700125232E-16 // 2^-50 = 4*DBL_EPSILON
|
||||
#define ZERO_MINUS -8.88178419700125232E-16
|
||||
#define TINY_VALUE 1.0E-30 // This is what we use to test for zero. Usually to avoid divide by zero.
|
||||
|
||||
namespace kitiirfir
|
||||
{
|
||||
|
||||
void QuadRoots(long double *P, long double *RealPart, long double *ImagPart);
|
||||
void CubicRoots(long double *P, long double *RealPart, long double *ImagPart);
|
||||
void BiQuadRoots(long double *P, long double *RealPart, long double *ImagPart);
|
||||
void ReversePoly(long double *P, int N);
|
||||
void InvertRoots(int N, long double *RealRoot, long double *ImagRoot);
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif
|
||||
|
8
kitiirfir/readme.md
Normal file
8
kitiirfir/readme.md
Normal file
@ -0,0 +1,8 @@
|
||||
<h1>IIR and FIR filter kit</h1>
|
||||
|
||||
This is the code for IIR and FIR filter design that can be found [here](http://www.iowahills.com/)
|
||||
Thnks to Iowa Hills Software for providing this code for free.
|
||||
|
||||
This is only the filter design part that can be downloaded [here](http://www.iowahills.com/8DownloadPage.html) Under "IR FIR Source Code Kit". It also includes some dependencies found on the other files in this page.
|
||||
|
||||
Code has been re-implemented in more modern C++ and moving it into a kitiirfir namespace
|
@ -128,22 +128,6 @@ void PhaseLockComplex::reset()
|
||||
m_lockCount = 0;
|
||||
}
|
||||
|
||||
void PhaseLockComplex::feedFLL(float re, float im)
|
||||
{
|
||||
m_yRe = cos(m_phiHat);
|
||||
m_yIm = sin(m_phiHat);
|
||||
std::complex<float> y(m_yRe, m_yIm);
|
||||
std::complex<float> x(re, im);
|
||||
std::complex<float> p = x * m_y;
|
||||
float cross = m_p.real()*p.imag() - p.real()*m_p.imag();
|
||||
float dot = m_p.real()*p.real() + m_p.imag()*p.imag();
|
||||
float eF = cross * (dot < 0 ? -1 : 1); // frequency error
|
||||
|
||||
m_freq += eF; // correct instantaneous frequency
|
||||
m_phiHat += eF; // advance phase with instantaneous frequency
|
||||
m_p = p; // store previous product
|
||||
}
|
||||
|
||||
void PhaseLockComplex::feed(float re, float im)
|
||||
{
|
||||
m_yRe = cos(m_phiHat);
|
||||
@ -210,7 +194,7 @@ void PhaseLockComplex::feed(float re, float im)
|
||||
else{
|
||||
if (m_lockCount > 0) {
|
||||
m_lockCount--;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m_freqPrev = m_freq;
|
||||
|
@ -47,8 +47,6 @@ public:
|
||||
void reset();
|
||||
/** Feed PLL with a new signa sample */
|
||||
void feed(float re, float im);
|
||||
/** Same but turns into a FLL using the same filtering structure and NCO output. No lock condition. */
|
||||
void feedFLL(float re, float im);
|
||||
const std::complex<float>& getComplex() const { return m_y; }
|
||||
float getReal() const { return m_yRe; }
|
||||
float getImag() const { return m_yIm; }
|
||||
|
Loading…
Reference in New Issue
Block a user