1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2025-03-22 12:18:32 -04:00

Refactored WDSP initial commit

This commit is contained in:
f4exb 2024-06-16 11:31:13 +02:00
parent 98baa03619
commit cd4ad2cc95
103 changed files with 53980 additions and 1 deletions

8
.gitignore vendored
View File

@ -43,4 +43,10 @@ obj-x86_64-linux-gnu/*
/rescuesdriq/vendor/
/rescuesdriq/Godeps/
/.vs
/.vs
# WDSP
wdsp/*.o
wdsp/*.h
wdsp/*.c
wdsp/Makefile

View File

@ -857,6 +857,7 @@ if (FFTW3F_FOUND)
add_subdirectory(ft8)
add_definitions(-DHAS_FT8)
set(FT8_SUPPORT ON CACHE INTERNAL "")
add_subdirectory(wdsp)
endif()
add_subdirectory(sdrbench)

View File

@ -167,4 +167,16 @@
# define FT8_API
#endif
/* the 'WDSP_API' controls the import/export of 'wdsp' symbols
*/
#if !defined(sdrangel_STATIC)
# ifdef wdsp_EXPORTS
# define WDSP_API __SDR_EXPORT
# else
# define WDSP_API __SDR_IMPORT
# endif
#else
# define WDSP_API
#endif
#endif /* __SDRANGEL_EXPORT_H */

135
wdsp/CMakeLists.txt Normal file
View File

@ -0,0 +1,135 @@
project(wdsp)
set(wdsp_SOURCES
../custom/apple/apple_compat.c
amd.cpp
ammod.cpp
amsq.cpp
anf.cpp
anr.cpp
bandpass.cpp
bldr.cpp
bps.cpp
calculus.cpp
cblock.cpp
cfcomp.cpp
cfir.cpp
compress.cpp
delay.cpp
emnr.cpp
emph.cpp
eq.cpp
fcurve.cpp
fir.cpp
firmin.cpp
fmd.cpp
fmmod.cpp
fmsq.cpp
gain.cpp
gen.cpp
icfir.cpp
iir.cpp
iqc.cpp
lmath.cpp
meter.cpp
meterlog10.cpp
nbp.cpp
osctrl.cpp
patchpanel.cpp
resample.cpp
rmatch.cpp
RXA.cpp
sender.cpp
shift.cpp
siphon.cpp
slew.cpp
snb.cpp
ssql.cpp
TXA.cpp
varsamp.cpp
wcpAGC.cpp
)
set(wdsp_HEADERS
amd.hpp
ammod.hpp
amsq.hpp
anf.hpp
anr.hpp
bandpass.hpp
bldr.hpp
bps.hpp
calculus.hpp
cblock.hpp
cfcomp.hpp
cfir.hpp
comm.hpp
compress.hpp
delay.hpp
emnr.hpp
emph.hpp
eq.hpp
fcurve.hpp
fir.hpp
firmin.hpp
fmd.hpp
fmmod.hpp
fmsq.hpp
gain.hpp
gen.hpp
icfir.hpp
iir.hpp
iqc.hpp
lmath.hpp
meter.hpp
meterlog10.hpp
nbp.hpp
osctrl.hpp
patchpanel.hpp
resample.hpp
rmatch.hpp
RXA.hpp
sender.hpp
shift.hpp
siphon.hpp
slew.hpp
snb.hpp
ssql.hpp
TXA.hpp
varsamp.hpp
wcpAGC.hpp
)
include_directories(
${CMAKE_SOURCE_DIR}/exports
${CUSTOM_APPLE_INCLUDE}
${FFTW3F_INCLUDE_DIRS}
)
add_library(wdsp SHARED
${wdsp_SOURCES}
)
target_link_libraries(wdsp
${FFTW3F_LIBRARIES}
Qt::Core
)
set_target_properties(wdsp PROPERTIES WINDOWS_EXPORT_ALL_SYMBOLS true)
if (MSVC)
set_target_properties(wdsp PROPERTIES INTERPROCEDURAL_OPTIMIZATION false)
endif()
install(TARGETS wdsp DESTINATION ${INSTALL_LIB_DIR})
if (LINUX)
add_executable(wdsp_make_interface
make_interface.cpp
)
add_executable(wdsp_make_calculus
make_calculus.cpp
)
install(TARGETS wdsp_make_interface wdsp_make_calculus DESTINATION ${INSTALL_BIN_DIR})
endif()

340
wdsp/COPYING Normal file
View File

@ -0,0 +1,340 @@
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

5
wdsp/README.md Normal file
View File

@ -0,0 +1,5 @@
# wdsp
WDSP by Warren Pratt, NR0V
DSP Library originally written for Windows
Ported to Linux and Android by John Melton g0orx/n6lyt
Adapted to SDRangel by Edouard Griffiths, F4EXB

1045
wdsp/RXA.cpp Normal file

File diff suppressed because it is too large Load Diff

243
wdsp/RXA.hpp Normal file
View File

@ -0,0 +1,243 @@
/* RXA.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2014, 2015, 2016 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#ifndef wdsp_rxa_h
#define wdsp_rxa_h
#include <QRecursiveMutex>
#include "comm.hpp"
#include "unit.hpp"
#include "export.h"
namespace WDSP {
class METER;
class SHIFT;
class RESAMPLE;
class GEN;
class BANDPASS;
class BPS;
class SNB;
class NOTCHDB;
class NBP;
class BPSNBA;
class SNBA;
class SENDER;
class AMSQ;
class AMD;
class FMD;
class FMSQ;
class EQP;
class ANF;
class ANR;
class EMNR;
class WCPAGC;
class SPEAK;
class MPEAK;
class PANEL;
class SIPHON;
class CBL;
class SSQL;
class WDSP_API RXA : public Unit
{
public:
enum rxaMode
{
RXA_LSB,
RXA_USB,
RXA_DSB,
RXA_CWL,
RXA_CWU,
RXA_FM,
RXA_AM,
RXA_DIGU,
RXA_SPEC,
RXA_DIGL,
RXA_SAM,
RXA_DRM
};
enum rxaMeterType
{
RXA_S_PK,
RXA_S_AV,
RXA_ADC_PK,
RXA_ADC_AV,
RXA_AGC_GAIN,
RXA_AGC_PK,
RXA_AGC_AV,
RXA_METERTYPE_LAST
};
double* inbuff;
double* outbuff;
double* midbuff;
int mode;
double meter[RXA_METERTYPE_LAST];
QRecursiveMutex* pmtupdate[RXA_METERTYPE_LAST];
struct
{
METER *p;
} smeter, adcmeter, agcmeter;
struct
{
SHIFT *p;
} shift;
struct
{
RESAMPLE *p;
} rsmpin, rsmpout;
struct
{
GEN *p;
} gen0;
struct
{
BANDPASS *p;
} bp1;
struct
{
BPS *p;
} bps1;
struct
{
NOTCHDB *p;
} ndb;
struct
{
NBP *p;
} nbp0;
struct
{
BPSNBA *p;
} bpsnba;
struct
{
SNBA *p;
} snba;
struct
{
SENDER *p;
} sender;
struct
{
AMSQ *p;
} amsq;
struct
{
AMD *p;
} amd;
struct
{
FMD *p;
} fmd;
struct
{
FMSQ *p;
} fmsq;
struct
{
EQP *p;
} eqp;
struct
{
ANF *p;
} anf;
struct
{
ANR *p;
} anr;
struct
{
EMNR *p;
} emnr;
struct
{
WCPAGC *p;
} agc;
struct
{
SPEAK *p;
} speak;
struct
{
MPEAK *p;
} mpeak;
struct
{
PANEL *p;
} panel;
struct
{
SIPHON *p;
} sip1;
struct
{
CBL *p;
} cbl;
struct
{
SSQL *p;
} ssql;
static RXA* create_rxa (
int in_rate, // input samplerate
int out_rate, // output samplerate
int in_size, // input buffsize (complex samples) in a fexchange() operation
int dsp_rate, // sample rate for mainstream dsp processing
int dsp_size, // number complex samples processed per buffer in mainstream dsp processing
int dsp_insize, // size (complex samples) of the output of the r1 (input) buffer
int dsp_outsize, // size (complex samples) of the input of the r2 (output) buffer
int out_size // output buffsize (complex samples) in a fexchange() operation
);
static void destroy_rxa (RXA *rxa);
static void flush_rxa (RXA *rxa);
static void xrxa (RXA *rxa);
static void setInputSamplerate (RXA *rxa, int dsp_insize, int in_rate);
static void setOutputSamplerate (RXA *rxa, int dsp_outsize, int out_rate);
static void setDSPSamplerate (RXA *rxa, int dsp_insize, int dsp_outsize, int dsp_rate);
static void setDSPBuffsize (RXA *rxa, int dsp_insize, int dsp_size, int dsp_outsize);
// RXA Properties
static void SetMode (RXA& rxa, int mode);
static void ResCheck (RXA& rxa);
static void bp1Check (RXA& rxa, int amd_run, int snba_run, int emnr_run, int anf_run, int anr_run);
static void bp1Set (RXA& rxa);
static void bpsnbaCheck (RXA& rxa, int mode, int notch_run);
static void bpsnbaSet (RXA& rxa);
// Collectives
static void SetPassband (RXA& rxa, double f_low, double f_high);
static void SetNC (RXA& rxa, int nc);
static void SetMP (RXA& rxa, int mp);
};
} // namespace WDSP
#endif

998
wdsp/TXA.cpp Normal file
View File

@ -0,0 +1,998 @@
/* TXA.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2014, 2016, 2017, 2021, 2023 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "ammod.hpp"
#include "meter.hpp"
#include "resample.hpp"
#include "patchpanel.hpp"
#include "amsq.hpp"
#include "eq.hpp"
#include "iir.hpp"
#include "cfcomp.hpp"
#include "compress.hpp"
#include "bandpass.hpp"
#include "bps.hpp"
#include "osctrl.hpp"
#include "wcpAGC.hpp"
#include "emph.hpp"
#include "fmmod.hpp"
#include "siphon.hpp"
#include "gen.hpp"
#include "slew.hpp"
#include "iqc.hpp"
#include "cfir.hpp"
#include "TXA.hpp"
namespace WDSP {
TXA* TXA::create_txa (
int in_rate, // input samplerate
int out_rate, // output samplerate
int in_size, // input buffsize (complex samples) in a fexchange() operation
int dsp_rate, // sample rate for mainstream dsp processing
int dsp_size, // number complex samples processed per buffer in mainstream dsp processing
int dsp_insize, // size (complex samples) of the output of the r1 (input) buffer
int dsp_outsize, // size (complex samples) of the input of the r2 (output) buffer
int out_size // output buffsize (complex samples) in a fexchange() operation
)
{
TXA *txa = new TXA;
txa->in_rate = in_rate;
txa->out_rate = out_rate;
txa->in_size = in_size;
txa->dsp_rate = dsp_rate;
txa->dsp_size = dsp_size;
txa->dsp_insize = dsp_insize;
txa->dsp_outsize = dsp_outsize;
txa->out_size = out_size;
txa->mode = TXA_LSB;
txa->f_low = -5000.0;
txa->f_high = - 100.0;
txa->inbuff = new double[1 * txa->dsp_insize * 2]; // (double *) malloc0 (1 * txa->dsp_insize * sizeof (complex));
txa->outbuff = new double[1 * txa->dsp_outsize * 2]; // (double *) malloc0 (1 * txa->dsp_outsize * sizeof (complex));
txa->midbuff = new double[3 * txa->dsp_size * 2]; //(double *) malloc0 (2 * txa->dsp_size * sizeof (complex));
txa->rsmpin.p = RESAMPLE::create_resample (
0, // run - will be turned on below if needed
txa->dsp_insize, // input buffer size
txa->inbuff, // pointer to input buffer
txa->midbuff, // pointer to output buffer
txa->in_rate, // input sample rate
txa->dsp_rate, // output sample rate
0.0, // select cutoff automatically
0, // select ncoef automatically
1.0); // gain
txa->gen0.p = GEN::create_gen (
0, // run
txa->dsp_size, // buffer size
txa->midbuff, // input buffer
txa->midbuff, // output buffer
txa->dsp_rate, // sample rate
2); // mode
txa->panel.p = PANEL::create_panel (
1, // run
txa->dsp_size, // size
txa->midbuff, // pointer to input buffer
txa->midbuff, // pointer to output buffer
1.0, // gain1
1.0, // gain2I
1.0, // gain2Q
2, // 1 to use Q, 2 to use I for input
0); // 0, no copy
txa->phrot.p = PHROT::create_phrot (
0, // run
txa->dsp_size, // size
txa->midbuff, // input buffer
txa->midbuff, // output buffer
txa->dsp_rate, // samplerate
338.0, // 1/2 of phase frequency
8); // number of stages
txa->micmeter.p = METER::create_meter (
1, // run
0, // optional pointer to another 'run'
txa->dsp_size, // size
txa->midbuff, // pointer to buffer
txa->dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
txa->meter, // result vector
txa->pmtupdate, // locks for meter access
TXA_MIC_AV, // index for average value
TXA_MIC_PK, // index for peak value
-1, // index for gain value
0); // pointer for gain computation
txa->amsq.p = AMSQ::create_amsq (
0, // run
txa->dsp_size, // size
txa->midbuff, // input buffer
txa->midbuff, // output buffer
txa->midbuff, // trigger buffer
txa->dsp_rate, // sample rate
0.010, // time constant for averaging signal
0.004, // up-slew time
0.004, // down-slew time
0.180, // signal level to initiate tail
0.200, // signal level to initiate unmute
0.000, // minimum tail length
0.025, // maximum tail length
0.200); // muted gain
{
double default_F[11] = {0.0, 32.0, 63.0, 125.0, 250.0, 500.0, 1000.0, 2000.0, 4000.0, 8000.0, 16000.0};
double default_G[11] = {0.0, -12.0, -12.0, -12.0, -1.0, +1.0, +4.0, +9.0, +12.0, -10.0, -10.0};
//double default_G[11] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
txa->eqp.p = EQP::create_eqp (
0, // run - OFF by default
txa->dsp_size, // size
std::max(2048, txa->dsp_size), // number of filter coefficients
0, // minimum phase flag
txa->midbuff, // pointer to input buffer
txa->midbuff, // pointer to output buffer
10, // nfreqs
default_F, // vector of frequencies
default_G, // vector of gain values
0, // cutoff mode
0, // wintype
txa->dsp_rate); // samplerate
}
txa->eqmeter.p = METER::create_meter (
1, // run
&(txa->eqp.p->run), // pointer to eqp 'run'
txa->dsp_size, // size
txa->midbuff, // pointer to buffer
txa->dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
txa->meter, // result vector
txa->pmtupdate, // locks for meter access
TXA_EQ_AV, // index for average value
TXA_EQ_PK, // index for peak value
-1, // index for gain value
0); // pointer for gain computation
txa->preemph.p = EMPHP::create_emphp (
0, // run
1, // position
txa->dsp_size, // size
std::max(2048, txa->dsp_size), // number of filter coefficients
0, // minimum phase flag
txa->midbuff, // input buffer
txa->midbuff, // output buffer,
txa->dsp_rate, // sample rate
0, // pre-emphasis type
300.0, // f_low
3000.0); // f_high
txa->leveler.p = WCPAGC::create_wcpagc (
0, // run - OFF by default
5, // mode
0, // 0 for max(I,Q), 1 for envelope
txa->midbuff, // input buff pointer
txa->midbuff, // output buff pointer
txa->dsp_size, // io_buffsize
txa->dsp_rate, // sample rate
0.001, // tau_attack
0.500, // tau_decay
6, // n_tau
1.778, // max_gain
1.0, // var_gain
1.0, // fixed_gain
1.0, // max_input
1.05, // out_targ
0.250, // tau_fast_backaverage
0.005, // tau_fast_decay
5.0, // pop_ratio
0, // hang_enable
0.500, // tau_hang_backmult
0.500, // hangtime
2.000, // hang_thresh
0.100); // tau_hang_decay
txa->lvlrmeter.p = METER::create_meter (
1, // run
&(txa->leveler.p->run), // pointer to leveler 'run'
txa->dsp_size, // size
txa->midbuff, // pointer to buffer
txa->dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
txa->meter, // result vector
txa->pmtupdate, // locks for meter access
TXA_LVLR_AV, // index for average value
TXA_LVLR_PK, // index for peak value
TXA_LVLR_GAIN, // index for gain value
&txa->leveler.p->gain); // pointer for gain computation
{
double default_F[5] = {200.0, 1000.0, 2000.0, 3000.0, 4000.0};
double default_G[5] = {0.0, 5.0, 10.0, 10.0, 5.0};
double default_E[5] = {7.0, 7.0, 7.0, 7.0, 7.0};
txa->cfcomp.p = CFCOMP::create_cfcomp(
0, // run
0, // position
0, // post-equalizer run
txa->dsp_size, // size
txa->midbuff, // input buffer
txa->midbuff, // output buffer
2048, // fft size
4, // overlap
txa->dsp_rate, // samplerate
1, // window type
0, // compression method
5, // nfreqs
0.0, // pre-compression
0.0, // pre-postequalization
default_F, // frequency array
default_G, // compression array
default_E, // eq array
0.25, // metering time constant
0.50); // display time constant
}
txa->cfcmeter.p = METER::create_meter (
1, // run
&(txa->cfcomp.p->run), // pointer to eqp 'run'
txa->dsp_size, // size
txa->midbuff, // pointer to buffer
txa->dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
txa->meter, // result vector
txa->pmtupdate, // locks for meter access
TXA_CFC_AV, // index for average value
TXA_CFC_PK, // index for peak value
TXA_CFC_GAIN, // index for gain value
&txa->cfcomp.p->gain); // pointer for gain computation
txa->bp0.p = BANDPASS::create_bandpass (
1, // always runs
0, // position
txa->dsp_size, // size
std::max(2048, txa->dsp_size), // number of coefficients
0, // flag for minimum phase
txa->midbuff, // pointer to input buffer
txa->midbuff, // pointer to output buffer
txa->f_low, // low freq cutoff
txa->f_high, // high freq cutoff
txa->dsp_rate, // samplerate
1, // wintype
2.0); // gain
txa->compressor.p = COMPRESSOR::create_compressor (
0, // run - OFF by default
txa->dsp_size, // size
txa->midbuff, // pointer to input buffer
txa->midbuff, // pointer to output buffer
3.0); // gain
txa->bp1.p = BANDPASS::create_bandpass (
0, // ONLY RUNS WHEN COMPRESSOR IS USED
0, // position
txa->dsp_size, // size
std::max(2048, txa->dsp_size), // number of coefficients
0, // flag for minimum phase
txa->midbuff, // pointer to input buffer
txa->midbuff, // pointer to output buffer
txa->f_low, // low freq cutoff
txa->f_high, // high freq cutoff
txa->dsp_rate, // samplerate
1, // wintype
2.0); // gain
txa->osctrl.p = OSCTRL::create_osctrl (
0, // run
txa->dsp_size, // size
txa->midbuff, // input buffer
txa->midbuff, // output buffer
txa->dsp_rate, // sample rate
1.95); // gain for clippings
txa->bp2.p = BANDPASS::create_bandpass (
0, // ONLY RUNS WHEN COMPRESSOR IS USED
0, // position
txa->dsp_size, // size
std::max(2048, txa->dsp_size), // number of coefficients
0, // flag for minimum phase
txa->midbuff, // pointer to input buffer
txa->midbuff, // pointer to output buffer
txa->f_low, // low freq cutoff
txa->f_high, // high freq cutoff
txa->dsp_rate, // samplerate
1, // wintype
1.0); // gain
txa->compmeter.p = METER::create_meter (
1, // run
&(txa->compressor.p->run), // pointer to compressor 'run'
txa->dsp_size, // size
txa->midbuff, // pointer to buffer
txa->dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
txa->meter, // result vector
txa->pmtupdate, // locks for meter access
TXA_COMP_AV, // index for average value
TXA_COMP_PK, // index for peak value
-1, // index for gain value
0); // pointer for gain computation
txa->alc.p = WCPAGC::create_wcpagc (
1, // run - always ON
5, // mode
1, // 0 for max(I,Q), 1 for envelope
txa->midbuff, // input buff pointer
txa->midbuff, // output buff pointer
txa->dsp_size, // io_buffsize
txa->dsp_rate, // sample rate
0.001, // tau_attack
0.010, // tau_decay
6, // n_tau
1.0, // max_gain
1.0, // var_gain
1.0, // fixed_gain
1.0, // max_input
1.0, // out_targ
0.250, // tau_fast_backaverage
0.005, // tau_fast_decay
5.0, // pop_ratio
0, // hang_enable
0.500, // tau_hang_backmult
0.500, // hangtime
2.000, // hang_thresh
0.100); // tau_hang_decay
txa->ammod.p = AMMOD::create_ammod (
0, // run - OFF by default
0, // mode: 0=>AM, 1=>DSB
txa->dsp_size, // size
txa->midbuff, // pointer to input buffer
txa->midbuff, // pointer to output buffer
0.5); // carrier level
txa->fmmod.p = FMMOD::create_fmmod (
0, // run - OFF by default
txa->dsp_size, // size
txa->midbuff, // pointer to input buffer
txa->midbuff, // pointer to input buffer
txa->dsp_rate, // samplerate
5000.0, // deviation
300.0, // low cutoff frequency
3000.0, // high cutoff frequency
1, // ctcss run control
0.10, // ctcss level
100.0, // ctcss frequency
1, // run bandpass filter
std::max(2048, txa->dsp_size), // number coefficients for bandpass filter
0); // minimum phase flag
txa->gen1.p = GEN::create_gen (
0, // run
txa->dsp_size, // buffer size
txa->midbuff, // input buffer
txa->midbuff, // output buffer
txa->dsp_rate, // sample rate
0); // mode
txa->uslew.p = USLEW::create_uslew (
txa,
&(txa->upslew), // pointer to channel upslew flag
txa->dsp_size, // buffer size
txa->midbuff, // input buffer
txa->midbuff, // output buffer
txa->dsp_rate, // sample rate
0.000, // delay time
0.005); // upslew time
txa->alcmeter.p = METER::create_meter (
1, // run
0, // optional pointer to a 'run'
txa->dsp_size, // size
txa->midbuff, // pointer to buffer
txa->dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
txa->meter, // result vector
txa->pmtupdate, // locks for meter access
TXA_ALC_AV, // index for average value
TXA_ALC_PK, // index for peak value
TXA_ALC_GAIN, // index for gain value
&txa->alc.p->gain); // pointer for gain computation
txa->sip1.p = SIPHON::create_siphon (
1, // run
0, // position
0, // mode
0, // disp
txa->dsp_size, // input buffer size
txa->midbuff, // input buffer
16384, // number of samples to buffer
16384, // fft size for spectrum
1); // specmode
// txa->calcc.p = create_calcc (
// channel, // channel number
// 1, // run calibration
// 1024, // input buffer size
// txa->in_rate, // samplerate
// 16, // ints
// 256, // spi
// (1.0 / 0.4072), // hw_scale
// 0.1, // mox delay
// 0.0, // loop delay
// 0.8, // ptol
// 0, // mox
// 0, // solidmox
// 1, // pin mode
// 1, // map mode
// 0, // stbl mode
// 256, // pin samples
// 0.9); // alpha
txa->iqc.p0 = txa->iqc.p1 = IQC::create_iqc (
0, // run
txa->dsp_size, // size
txa->midbuff, // input buffer
txa->midbuff, // output buffer
(double)txa->dsp_rate, // sample rate
16, // ints
0.005, // changeover time
256); // spi
txa->cfir.p = CFIR::create_cfir(
0, // run
txa->dsp_size, // size
std::max(2048, txa->dsp_size), // number of filter coefficients
0, // minimum phase flag
txa->midbuff, // input buffer
txa->midbuff, // output buffer
txa->dsp_rate, // input sample rate
txa->out_rate, // CIC input sample rate
1, // CIC differential delay
640, // CIC interpolation factor
5, // CIC integrator-comb pairs
20000.0, // cutoff frequency
2, // brick-wall windowed rolloff
0.0, // raised-cosine transition width
0); // window type
txa->rsmpout.p = RESAMPLE::create_resample (
0, // run - will be turned ON below if needed
txa->dsp_size, // input size
txa->midbuff, // pointer to input buffer
txa->outbuff, // pointer to output buffer
txa->dsp_rate, // input sample rate
txa->out_rate, // output sample rate
0.0, // select cutoff automatically
0, // select ncoef automatically
0.980); // gain
txa->outmeter.p = METER::create_meter (
1, // run
0, // optional pointer to another 'run'
txa->dsp_outsize, // size
txa->outbuff, // pointer to buffer
txa->out_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
txa->meter, // result vector
txa->pmtupdate, // locks for meter access
TXA_OUT_AV, // index for average value
TXA_OUT_PK, // index for peak value
-1, // index for gain value
0); // pointer for gain computation
// turn OFF / ON resamplers as needed
ResCheck (*txa);
return txa;
}
void TXA::destroy_txa (TXA *txa)
{
// in reverse order, free each item we created
METER::destroy_meter (txa->outmeter.p);
RESAMPLE::destroy_resample (txa->rsmpout.p);
CFIR::destroy_cfir(txa->cfir.p);
// destroy_calcc (txa->calcc.p);
IQC::destroy_iqc (txa->iqc.p0);
SIPHON::destroy_siphon (txa->sip1.p);
METER::destroy_meter (txa->alcmeter.p);
USLEW::destroy_uslew (txa->uslew.p);
GEN::destroy_gen (txa->gen1.p);
FMMOD::destroy_fmmod (txa->fmmod.p);
AMMOD::destroy_ammod (txa->ammod.p);
WCPAGC::destroy_wcpagc (txa->alc.p);
METER::destroy_meter (txa->compmeter.p);
BANDPASS::destroy_bandpass (txa->bp2.p);
OSCTRL::destroy_osctrl (txa->osctrl.p);
BANDPASS::destroy_bandpass (txa->bp1.p);
COMPRESSOR::destroy_compressor (txa->compressor.p);
BANDPASS::destroy_bandpass (txa->bp0.p);
METER::destroy_meter (txa->cfcmeter.p);
CFCOMP::destroy_cfcomp (txa->cfcomp.p);
METER::destroy_meter (txa->lvlrmeter.p);
WCPAGC::destroy_wcpagc (txa->leveler.p);
EMPHP::destroy_emphp (txa->preemph.p);
METER::destroy_meter (txa->eqmeter.p);
EQP::destroy_eqp (txa->eqp.p);
AMSQ::destroy_amsq (txa->amsq.p);
METER::destroy_meter (txa->micmeter.p);
PHROT::destroy_phrot (txa->phrot.p);
PANEL::destroy_panel (txa->panel.p);
GEN::destroy_gen (txa->gen0.p);
RESAMPLE::destroy_resample (txa->rsmpin.p);
delete[] (txa->midbuff);
delete[] (txa->outbuff);
delete[] (txa->inbuff);
delete txa;
}
void flush_txa (TXA* txa)
{
memset (txa->inbuff, 0, 1 * txa->dsp_insize * sizeof (dcomplex));
memset (txa->outbuff, 0, 1 * txa->dsp_outsize * sizeof (dcomplex));
memset (txa->midbuff, 0, 2 * txa->dsp_size * sizeof (dcomplex));
RESAMPLE::flush_resample (txa->rsmpin.p);
GEN::flush_gen (txa->gen0.p);
PANEL::flush_panel (txa->panel.p);
PHROT::flush_phrot (txa->phrot.p);
METER::flush_meter (txa->micmeter.p);
AMSQ::flush_amsq (txa->amsq.p);
EQP::flush_eqp (txa->eqp.p);
METER::flush_meter (txa->eqmeter.p);
EMPHP::flush_emphp (txa->preemph.p);
WCPAGC::flush_wcpagc (txa->leveler.p);
METER::flush_meter (txa->lvlrmeter.p);
CFCOMP::flush_cfcomp (txa->cfcomp.p);
METER::flush_meter (txa->cfcmeter.p);
BANDPASS::flush_bandpass (txa->bp0.p);
COMPRESSOR::flush_compressor (txa->compressor.p);
BANDPASS::flush_bandpass (txa->bp1.p);
OSCTRL::flush_osctrl (txa->osctrl.p);
BANDPASS::flush_bandpass (txa->bp2.p);
METER::flush_meter (txa->compmeter.p);
WCPAGC::flush_wcpagc (txa->alc.p);
AMMOD::flush_ammod (txa->ammod.p);
FMMOD::flush_fmmod (txa->fmmod.p);
GEN::flush_gen (txa->gen1.p);
USLEW::flush_uslew (txa->uslew.p);
METER::flush_meter (txa->alcmeter.p);
SIPHON::flush_siphon (txa->sip1.p);
IQC::flush_iqc (txa->iqc.p0);
CFIR::flush_cfir(txa->cfir.p);
RESAMPLE::flush_resample (txa->rsmpout.p);
METER::flush_meter (txa->outmeter.p);
}
void xtxa (TXA* txa)
{
RESAMPLE::xresample (txa->rsmpin.p); // input resampler
GEN::xgen (txa->gen0.p); // input signal generator
PANEL::xpanel (txa->panel.p); // includes MIC gain
PHROT::xphrot (txa->phrot.p); // phase rotator
METER::xmeter (txa->micmeter.p); // MIC meter
AMSQ::xamsqcap (txa->amsq.p); // downward expander capture
AMSQ::xamsq (txa->amsq.p); // downward expander action
EQP::xeqp (txa->eqp.p); // pre-EQ
METER::xmeter (txa->eqmeter.p); // EQ meter
EMPHP::xemphp (txa->preemph.p, 0); // FM pre-emphasis (first option)
WCPAGC::xwcpagc (txa->leveler.p); // Leveler
METER::xmeter (txa->lvlrmeter.p); // Leveler Meter
CFCOMP::xcfcomp (txa->cfcomp.p, 0); // Continuous Frequency Compressor with post-EQ
METER::xmeter (txa->cfcmeter.p); // CFC+PostEQ Meter
BANDPASS::xbandpass (txa->bp0.p, 0); // primary bandpass filter
COMPRESSOR::xcompressor (txa->compressor.p); // COMP compressor
BANDPASS::xbandpass (txa->bp1.p, 0); // aux bandpass (runs if COMP)
OSCTRL::xosctrl (txa->osctrl.p); // CESSB Overshoot Control
BANDPASS::xbandpass (txa->bp2.p, 0); // aux bandpass (runs if CESSB)
METER::xmeter (txa->compmeter.p); // COMP meter
WCPAGC::xwcpagc (txa->alc.p); // ALC
AMMOD::xammod (txa->ammod.p); // AM Modulator
EMPHP::xemphp (txa->preemph.p, 1); // FM pre-emphasis (second option)
FMMOD::xfmmod (txa->fmmod.p); // FM Modulator
GEN::xgen (txa->gen1.p); // output signal generator (TUN and Two-tone)
USLEW::xuslew (txa->uslew.p); // up-slew for AM, FM, and gens
METER::xmeter (txa->alcmeter.p); // ALC Meter
SIPHON::xsiphon (txa->sip1.p, 0); // siphon data for display
IQC::xiqc (txa->iqc.p0); // PureSignal correction
CFIR::xcfir(txa->cfir.p); // compensating FIR filter (used Protocol_2 only)
RESAMPLE::xresample (txa->rsmpout.p); // output resampler
METER::xmeter (txa->outmeter.p); // output meter
// print_peak_env ("env_exception.txt", txa->dsp_outsize, txa->outbuff, 0.7);
}
void TXA::setInputSamplerate (TXA *txa, int dsp_insize, int in_rate)
{
txa->csDSP.lock();
txa->dsp_insize = dsp_insize;
txa->in_rate = in_rate;
// buffers
delete[] (txa->inbuff);
txa->inbuff = new double[1 * txa->dsp_insize * 2]; //(double *)malloc0(1 * txa->dsp_insize * sizeof(complex));
// input resampler
RESAMPLE::setBuffers_resample (txa->rsmpin.p, txa->inbuff, txa->midbuff);
RESAMPLE::setSize_resample (txa->rsmpin.p, txa->dsp_insize);
RESAMPLE::setInRate_resample (txa->rsmpin.p, txa->in_rate);
ResCheck (*txa);
txa->csDSP.unlock();
}
void TXA::setOutputSamplerate (TXA* txa, int dsp_outsize, int out_rate)
{
txa->csDSP.lock();
txa->dsp_outsize = dsp_outsize;
txa->out_rate = out_rate;
// buffers
delete[] (txa->outbuff);
txa->outbuff = new double[1 * txa->dsp_outsize * 2]; // (double *)malloc0(1 * txa->dsp_outsize * sizeof(complex));
// cfir - needs to know input rate of firmware CIC
CFIR::setOutRate_cfir (txa->cfir.p, txa->out_rate);
// output resampler
RESAMPLE::setBuffers_resample (txa->rsmpout.p, txa->midbuff, txa->outbuff);
RESAMPLE::setOutRate_resample (txa->rsmpout.p, txa->out_rate);
ResCheck (*txa);
// output meter
METER::setBuffers_meter (txa->outmeter.p, txa->outbuff);
METER::setSize_meter (txa->outmeter.p, txa->dsp_outsize);
METER::setSamplerate_meter (txa->outmeter.p, txa->out_rate);
txa->csDSP.unlock();
}
void TXA::setDSPSamplerate (TXA *txa, int dsp_insize, int dsp_outsize, int dsp_rate)
{
txa->csDSP.lock();
txa->dsp_insize = dsp_insize;
txa->dsp_outsize = dsp_outsize;
txa->dsp_rate = dsp_rate;
// buffers
delete[] (txa->inbuff);
txa->inbuff = new double[1 * txa->dsp_insize * 2]; // (double *)malloc0(1 * txa->dsp_insize * sizeof(complex));
delete[] (txa->outbuff);
txa->outbuff = new double[1 * txa->dsp_outsize * 2]; // (double *)malloc0(1 * txa->dsp_outsize * sizeof(complex));
// input resampler
RESAMPLE::setBuffers_resample (txa->rsmpin.p, txa->inbuff, txa->midbuff);
RESAMPLE::setSize_resample (txa->rsmpin.p, txa->dsp_insize);
RESAMPLE::setOutRate_resample (txa->rsmpin.p, txa->dsp_rate);
// dsp_rate blocks
GEN::setSamplerate_gen (txa->gen0.p, txa->dsp_rate);
PANEL::setSamplerate_panel (txa->panel.p, txa->dsp_rate);
PHROT::setSamplerate_phrot (txa->phrot.p, txa->dsp_rate);
METER::setSamplerate_meter (txa->micmeter.p, txa->dsp_rate);
AMSQ::setSamplerate_amsq (txa->amsq.p, txa->dsp_rate);
EQP::setSamplerate_eqp (txa->eqp.p, txa->dsp_rate);
METER::setSamplerate_meter (txa->eqmeter.p, txa->dsp_rate);
EMPHP::setSamplerate_emphp (txa->preemph.p, txa->dsp_rate);
WCPAGC::setSamplerate_wcpagc (txa->leveler.p, txa->dsp_rate);
METER::setSamplerate_meter (txa->lvlrmeter.p, txa->dsp_rate);
CFCOMP::setSamplerate_cfcomp (txa->cfcomp.p, txa->dsp_rate);
METER::setSamplerate_meter (txa->cfcmeter.p, txa->dsp_rate);
BANDPASS::setSamplerate_bandpass (txa->bp0.p, txa->dsp_rate);
COMPRESSOR::setSamplerate_compressor (txa->compressor.p, txa->dsp_rate);
BANDPASS::setSamplerate_bandpass (txa->bp1.p, txa->dsp_rate);
OSCTRL::setSamplerate_osctrl (txa->osctrl.p, txa->dsp_rate);
BANDPASS::setSamplerate_bandpass (txa->bp2.p, txa->dsp_rate);
METER::setSamplerate_meter (txa->compmeter.p, txa->dsp_rate);
WCPAGC::setSamplerate_wcpagc (txa->alc.p, txa->dsp_rate);
AMMOD::setSamplerate_ammod (txa->ammod.p, txa->dsp_rate);
FMMOD::setSamplerate_fmmod (txa->fmmod.p, txa->dsp_rate);
GEN::setSamplerate_gen (txa->gen1.p, txa->dsp_rate);
USLEW::setSamplerate_uslew (txa->uslew.p, txa->dsp_rate);
METER::setSamplerate_meter (txa->alcmeter.p, txa->dsp_rate);
SIPHON::setSamplerate_siphon (txa->sip1.p, txa->dsp_rate);
IQC::setSamplerate_iqc (txa->iqc.p0, txa->dsp_rate);
CFIR::setSamplerate_cfir (txa->cfir.p, txa->dsp_rate);
// output resampler
RESAMPLE::setBuffers_resample (txa->rsmpout.p, txa->midbuff, txa->outbuff);
RESAMPLE::setInRate_resample (txa->rsmpout.p, txa->dsp_rate);
ResCheck (*txa);
// output meter
METER::setBuffers_meter (txa->outmeter.p, txa->outbuff);
METER::setSize_meter (txa->outmeter.p, txa->dsp_outsize);
txa->csDSP.unlock();
}
void TXA::setDSPBuffsize (TXA *txa, int dsp_insize, int dsp_size, int dsp_outsize)
{
txa->csDSP.lock();
txa->dsp_insize = dsp_insize;
txa->dsp_size = dsp_size;
txa->dsp_outsize = dsp_outsize;
// buffers
delete[] (txa->inbuff);
txa->inbuff = new double[1 * txa->dsp_insize * 2]; // (double *)malloc0(1 * txa->dsp_insize * sizeof(complex));
delete[] (txa->midbuff);
txa->midbuff = new double[2 * txa->dsp_size * 2]; // (double *)malloc0(2 * txa->dsp_size * sizeof(complex));
delete[] (txa->outbuff);
txa->outbuff = new double[1 * txa->dsp_outsize * 2]; // (double *)malloc0(1 * txa->dsp_outsize * sizeof(complex));
// input resampler
RESAMPLE::setBuffers_resample (txa->rsmpin.p, txa->inbuff, txa->midbuff);
RESAMPLE::setSize_resample (txa->rsmpin.p, txa->dsp_insize);
// dsp_size blocks
GEN::setBuffers_gen (txa->gen0.p, txa->midbuff, txa->midbuff);
GEN::setSize_gen (txa->gen0.p, txa->dsp_size);
PANEL::setBuffers_panel (txa->panel.p, txa->midbuff, txa->midbuff);
PANEL::setSize_panel (txa->panel.p, txa->dsp_size);
PHROT::setBuffers_phrot (txa->phrot.p, txa->midbuff, txa->midbuff);
PHROT::setSize_phrot (txa->phrot.p, txa->dsp_size);
METER::setBuffers_meter (txa->micmeter.p, txa->midbuff);
METER::setSize_meter (txa->micmeter.p, txa->dsp_size);
AMSQ::setBuffers_amsq (txa->amsq.p, txa->midbuff, txa->midbuff, txa->midbuff);
AMSQ::setSize_amsq (txa->amsq.p, txa->dsp_size);
EQP::setBuffers_eqp (txa->eqp.p, txa->midbuff, txa->midbuff);
EQP::setSize_eqp (txa->eqp.p, txa->dsp_size);
METER::setBuffers_meter (txa->eqmeter.p, txa->midbuff);
METER::setSize_meter (txa->eqmeter.p, txa->dsp_size);
EMPHP::setBuffers_emphp (txa->preemph.p, txa->midbuff, txa->midbuff);
EMPHP::setSize_emphp (txa->preemph.p, txa->dsp_size);
WCPAGC::setBuffers_wcpagc (txa->leveler.p, txa->midbuff, txa->midbuff);
WCPAGC::setSize_wcpagc (txa->leveler.p, txa->dsp_size);
METER::setBuffers_meter (txa->lvlrmeter.p, txa->midbuff);
METER::setSize_meter (txa->lvlrmeter.p, txa->dsp_size);
CFCOMP::setBuffers_cfcomp (txa->cfcomp.p, txa->midbuff, txa->midbuff);
CFCOMP::setSize_cfcomp (txa->cfcomp.p, txa->dsp_size);
METER::setBuffers_meter (txa->cfcmeter.p, txa->midbuff);
METER::setSize_meter (txa->cfcmeter.p, txa->dsp_size);
BANDPASS::setBuffers_bandpass (txa->bp0.p, txa->midbuff, txa->midbuff);
BANDPASS::setSize_bandpass (txa->bp0.p, txa->dsp_size);
COMPRESSOR::setBuffers_compressor (txa->compressor.p, txa->midbuff, txa->midbuff);
COMPRESSOR::setSize_compressor (txa->compressor.p, txa->dsp_size);
BANDPASS::setBuffers_bandpass (txa->bp1.p, txa->midbuff, txa->midbuff);
BANDPASS::setSize_bandpass (txa->bp1.p, txa->dsp_size);
OSCTRL::setBuffers_osctrl (txa->osctrl.p, txa->midbuff, txa->midbuff);
OSCTRL::setSize_osctrl (txa->osctrl.p, txa->dsp_size);
BANDPASS::setBuffers_bandpass (txa->bp2.p, txa->midbuff, txa->midbuff);
BANDPASS::setSize_bandpass (txa->bp2.p, txa->dsp_size);
METER::setBuffers_meter (txa->compmeter.p, txa->midbuff);
METER::setSize_meter (txa->compmeter.p, txa->dsp_size);
WCPAGC::setBuffers_wcpagc (txa->alc.p, txa->midbuff, txa->midbuff);
WCPAGC::setSize_wcpagc (txa->alc.p, txa->dsp_size);
AMMOD::setBuffers_ammod (txa->ammod.p, txa->midbuff, txa->midbuff);
AMMOD::setSize_ammod (txa->ammod.p, txa->dsp_size);
FMMOD::setBuffers_fmmod (txa->fmmod.p, txa->midbuff, txa->midbuff);
FMMOD::setSize_fmmod (txa->fmmod.p, txa->dsp_size);
GEN::setBuffers_gen (txa->gen1.p, txa->midbuff, txa->midbuff);
GEN::setSize_gen (txa->gen1.p, txa->dsp_size);
USLEW::setBuffers_uslew (txa->uslew.p, txa->midbuff, txa->midbuff);
USLEW::setSize_uslew (txa->uslew.p, txa->dsp_size);
METER::setBuffers_meter (txa->alcmeter.p, txa->midbuff);
METER::setSize_meter (txa->alcmeter.p, txa->dsp_size);
SIPHON::setBuffers_siphon (txa->sip1.p, txa->midbuff);
SIPHON::setSize_siphon (txa->sip1.p, txa->dsp_size);
IQC::setBuffers_iqc (txa->iqc.p0, txa->midbuff, txa->midbuff);
IQC::setSize_iqc (txa->iqc.p0, txa->dsp_size);
CFIR::setBuffers_cfir (txa->cfir.p, txa->midbuff, txa->midbuff);
CFIR::setSize_cfir (txa->cfir.p, txa->dsp_size);
// output resampler
RESAMPLE::setBuffers_resample (txa->rsmpout.p, txa->midbuff, txa->outbuff);
RESAMPLE::setSize_resample (txa->rsmpout.p, txa->dsp_size);
// output meter
METER::setBuffers_meter (txa->outmeter.p, txa->outbuff);
METER::setSize_meter (txa->outmeter.p, txa->dsp_outsize);
txa->csDSP.unlock();
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
void TXA::SetMode (TXA& txa, int mode)
{
if (txa.mode != mode)
{
txa.csDSP.lock();
txa.mode = mode;
txa.ammod.p->run = 0;
txa.fmmod.p->run = 0;
txa.preemph.p->run = 0;
switch (mode)
{
case TXA_AM:
case TXA_SAM:
txa.ammod.p->run = 1;
txa.ammod.p->mode = 0;
break;
case TXA_DSB:
txa.ammod.p->run = 1;
txa.ammod.p->mode = 1;
break;
case TXA_AM_LSB:
case TXA_AM_USB:
txa.ammod.p->run = 1;
txa.ammod.p->mode = 2;
break;
case TXA_FM:
txa.fmmod.p->run = 1;
txa.preemph.p->run = 1;
break;
default:
break;
}
SetupBPFilters (txa);
txa.csDSP.unlock();
}
}
void TXA::SetBandpassFreqs (TXA& txa, double f_low, double f_high)
{
if ((txa.f_low != f_low) || (txa.f_high != f_high))
{
txa.f_low = f_low;
txa.f_high = f_high;
SetupBPFilters (txa);
}
}
/********************************************************************************************************
* *
* TXA Internal Functions *
* *
********************************************************************************************************/
void TXA::ResCheck (TXA& txa)
{
RESAMPLE *a = txa.rsmpin.p;
if (txa.in_rate != txa.dsp_rate)
a->run = 1;
else
a->run = 0;
a = txa.rsmpout.p;
if (txa.dsp_rate != txa.out_rate)
a->run = 1;
else
a->run = 0;
}
int TXA::UslewCheck (TXA& txa)
{
return (txa.ammod.p->run == 1) ||
(txa.fmmod.p->run == 1) ||
(txa.gen0.p->run == 1) ||
(txa.gen1.p->run == 1);
}
void TXA::SetupBPFilters (TXA& txa)
{
txa.bp0.p->run = 1;
txa.bp1.p->run = 0;
txa.bp2.p->run = 0;
switch (txa.mode)
{
case TXA_LSB:
case TXA_USB:
case TXA_CWL:
case TXA_CWU:
case TXA_DIGL:
case TXA_DIGU:
case TXA_SPEC:
case TXA_DRM:
BANDPASS::CalcBandpassFilter (txa.bp0.p, txa.f_low, txa.f_high, 2.0);
if (txa.compressor.p->run)
{
BANDPASS::CalcBandpassFilter (txa.bp1.p, txa.f_low, txa.f_high, 2.0);
txa.bp1.p->run = 1;
if (txa.osctrl.p->run)
{
BANDPASS::CalcBandpassFilter (txa.bp2.p, txa.f_low, txa.f_high, 1.0);
txa.bp2.p->run = 1;
}
}
break;
case TXA_DSB:
case TXA_AM:
case TXA_SAM:
case TXA_FM:
if (txa.compressor.p->run)
{
BANDPASS::CalcBandpassFilter (txa.bp0.p, 0.0, txa.f_high, 2.0);
BANDPASS::CalcBandpassFilter (txa.bp1.p, 0.0, txa.f_high, 2.0);
txa.bp1.p->run = 1;
if (txa.osctrl.p->run)
{
BANDPASS::CalcBandpassFilter (txa.bp2.p, 0.0, txa.f_high, 1.0);
txa.bp2.p->run = 1;
}
}
else
{
BANDPASS::CalcBandpassFilter (txa.bp0.p, txa.f_low, txa.f_high, 1.0);
}
break;
case TXA_AM_LSB:
BANDPASS::CalcBandpassFilter (txa.bp0.p, -txa.f_high, 0.0, 2.0);
if (txa.compressor.p->run)
{
BANDPASS::CalcBandpassFilter (txa.bp1.p, -txa.f_high, 0.0, 2.0);
txa.bp1.p->run = 1;
if (txa.osctrl.p->run)
{
BANDPASS::CalcBandpassFilter (txa.bp2.p, -txa.f_high, 0.0, 1.0);
txa.bp2.p->run = 1;
}
}
break;
case TXA_AM_USB:
BANDPASS::CalcBandpassFilter (txa.bp0.p, 0.0, txa.f_high, 2.0);
if (txa.compressor.p->run)
{
BANDPASS::CalcBandpassFilter (txa.bp1.p, 0.0, txa.f_high, 2.0);
txa.bp1.p->run = 1;
if (txa.osctrl.p->run)
{
BANDPASS::CalcBandpassFilter (txa.bp2.p, 0.0, txa.f_high, 1.0);
txa.bp2.p->run = 1;
}
}
break;
}
}
/********************************************************************************************************
* *
* Collectives *
* *
********************************************************************************************************/
void TXA::SetNC (TXA& txa, int nc)
{
int oldstate = txa.state;
BANDPASS::SetBandpassNC (txa, nc);
EMPHP::SetFMEmphNC (txa, nc);
EQP::SetEQNC (txa, nc);
FMMOD::SetFMNC (txa, nc);
CFIR::SetCFIRNC (txa, nc);
txa.state = oldstate;
}
void TXA::SetMP (TXA& txa, int mp)
{
BANDPASS::SetBandpassMP (txa, mp);
EMPHP::SetFMEmphMP (txa, mp);
EQP::SetEQMP (txa, mp);
FMMOD::SetFMMP (txa, mp);
}
void TXA::SetFMAFFilter (TXA& txa, double low, double high)
{
EMPHP::SetFMPreEmphFreqs (txa, low, high);
FMMOD::SetFMAFFreqs (txa, low, high);
}
} // namespace WDSP

258
wdsp/TXA.hpp Normal file
View File

@ -0,0 +1,258 @@
/* TXA.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2017 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#ifndef wdsp_txa_h
#define wdsp_txa_h
#include <atomic>
#include <QRecursiveMutex>
#include "comm.hpp"
#include "unit.hpp"
#include "ammod.hpp"
#include "meter.hpp"
#include "resample.hpp"
#include "patchpanel.hpp"
#include "amsq.hpp"
#include "eq.hpp"
#include "iir.hpp"
#include "cfcomp.hpp"
#include "compress.hpp"
#include "bandpass.hpp"
#include "bps.hpp"
#include "osctrl.hpp"
#include "wcpAGC.hpp"
#include "emph.hpp"
#include "fmmod.hpp"
#include "siphon.hpp"
#include "gen.hpp"
#include "slew.hpp"
// #include "calcc.h"
#include "iqc.hpp"
#include "cfir.hpp"
#include "export.h"
namespace WDSP {
class METER;
class RESAMPLE;
class PANEL;
class AMSQ;
class EQP;
class PHROT;
class CFCOMP;
class COMPRESSOR;
class BANDPASS;
class BPS;
class OSCTRL;
class WCPAGC;
class AMMOD;
class EMPHP;
class FMMOD;
class SIPHON;
class GEN;
class USLEW;
class IQC;
class CFIR;
class WDSP_API TXA : public Unit
{
public:
enum txaMode
{
TXA_LSB,
TXA_USB,
TXA_DSB,
TXA_CWL,
TXA_CWU,
TXA_FM,
TXA_AM,
TXA_DIGU,
TXA_SPEC,
TXA_DIGL,
TXA_SAM,
TXA_DRM,
TXA_AM_LSB,
TXA_AM_USB
};
enum txaMeterType
{
TXA_MIC_PK,
TXA_MIC_AV,
TXA_EQ_PK,
TXA_EQ_AV,
TXA_LVLR_PK,
TXA_LVLR_AV,
TXA_LVLR_GAIN,
TXA_CFC_PK,
TXA_CFC_AV,
TXA_CFC_GAIN,
TXA_COMP_PK,
TXA_COMP_AV,
TXA_ALC_PK,
TXA_ALC_AV,
TXA_ALC_GAIN,
TXA_OUT_PK,
TXA_OUT_AV,
TXA_METERTYPE_LAST
};
double* inbuff;
double* outbuff;
double* midbuff;
int mode;
double f_low;
double f_high;
double meter[TXA_METERTYPE_LAST];
QRecursiveMutex *pmtupdate[TXA_METERTYPE_LAST];
std::atomic<long> upslew;
struct
{
METER *p;
} micmeter, eqmeter, lvlrmeter, cfcmeter, compmeter, alcmeter, outmeter;
struct
{
RESAMPLE *p;
} rsmpin, rsmpout;
struct
{
PANEL *p;
} panel;
struct
{
AMSQ *p;
} amsq;
struct
{
EQP *p;
} eqp;
struct
{
PHROT *p;
} phrot;
struct
{
CFCOMP *p;
} cfcomp;
struct
{
COMPRESSOR *p;
} compressor;
struct
{
BANDPASS *p;
} bp0, bp1, bp2;
struct
{
BPS *p;
} bps0, bps1, bps2;
struct
{
OSCTRL *p;
} osctrl;
struct
{
WCPAGC *p;
} leveler, alc;
struct
{
AMMOD *p;
} ammod;
struct
{
EMPHP *p;
} preemph;
struct
{
FMMOD *p;
} fmmod;
struct
{
SIPHON *p;
} sip1;
struct
{
GEN *p;
} gen0, gen1;
struct
{
USLEW *p;
} uslew;
// struct
// {
// CALCC *p;
// CRITICAL_SECTION cs_update;
// } calcc;
struct
{
IQC *p0, *p1;
// p0 for dsp-synchronized reference, p1 for other
} iqc;
struct
{
CFIR *p;
} cfir;
static TXA* create_txa (
int in_rate, // input samplerate
int out_rate, // output samplerate
int in_size, // input buffsize (complex samples) in a fexchange() operation
int dsp_rate, // sample rate for mainstream dsp processing
int dsp_size, // number complex samples processed per buffer in mainstream dsp processing
int dsp_insize, // size (complex samples) of the output of the r1 (input) buffer
int dsp_outsize, // size (complex samples) of the input of the r2 (output) buffer
int out_size // output buffsize (complex samples) in a fexchange() operation
);
static void destroy_txa (TXA *txa);
static void flush_txa (TXA *txa);
static void xtxa (TXA *txa);
static void setInputSamplerate (TXA *txa, int dsp_insize, int in_rate);
static void setOutputSamplerate (TXA *txa, int dsp_outsize, int out_rate);
static void setDSPSamplerate (TXA *txa, int dsp_insize, int dsp_outsize, int dsp_rate);
static void setDSPBuffsize (TXA *txa, int dsp_insize, int dsp_size, int dsp_outsize);
// TXA Properties
static void SetMode (TXA& txa, int mode);
static void SetBandpassFreqs (TXA& txa, double f_low, double f_high);
// Collectives
static void SetNC (TXA& txa, int nc);
static void SetMP (TXA& txa, int mp);
static void SetFMAFFilter (TXA& txa, double low, double high);
static void SetupBPFilters (TXA& txa);
static int UslewCheck (TXA& txa);
private:
static void ResCheck (TXA& txa);
};
} // namespace WDSP
#endif

305
wdsp/amd.cpp Normal file
View File

@ -0,0 +1,305 @@
/* amd.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2012, 2013 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include <cmath>
#include "comm.hpp"
#include "amd.hpp"
#include "anf.hpp"
#include "emnr.hpp"
#include "anr.hpp"
#include "snb.hpp"
#include "RXA.hpp"
namespace WDSP {
AMD* AMD::create_amd
(
int run,
int buff_size,
double *in_buff,
double *out_buff,
int mode,
int levelfade,
int sbmode,
int sample_rate,
double fmin,
double fmax,
double zeta,
double omegaN,
double tauR,
double tauI
)
{
AMD *a = new AMD();
a->run = run;
a->buff_size = buff_size;
a->in_buff = in_buff;
a->out_buff = out_buff;
a->mode = mode;
a->levelfade = levelfade;
a->sbmode = sbmode;
a->sample_rate = (double)sample_rate;
a->fmin = fmin;
a->fmax = fmax;
a->zeta = zeta;
a->omegaN = omegaN;
a->tauR = tauR;
a->tauI = tauI;
init_amd(a);
return a;
}
void AMD::destroy_amd(AMD *a)
{
delete a;
}
void AMD::init_amd(AMD *a)
{
//pll
a->omega_min = 2 * M_PI * a->fmin / a->sample_rate;
a->omega_max = 2 * M_PI * a->fmax / a->sample_rate;
a->g1 = 1.0 - std::exp(-2.0 * a->omegaN * a->zeta / a->sample_rate);
a->g2 = -a->g1 + 2.0 * (1 - exp(-a->omegaN * a->zeta / a->sample_rate) * cos(a->omegaN / a->sample_rate * sqrt(1.0 - a->zeta * a->zeta)));
a->phs = 0.0;
a->fil_out = 0.0;
a->omega = 0.0;
//fade leveler
a->dc = 0.0;
a->dc_insert = 0.0;
a->mtauR = exp(-1.0 / (a->sample_rate * a->tauR));
a->onem_mtauR = 1.0 - a->mtauR;
a->mtauI = exp(-1.0 / (a->sample_rate * a->tauI));
a->onem_mtauI = 1.0 - a->mtauI;
//sideband separation
a->c0[0] = -0.328201924180698;
a->c0[1] = -0.744171491539427;
a->c0[2] = -0.923022915444215;
a->c0[3] = -0.978490468768238;
a->c0[4] = -0.994128272402075;
a->c0[5] = -0.998458978159551;
a->c0[6] = -0.999790306259206;
a->c1[0] = -0.0991227952747244;
a->c1[1] = -0.565619728761389;
a->c1[2] = -0.857467122550052;
a->c1[3] = -0.959123933111275;
a->c1[4] = -0.988739372718090;
a->c1[5] = -0.996959189310611;
a->c1[6] = -0.999282492800792;
}
void AMD::flush_amd (AMD *a)
{
a->dc = 0.0;
a->dc_insert = 0.0;
}
void AMD::xamd (AMD *a)
{
int i;
double audio;
double vco[2];
double corr[2];
double det;
double del_out;
double ai, bi, aq, bq;
double ai_ps, bi_ps, aq_ps, bq_ps;
int j, k;
if (a->run)
{
switch (a->mode)
{
case 0: //AM Demodulator
{
for (i = 0; i < a->buff_size; i++)
{
audio = sqrt(a->in_buff[2 * i + 0] * a->in_buff[2 * i + 0] + a->in_buff[2 * i + 1] * a->in_buff[2 * i + 1]);
if (a->levelfade)
{
a->dc = a->mtauR * a->dc + a->onem_mtauR * audio;
a->dc_insert = a->mtauI * a->dc_insert + a->onem_mtauI * audio;
audio += a->dc_insert - a->dc;
}
a->out_buff[2 * i + 0] = audio;
a->out_buff[2 * i + 1] = audio;
}
break;
}
case 1: //Synchronous AM Demodulator with Sideband Separation
{
for (i = 0; i < a->buff_size; i++)
{
vco[0] = cos(a->phs);
vco[1] = sin(a->phs);
ai = a->in_buff[2 * i + 0] * vco[0];
bi = a->in_buff[2 * i + 0] * vco[1];
aq = a->in_buff[2 * i + 1] * vco[0];
bq = a->in_buff[2 * i + 1] * vco[1];
if (a->sbmode != 0)
{
a->a[0] = a->dsI;
a->b[0] = bi;
a->c[0] = a->dsQ;
a->d[0] = aq;
a->dsI = ai;
a->dsQ = bq;
for (j = 0; j < STAGES; j++)
{
k = 3 * j;
a->a[k + 3] = a->c0[j] * (a->a[k] - a->a[k + 5]) + a->a[k + 2];
a->b[k + 3] = a->c1[j] * (a->b[k] - a->b[k + 5]) + a->b[k + 2];
a->c[k + 3] = a->c0[j] * (a->c[k] - a->c[k + 5]) + a->c[k + 2];
a->d[k + 3] = a->c1[j] * (a->d[k] - a->d[k + 5]) + a->d[k + 2];
}
ai_ps = a->a[OUT_IDX];
bi_ps = a->b[OUT_IDX];
bq_ps = a->c[OUT_IDX];
aq_ps = a->d[OUT_IDX];
for (j = OUT_IDX + 2; j > 0; j--)
{
a->a[j] = a->a[j - 1];
a->b[j] = a->b[j - 1];
a->c[j] = a->c[j - 1];
a->d[j] = a->d[j - 1];
}
}
corr[0] = +ai + bq;
corr[1] = -bi + aq;
switch(a->sbmode)
{
case 0: //both sidebands
{
audio = corr[0];
break;
}
case 1: //LSB
{
audio = (ai_ps - bi_ps) + (aq_ps + bq_ps);
break;
}
case 2: //USB
{
audio = (ai_ps + bi_ps) - (aq_ps - bq_ps);
break;
}
}
if (a->levelfade)
{
a->dc = a->mtauR * a->dc + a->onem_mtauR * audio;
a->dc_insert = a->mtauI * a->dc_insert + a->onem_mtauI * corr[0];
audio += a->dc_insert - a->dc;
}
a->out_buff[2 * i + 0] = audio;
a->out_buff[2 * i + 1] = audio;
if ((corr[0] == 0.0) && (corr[1] == 0.0)) corr[0] = 1.0;
det = atan2(corr[1], corr[0]);
del_out = a->fil_out;
a->omega += a->g2 * det;
if (a->omega < a->omega_min) a->omega = a->omega_min;
if (a->omega > a->omega_max) a->omega = a->omega_max;
a->fil_out = a->g1 * det + a->omega;
a->phs += del_out;
while (a->phs >= 2 * M_PI) a->phs -= 2 * M_PI;
while (a->phs < 0.0) a->phs += 2 * M_PI;
}
break;
}
}
}
else if (a->in_buff != a->out_buff)
{
memcpy (a->out_buff, a->in_buff, a->buff_size * sizeof(dcomplex));
}
}
void AMD::setBuffers_amd (AMD *a, double* in, double* out)
{
a->in_buff = in;
a->out_buff = out;
}
void AMD::setSamplerate_amd (AMD *a, int rate)
{
a->sample_rate = rate;
init_amd(a);
}
void AMD::setSize_amd (AMD *a, int size)
{
a->buff_size = size;
}
/********************************************************************************************************
* *
* RXA Properties *
* *
********************************************************************************************************/
void AMD::SetAMDRun(RXA& rxa, int run)
{
AMD *a = rxa.amd.p;
if (a->run != run)
{
RXA::bp1Check (rxa, run, rxa.snba.p->run, rxa.emnr.p->run,
rxa.anf.p->run, rxa.anr.p->run);
rxa.csDSP.lock();
a->run = run;
RXA::bp1Set (rxa);
rxa.csDSP.unlock();
}
}
void AMD::SetAMDSBMode(RXA& rxa, int sbmode)
{
rxa.csDSP.lock();
rxa.amd.p->sbmode = sbmode;
rxa.csDSP.unlock();
}
void AMD::SetAMDFadeLevel(RXA& rxa, int levelfade)
{
rxa.csDSP.lock();
rxa.amd.p->levelfade = levelfade;
rxa.csDSP.unlock();
}
} // namesoace WDSP

116
wdsp/amd.hpp Normal file
View File

@ -0,0 +1,116 @@
/* amd.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2012, 2013 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#ifndef wdsp_amd_hpp
#define wdsp_amd_hpp
// ff defines for sbdemod
#ifndef STAGES
#define STAGES 7
#endif
#ifndef OUT_IDX
#define OUT_IDX (3 * STAGES)
#endif
#include "export.h"
namespace WDSP {
class RXA;
class WDSP_API AMD {
public:
int run;
int buff_size; // buffer size
double *in_buff; // pointer to input buffer
double *out_buff; // pointer to output buffer
int mode; // demodulation mode
double sample_rate; // sample rate
double dc; // dc component in demodulated output
double fmin; // pll - minimum carrier freq to lock
double fmax; // pll - maximum carrier freq to lock
double omega_min; // pll - minimum lock check parameter
double omega_max; // pll - maximum lock check parameter
double zeta; // pll - damping factor; as coded, must be <=1.0
double omegaN; // pll - natural frequency
double phs; // pll - phase accumulator
double omega; // pll - locked pll frequency
double fil_out; // pll - filter output
double g1, g2; // pll - filter gain parameters
double tauR; // carrier removal time constant
double tauI; // carrier insertion time constant
double mtauR; // carrier removal multiplier
double onem_mtauR; // 1.0 - carrier_removal_multiplier
double mtauI; // carrier insertion multiplier
double onem_mtauI; // 1.0 - carrier_insertion_multiplier
double a[3 * STAGES + 3]; // Filter a variables
double b[3 * STAGES + 3]; // Filter b variables
double c[3 * STAGES + 3]; // Filter c variables
double d[3 * STAGES + 3]; // Filter d variables
double c0[STAGES]; // Filter coefficients - path 0
double c1[STAGES]; // Filter coefficients - path 1
double dsI; // delayed sample, I path
double dsQ; // delayed sample, Q path
double dc_insert; // dc component to insert in output
int sbmode; // sideband mode
int levelfade; // Fade Leveler switch
static AMD* create_amd
(
int run,
int buff_size,
double *in_buff,
double *out_buff,
int mode,
int levelfade,
int sbmode,
int sample_rate,
double fmin,
double fmax,
double zeta,
double omegaN,
double tauR,
double tauI
);
static void init_amd (AMD *a);
static void destroy_amd (AMD *a);
static void flush_amd (AMD *a);
static void xamd (AMD *a);
static void setBuffers_amd (AMD *a, double* in, double* out);
static void setSamplerate_amd (AMD *a, int rate);
static void setSize_amd (AMD *a, int size);
// RXA Properties
static void SetAMDRun(RXA& rxa, int run);
static void SetAMDSBMode(RXA& rxa, int sbmode);
static void SetAMDFadeLevel(RXA& rxa, int levelfade);
};
} // namespace WDSP
#endif

119
wdsp/ammod.cpp Normal file
View File

@ -0,0 +1,119 @@
/* ammod.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2017 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include <cmath>
#include <QRecursiveMutex>
#include "ammod.hpp"
#include "comm.hpp"
#include "TXA.hpp"
namespace WDSP {
AMMOD* AMMOD::create_ammod (int run, int mode, int size, double* in, double* out, double c_level)
{
AMMOD *a = new AMMOD;
a->run = run;
a->mode = mode;
a->size = size;
a->in = in;
a->out = out;
a->c_level = c_level;
a->a_level = 1.0 - a->c_level;
a->mult = 1.0 / sqrt (2.0);
return a;
}
void AMMOD::destroy_ammod(AMMOD *a)
{
delete a;
}
void AMMOD::flush_ammod(AMMOD *)
{
}
void AMMOD::xammod(AMMOD *a)
{
if (a->run)
{
int i;
switch (a->mode)
{
case 0: // AM
for (i = 0; i < a->size; i++)
a->out[2 * i + 0] = a->out[2 * i + 1] = a->mult * (a->c_level + a->a_level * a->in[2 * i + 0]);
break;
case 1: // DSB
for (i = 0; i < a->size; i++)
a->out[2 * i + 0] = a->out[2 * i + 1] = a->mult * a->in[2 * i + 0];
break;
case 2: // SSB w/Carrier
for (i = 0; i < a->size; i++)
{
a->out[2 * i + 0] = a->mult * a->c_level + a->a_level * a->in[2 * i + 0];
a->out[2 * i + 1] = a->mult * a->c_level + a->a_level * a->in[2 * i + 1];
}
break;
}
}
else if (a->in != a->out)
memcpy (a->out, a->in, a->size * sizeof (dcomplex));
}
void AMMOD::setBuffers_ammod(AMMOD *a, double* in, double* out)
{
a->in = in;
a->out = out;
}
void AMMOD::setSamplerate_ammod(AMMOD *, int)
{
}
void AMMOD::setSize_ammod(AMMOD *a, int size)
{
a->size = size;
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
void AMMOD::SetAMCarrierLevel (TXA& txa, double c_level)
{
txa.csDSP.lock();
txa.ammod.p->c_level = c_level;
txa.ammod.p->a_level = 1.0 - c_level;
txa.csDSP.unlock();
}
} // namespace WDSP

62
wdsp/ammod.hpp Normal file
View File

@ -0,0 +1,62 @@
/* ammod.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#ifndef wdsp_ammod_h
#define wdsp_ammod_h
#include "export.h"
namespace WDSP {
class TXA;
class WDSP_API AMMOD
{
public:
int run;
int mode;
int size;
double* in;
double* out;
double c_level;
double a_level;
double mult;
static AMMOD* create_ammod(int run, int mode, int size, double* in, double* out, double c_level);
static void destroy_ammod (AMMOD *a);
static void flush_ammod (AMMOD *a);
static void xammod (AMMOD *a);
static void setBuffers_ammod (AMMOD *a, double* in, double* out);
static void setSamplerate_ammod (AMMOD *a, int rate);
static void setSize_ammod (AMMOD *a, int size);
// TXA Properties
static void SetAMCarrierLevel (TXA& txa, double c_level);
};
} // namespace WDSP
#endif

276
wdsp/amsq.cpp Normal file
View File

@ -0,0 +1,276 @@
/* amsq.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include <QRecursiveMutex>
#include "comm.hpp"
#include "amsq.hpp"
#include "RXA.hpp"
#include "TXA.hpp"
namespace WDSP {
void AMSQ::compute_slews(AMSQ *a)
{
int i;
double delta, theta;
delta = PI / (double)a->ntup;
theta = 0.0;
for (i = 0; i <= a->ntup; i++)
{
a->cup[i] = a->muted_gain + (1.0 - a->muted_gain) * 0.5 * (1.0 - cos (theta));
theta += delta;
}
delta = PI / (double)a->ntdown;
theta = 0.0;
for (i = 0; i <= a->ntdown; i++)
{
a->cdown[i] = a->muted_gain + (1.0 - a->muted_gain) * 0.5 * (1.0 + cos (theta));
theta += delta;
}
}
void AMSQ::calc_amsq(AMSQ *a)
{
// signal averaging
a->trigsig = new double[a->size * 2]; // (double *)malloc0(a->size * sizeof(dcomplex));
a->avm = exp(-1.0 / (a->rate * a->avtau));
a->onem_avm = 1.0 - a->avm;
a->avsig = 0.0;
// level change
a->ntup = (int)(a->tup * a->rate);
a->ntdown = (int)(a->tdown * a->rate);
a->cup = new double[(a->ntup + 1) * 2]; // (double *)malloc0((a->ntup + 1) * sizeof(double));
a->cdown = new double[(a->ntdown + 1) * 2]; // (double *)malloc0((a->ntdown + 1) * sizeof(double));
compute_slews(a);
// control
a->state = 0;
}
void AMSQ::decalc_amsq (AMSQ *a)
{
delete[] a->cdown;
delete[] a->cup;
delete[] a->trigsig;
}
AMSQ* AMSQ::create_amsq (int run, int size, double* in, double* out, double* trigger, int rate, double avtau,
double tup, double tdown, double tail_thresh, double unmute_thresh, double min_tail, double max_tail, double muted_gain)
{
AMSQ *a = new AMSQ;
a->run = run;
a->size = size;
a->in = in;
a->out = out;
a->rate = (double)rate;
a->muted_gain = muted_gain;
a->trigger = trigger;
a->avtau = avtau;
a->tup = tup;
a->tdown = tdown;
a->tail_thresh = tail_thresh;
a->unmute_thresh = unmute_thresh;
a->min_tail = min_tail;
a->max_tail = max_tail;
calc_amsq (a);
return a;
}
void AMSQ::destroy_amsq (AMSQ *a)
{
decalc_amsq (a);
delete a;
}
void AMSQ::flush_amsq (AMSQ*a)
{
memset (a->trigsig, 0, a->size * sizeof (dcomplex));
a->avsig = 0.0;
a->state = 0;
}
enum _amsqstate
{
MUTED,
INCREASE,
UNMUTED,
TAIL,
DECREASE
};
void AMSQ::xamsq (AMSQ *a)
{
if (a->run)
{
int i;
double sig, siglimit;
for (i = 0; i < a->size; i++)
{
sig = sqrt (a->trigsig[2 * i + 0] * a->trigsig[2 * i + 0] + a->trigsig[2 * i + 1] * a->trigsig[2 * i + 1]);
a->avsig = a->avm * a->avsig + a->onem_avm * sig;
switch (a->state)
{
case MUTED:
if (a->avsig > a->unmute_thresh)
{
a->state = INCREASE;
a->count = a->ntup;
}
a->out[2 * i + 0] = a->muted_gain * a->in[2 * i + 0];
a->out[2 * i + 1] = a->muted_gain * a->in[2 * i + 1];
break;
case INCREASE:
a->out[2 * i + 0] = a->in[2 * i + 0] * a->cup[a->ntup - a->count];
a->out[2 * i + 1] = a->in[2 * i + 1] * a->cup[a->ntup - a->count];
if (a->count-- == 0)
a->state = UNMUTED;
break;
case UNMUTED:
if (a->avsig < a->tail_thresh)
{
a->state = TAIL;
if ((siglimit = a->avsig) > 1.0) siglimit = 1.0;
a->count = (int)((a->min_tail + (a->max_tail - a->min_tail) * (1.0 - siglimit)) * a->rate);
}
a->out[2 * i + 0] = a->in[2 * i + 0];
a->out[2 * i + 1] = a->in[2 * i + 1];
break;
case TAIL:
a->out[2 * i + 0] = a->in[2 * i + 0];
a->out[2 * i + 1] = a->in[2 * i + 1];
if (a->avsig > a->unmute_thresh)
a->state = UNMUTED;
else if (a->count-- == 0)
{
a->state = DECREASE;
a->count = a->ntdown;
}
break;
case DECREASE:
a->out[2 * i + 0] = a->in[2 * i + 0] * a->cdown[a->ntdown - a->count];
a->out[2 * i + 1] = a->in[2 * i + 1] * a->cdown[a->ntdown - a->count];
if (a->count-- == 0)
a->state = MUTED;
break;
}
}
}
else if (a->in != a->out)
memcpy (a->out, a->in, a->size * sizeof (dcomplex));
}
void AMSQ::xamsqcap (AMSQ *a)
{
memcpy (a->trigsig, a->trigger, a->size * sizeof (dcomplex));
}
void AMSQ::setBuffers_amsq (AMSQ *a, double* in, double* out, double* trigger)
{
a->in = in;
a->out = out;
a->trigger = trigger;
}
void AMSQ::setSamplerate_amsq (AMSQ *a, int rate)
{
decalc_amsq (a);
a->rate = rate;
calc_amsq (a);
}
void AMSQ::setSize_amsq (AMSQ *a, int size)
{
decalc_amsq (a);
a->size = size;
calc_amsq (a);
}
/********************************************************************************************************
* *
* RXA Properties *
* *
********************************************************************************************************/
void AMSQ::SetAMSQRun (RXA& rxa, int run)
{
rxa.csDSP.lock();
rxa.amsq.p->run = run;
rxa.csDSP.unlock();
}
void AMSQ::SetAMSQThreshold (RXA& rxa, double threshold)
{
double thresh = pow (10.0, threshold / 20.0);
rxa.csDSP.lock();
rxa.amsq.p->tail_thresh = 0.9 * thresh;
rxa.amsq.p->unmute_thresh = thresh;
rxa.csDSP.unlock();
}
void AMSQ::SetAMSQMaxTail (RXA& rxa, double tail)
{
AMSQ *a;
rxa.csDSP.lock();
a = rxa.amsq.p;
if (tail < a->min_tail) tail = a->min_tail;
a->max_tail = tail;
rxa.csDSP.unlock();
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
void AMSQ::SetAMSQRun (TXA& txa, int run)
{
txa.csDSP.lock();
txa.amsq.p->run = run;
txa.csDSP.unlock();
}
void AMSQ::SetAMSQMutedGain (TXA& txa, double dBlevel)
{ // dBlevel is negative
AMSQ *a;
txa.csDSP.lock();
a = txa.amsq.p;
a->muted_gain = pow (10.0, dBlevel / 20.0);
compute_slews(a);
txa.csDSP.unlock();
}
void AMSQ::SetAMSQThreshold (TXA& txa, double threshold)
{
double thresh = pow (10.0, threshold / 20.0);
txa.csDSP.lock();
txa.amsq.p->tail_thresh = 0.9 * thresh;
txa.amsq.p->unmute_thresh = thresh;
txa.csDSP.unlock();
}
} // namespace WDSP

90
wdsp/amsq.hpp Normal file
View File

@ -0,0 +1,90 @@
/* amsq.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#ifndef _amsq_h
#define _amsq_h
#include "export.h"
namespace WDSP {
class RXA;
class TXA;
class WDSP_API AMSQ
{
public:
int run; // 0 if squelch system is OFF; 1 if it's ON
int size; // size of input/output buffers
double* in; // squelch input signal buffer
double* out; // squelch output signal buffer
double* trigger; // pointer to trigger data source
double* trigsig; // buffer containing trigger signal
double rate; // sample rate
double avtau; // time constant for averaging noise
double avm;
double onem_avm;
double avsig;
int state; // state machine control
int count;
double tup;
double tdown;
int ntup;
int ntdown;
double* cup;
double* cdown;
double tail_thresh;
double unmute_thresh;
double min_tail;
double max_tail;
double muted_gain;
static AMSQ* create_amsq (int run, int size, double* in, double* out, double* trigger, int rate, double avtau, double tup, double tdown, double tail_thresh, double unmute_thresh, double min_tail, double max_tail, double muted_gain);
static void destroy_amsq (AMSQ *a);
static void flush_amsq (AMSQ *a);
static void xamsq (AMSQ *a);
static void xamsqcap (AMSQ *a);
static void setBuffers_amsq (AMSQ *a, double* in, double* out, double* trigger);
static void setSamplerate_amsq (AMSQ *a, int rate);
static void setSize_amsq (AMSQ *a, int size);
// RXA Properties
static void SetAMSQRun (RXA& rxa, int run);
static void SetAMSQThreshold (RXA& rxa, double threshold);
static void SetAMSQMaxTail (RXA& rxa, double tail);
// TXA Properties
static void SetAMSQRun (TXA& txa, int run);
static void SetAMSQMutedGain (TXA& txa, double dBlevel);
static void SetAMSQThreshold (TXA& txa, double threshold);
private:
static void compute_slews(AMSQ *a);
static void calc_amsq(AMSQ *a);
static void decalc_amsq (AMSQ *a);
};
} // namespace WDSP
#endif

243
wdsp/anf.cpp Normal file
View File

@ -0,0 +1,243 @@
/* anf.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2012, 2013 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "amd.hpp"
#include "snb.hpp"
#include "emnr.hpp"
#include "anr.hpp"
#include "anf.hpp"
#include "bandpass.hpp"
#include "RXA.hpp"
namespace WDSP {
ANF* ANF::create_anf(
int run,
int position,
int buff_size,
double *in_buff,
double *out_buff,
int dline_size,
int n_taps,
int delay,
double two_mu,
double gamma,
double lidx,
double lidx_min,
double lidx_max,
double ngamma,
double den_mult,
double lincr,
double ldecr
)
{
ANF *a = new ANF;
a->run = run;
a->position = position;
a->buff_size = buff_size;
a->in_buff = in_buff;
a->out_buff = out_buff;
a->dline_size = dline_size;
a->mask = dline_size - 1;
a->n_taps = n_taps;
a->delay = delay;
a->two_mu = two_mu;
a->gamma = gamma;
a->in_idx = 0;
a->lidx = lidx;
a->lidx_min = lidx_min;
a->lidx_max = lidx_max;
a->ngamma = ngamma;
a->den_mult = den_mult;
a->lincr = lincr;
a->ldecr = ldecr;
memset (a->d, 0, sizeof(double) * ANF_DLINE_SIZE);
memset (a->w, 0, sizeof(double) * ANF_DLINE_SIZE);
return a;
}
void ANF::destroy_anf (ANF *a)
{
delete a;
}
void ANF::xanf(ANF *a, int position)
{
int i, j, idx;
double c0, c1;
double y, error, sigma, inv_sigp;
double nel, nev;
if (a->run && (a->position == position))
{
for (i = 0; i < a->buff_size; i++)
{
a->d[a->in_idx] = a->in_buff[2 * i + 0];
y = 0;
sigma = 0;
for (j = 0; j < a->n_taps; j++)
{
idx = (a->in_idx + j + a->delay) & a->mask;
y += a->w[j] * a->d[idx];
sigma += a->d[idx] * a->d[idx];
}
inv_sigp = 1.0 / (sigma + 1e-10);
error = a->d[a->in_idx] - y;
a->out_buff[2 * i + 0] = error;
a->out_buff[2 * i + 1] = 0.0;
if((nel = error * (1.0 - a->two_mu * sigma * inv_sigp)) < 0.0) nel = -nel;
if((nev = a->d[a->in_idx] - (1.0 - a->two_mu * a->ngamma) * y - a->two_mu * error * sigma * inv_sigp) < 0.0) nev = -nev;
if (nev < nel)
{
if ((a->lidx += a->lincr) > a->lidx_max) a->lidx = a->lidx_max;
}
else
{
if ((a->lidx -= a->ldecr) < a->lidx_min) a->lidx = a->lidx_min;
}
a->ngamma = a->gamma * (a->lidx * a->lidx) * (a->lidx * a->lidx) * a->den_mult;
c0 = 1.0 - a->two_mu * a->ngamma;
c1 = a->two_mu * error * inv_sigp;
for (j = 0; j < a->n_taps; j++)
{
idx = (a->in_idx + j + a->delay) & a->mask;
a->w[j] = c0 * a->w[j] + c1 * a->d[idx];
}
a->in_idx = (a->in_idx + a->mask) & a->mask;
}
}
else if (a->in_buff != a->out_buff)
memcpy (a->out_buff, a->in_buff, a->buff_size * sizeof (dcomplex));
}
void ANF::flush_anf (ANF *a)
{
memset (a->d, 0, sizeof(double) * ANF_DLINE_SIZE);
memset (a->w, 0, sizeof(double) * ANF_DLINE_SIZE);
a->in_idx = 0;
}
void ANF::setBuffers_anf (ANF *a, double* in, double* out)
{
a->in_buff = in;
a->out_buff = out;
}
void ANF::setSamplerate_anf (ANF *a, int)
{
flush_anf (a);
}
void ANF::setSize_anf (ANF *a, int size)
{
a->buff_size = size;
flush_anf (a);
}
/********************************************************************************************************
* *
* RXA Properties *
* *
********************************************************************************************************/
void ANF::SetANFRun (RXA& rxa, int run)
{
ANF *a = rxa.anf.p;
if (a->run != run)
{
RXA::bp1Check (rxa, rxa.amd.p->run, rxa.snba.p->run,
rxa.emnr.p->run, run, rxa.anr.p->run);
rxa.csDSP.lock();
a->run = run;
RXA::bp1Set (rxa);
flush_anf (a);
rxa.csDSP.unlock();
}
}
void ANF::SetANFVals (RXA& rxa, int taps, int delay, double gain, double leakage)
{
rxa.csDSP.lock();
rxa.anf.p->n_taps = taps;
rxa.anf.p->delay = delay;
rxa.anf.p->two_mu = gain; //try two_mu = 1e-4
rxa.anf.p->gamma = leakage; //try gamma = 0.10
flush_anf (rxa.anf.p);
rxa.csDSP.unlock();
}
void ANF::SetANFTaps (RXA& rxa, int taps)
{
rxa.csDSP.lock();
rxa.anf.p->n_taps = taps;
flush_anf (rxa.anf.p);
rxa.csDSP.unlock();
}
void ANF::SetANFDelay (RXA& rxa, int delay)
{
rxa.csDSP.lock();
rxa.anf.p->delay = delay;
flush_anf (rxa.anf.p);
rxa.csDSP.unlock();
}
void ANF::SetANFGain (RXA& rxa, double gain)
{
rxa.csDSP.lock();
rxa.anf.p->two_mu = gain;
flush_anf (rxa.anf.p);
rxa.csDSP.unlock();
}
void ANF::SetANFLeakage (RXA& rxa, double leakage)
{
rxa.csDSP.lock();
rxa.anf.p->gamma = leakage;
flush_anf (rxa.anf.p);
rxa.csDSP.unlock();
}
void ANF::SetANFPosition (RXA& rxa, int position)
{
rxa.csDSP.lock();
rxa.anf.p->position = position;
rxa.bp1.p->position = position;
flush_anf (rxa.anf.p);
rxa.csDSP.unlock();
}
} // namespace WDSP

101
wdsp/anf.hpp Normal file
View File

@ -0,0 +1,101 @@
/* anf.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2012, 2013 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#ifndef wdsp_anf_h
#define wdsp_anf_h
#include "export.h"
#define ANF_DLINE_SIZE 2048
namespace WDSP {
class RXA;
class WDSP_API ANF
{
public:
int run;
int position;
int buff_size;
double *in_buff;
double *out_buff;
int dline_size;
int mask;
int n_taps;
int delay;
double two_mu;
double gamma;
double d [ANF_DLINE_SIZE];
double w [ANF_DLINE_SIZE];
int in_idx;
double lidx;
double lidx_min;
double lidx_max;
double ngamma;
double den_mult;
double lincr;
double ldecr;
static ANF* create_anf(
int run,
int position,
int buff_size,
double *in_buff,
double *out_buff,
int dline_size,
int n_taps,
int delay,
double two_mu,
double gamma,
double lidx,
double lidx_min,
double lidx_max,
double ngamma,
double den_mult,
double lincr,
double ldecr
);
static void destroy_anf (ANF *a);
static void flush_anf (ANF *a);
static void xanf (ANF *a, int position);
static void setBuffers_anf (ANF *a, double* in, double* out);
static void setSamplerate_anf (ANF *a, int rate);
static void setSize_anf (ANF *a, int size);
// RXA Properties
static void SetANFRun (RXA& rxa, int setit);
static void SetANFVals (RXA& rxa, int taps, int delay, double gain, double leakage);
static void SetANFTaps (RXA& rxa, int taps);
static void SetANFDelay (RXA& rxa, int delay);
static void SetANFGain (RXA& rxa, double gain);
static void SetANFLeakage (RXA& rxa, double leakage);
static void SetANFPosition (RXA& rxa, int position);
};
} // namespace WDSP
#endif

245
wdsp/anr.cpp Normal file
View File

@ -0,0 +1,245 @@
/* anr.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2012, 2013 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include <QRecursiveMutex>
#include "comm.hpp"
#include "anr.hpp"
#include "amd.hpp"
#include "snb.hpp"
#include "emnr.hpp"
#include "anf.hpp"
#include "bandpass.hpp"
#include "RXA.hpp"
namespace WDSP {
ANR* ANR::create_anr (
int run,
int position,
int buff_size,
double *in_buff,
double *out_buff,
int dline_size,
int n_taps,
int delay,
double two_mu,
double gamma,
double lidx,
double lidx_min,
double lidx_max,
double ngamma,
double den_mult,
double lincr,
double ldecr
)
{
ANR *a = new ANR;
a->run = run;
a->position = position;
a->buff_size = buff_size;
a->in_buff = in_buff;
a->out_buff = out_buff;
a->dline_size = dline_size;
a->mask = dline_size - 1;
a->n_taps = n_taps;
a->delay = delay;
a->two_mu = two_mu;
a->gamma = gamma;
a->in_idx = 0;
a->lidx = lidx;
a->lidx_min = lidx_min;
a->lidx_max = lidx_max;
a->ngamma = ngamma;
a->den_mult = den_mult;
a->lincr = lincr;
a->ldecr = ldecr;
memset (a->d, 0, sizeof(double) * ANR_DLINE_SIZE);
memset (a->w, 0, sizeof(double) * ANR_DLINE_SIZE);
return a;
}
void ANR::destroy_anr (ANR *a)
{
delete a;
}
void ANR::xanr (ANR *a, int position)
{
int i, j, idx;
double c0, c1;
double y, error, sigma, inv_sigp;
double nel, nev;
if (a->run && (a->position == position))
{
for (i = 0; i < a->buff_size; i++)
{
a->d[a->in_idx] = a->in_buff[2 * i + 0];
y = 0;
sigma = 0;
for (j = 0; j < a->n_taps; j++)
{
idx = (a->in_idx + j + a->delay) & a->mask;
y += a->w[j] * a->d[idx];
sigma += a->d[idx] * a->d[idx];
}
inv_sigp = 1.0 / (sigma + 1e-10);
error = a->d[a->in_idx] - y;
a->out_buff[2 * i + 0] = y;
a->out_buff[2 * i + 1] = 0.0;
if((nel = error * (1.0 - a->two_mu * sigma * inv_sigp)) < 0.0) nel = -nel;
if((nev = a->d[a->in_idx] - (1.0 - a->two_mu * a->ngamma) * y - a->two_mu * error * sigma * inv_sigp) < 0.0) nev = -nev;
if (nev < nel)
{
if ((a->lidx += a->lincr) > a->lidx_max) a->lidx = a->lidx_max;
}
else
{
if ((a->lidx -= a->ldecr) < a->lidx_min) a->lidx = a->lidx_min;
}
a->ngamma = a->gamma * (a->lidx * a->lidx) * (a->lidx * a->lidx) * a->den_mult;
c0 = 1.0 - a->two_mu * a->ngamma;
c1 = a->two_mu * error * inv_sigp;
for (j = 0; j < a->n_taps; j++)
{
idx = (a->in_idx + j + a->delay) & a->mask;
a->w[j] = c0 * a->w[j] + c1 * a->d[idx];
}
a->in_idx = (a->in_idx + a->mask) & a->mask;
}
}
else if (a->in_buff != a->out_buff)
memcpy (a->out_buff, a->in_buff, a->buff_size * sizeof (dcomplex));
}
void ANR::flush_anr (ANR *a)
{
memset (a->d, 0, sizeof(double) * ANR_DLINE_SIZE);
memset (a->w, 0, sizeof(double) * ANR_DLINE_SIZE);
a->in_idx = 0;
}
void ANR::setBuffers_anr (ANR *a, double* in, double* out)
{
a->in_buff = in;
a->out_buff = out;
}
void ANR::setSamplerate_anr (ANR *a, int)
{
flush_anr(a);
}
void ANR::setSize_anr (ANR *a, int size)
{
a->buff_size = size;
flush_anr(a);
}
/********************************************************************************************************
* *
* RXA Properties *
* *
********************************************************************************************************/
void ANR::SetANRRun (RXA& rxa, int run)
{
ANR *a = rxa.anr.p;
if (a->run != run)
{
RXA::bp1Check (rxa, rxa.amd.p->run, rxa.snba.p->run,
rxa.emnr.p->run, rxa.anf.p->run, run);
rxa.csDSP.lock();
a->run = run;
RXA::bp1Set (rxa);
flush_anr (a);
rxa.csDSP.unlock();
}
}
void ANR::SetANRVals (RXA& rxa, int taps, int delay, double gain, double leakage)
{
rxa.csDSP.lock();
rxa.anr.p->n_taps = taps;
rxa.anr.p->delay = delay;
rxa.anr.p->two_mu = gain;
rxa.anr.p->gamma = leakage;
flush_anr (rxa.anr.p);
rxa.csDSP.unlock();
}
void ANR::SetANRTaps (RXA& rxa, int taps)
{
rxa.csDSP.lock();
rxa.anr.p->n_taps = taps;
flush_anr (rxa.anr.p);
rxa.csDSP.unlock();
}
void ANR::SetANRDelay (RXA& rxa, int delay)
{
rxa.csDSP.lock();
rxa.anr.p->delay = delay;
flush_anr (rxa.anr.p);
rxa.csDSP.unlock();
}
void ANR::SetANRGain (RXA& rxa, double gain)
{
rxa.csDSP.lock();
rxa.anr.p->two_mu = gain;
flush_anr (rxa.anr.p);
rxa.csDSP.unlock();
}
void ANR::SetANRLeakage (RXA& rxa, double leakage)
{
rxa.csDSP.lock();
rxa.anr.p->gamma = leakage;
flush_anr (rxa.anr.p);
rxa.csDSP.unlock();
}
void ANR::SetANRPosition (RXA& rxa, int position)
{
rxa.csDSP.lock();
rxa.anr.p->position = position;
rxa.bp1.p->position = position;
flush_anr (rxa.anr.p);
rxa.csDSP.unlock();
}
} // namespace WDSP

104
wdsp/anr.hpp Normal file
View File

@ -0,0 +1,104 @@
/* anr.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2012, 2013 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#ifndef wdsp_anr_h
#define wdsp_anr_h
#include "export.h"
#define ANR_DLINE_SIZE 2048
namespace WDSP {
class RXA;
class WDSP_API ANR
{
public:
int run;
int position;
int buff_size;
double *in_buff;
double *out_buff;
int dline_size;
int mask;
int n_taps;
int delay;
double two_mu;
double gamma;
double d [ANR_DLINE_SIZE];
double w [ANR_DLINE_SIZE];
int in_idx;
double lidx;
double lidx_min;
double lidx_max;
double ngamma;
double den_mult;
double lincr;
double ldecr;
static ANR* create_anr (
int run,
int position,
int buff_size,
double *in_buff,
double *out_buff,
int dline_size,
int n_taps,
int delay,
double two_mu,
double gamma,
double lidx,
double lidx_min,
double lidx_max,
double ngamma,
double den_mult,
double lincr,
double ldecr
);
static void destroy_anr (ANR *a);
static void flush_anr (ANR *a);
static void xanr (ANR *a, int position);
static void setBuffers_anr (ANR *a, double* in, double* out);
static void setSamplerate_anr (ANR *a, int rate);
static void setSize_anr (ANR *a, int size);
// RXA Properties
static void SetANRRun (RXA& rxa, int setit);
static void SetANRVals (RXA& rxa, int taps, int delay, double gain, double leakage);
static void SetANRTaps (RXA& rxa, int taps);
static void SetANRDelay (RXA& rxa, int delay);
static void SetANRGain (RXA& rxa, double gain);
static void SetANRLeakage (RXA& rxa, double leakage);
static void SetANRPosition (RXA& rxa, int position);
};
} // namespace WDSP
#endif

285
wdsp/bandpass.cpp Normal file
View File

@ -0,0 +1,285 @@
/* bandpass.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2016, 2017 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "bandpass.hpp"
#include "fir.hpp"
#include "firmin.hpp"
#include "RXA.hpp"
#include "TXA.hpp"
namespace WDSP {
/********************************************************************************************************
* *
* Partitioned Overlap-Save Bandpass *
* *
********************************************************************************************************/
BANDPASS* BANDPASS::create_bandpass (int run, int position, int size, int nc, int mp, double* in, double* out,
double f_low, double f_high, int samplerate, int wintype, double gain)
{
// NOTE: 'nc' must be >= 'size'
BANDPASS *a = new BANDPASS;
double* impulse;
a->run = run;
a->position = position;
a->size = size;
a->nc = nc;
a->mp = mp;
a->in = in;
a->out = out;
a->f_low = f_low;
a->f_high = f_high;
a->samplerate = samplerate;
a->wintype = wintype;
a->gain = gain;
impulse = FIR::fir_bandpass (a->nc, a->f_low, a->f_high, a->samplerate, a->wintype, 1, a->gain / (double)(2 * a->size));
a->p = FIRCORE::create_fircore (a->size, a->in, a->out, a->nc, a->mp, impulse);
delete[] impulse;
return a;
}
void BANDPASS::destroy_bandpass (BANDPASS *a)
{
FIRCORE::destroy_fircore (a->p);
delete a;
}
void BANDPASS::flush_bandpass (BANDPASS *a)
{
FIRCORE::flush_fircore (a->p);
}
void BANDPASS::xbandpass (BANDPASS *a, int pos)
{
if (a->run && a->position == pos)
FIRCORE::xfircore (a->p);
else if (a->out != a->in)
memcpy (a->out, a->in, a->size * sizeof (dcomplex));
}
void BANDPASS::setBuffers_bandpass (BANDPASS *a, double* in, double* out)
{
a->in = in;
a->out = out;
FIRCORE::setBuffers_fircore (a->p, a->in, a->out);
}
void BANDPASS::setSamplerate_bandpass (BANDPASS *a, int rate)
{
double* impulse;
a->samplerate = rate;
impulse = FIR::fir_bandpass (a->nc, a->f_low, a->f_high, a->samplerate, a->wintype, 1, a->gain / (double)(2 * a->size));
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] impulse;
}
void BANDPASS::setSize_bandpass (BANDPASS *a, int size)
{
// NOTE: 'size' must be <= 'nc'
double* impulse;
a->size = size;
FIRCORE::setSize_fircore (a->p, a->size);
// recalc impulse because scale factor is a function of size
impulse = FIR::fir_bandpass (a->nc, a->f_low, a->f_high, a->samplerate, a->wintype, 1, a->gain / (double)(2 * a->size));
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
void BANDPASS::setGain_bandpass (BANDPASS *a, double gain, int update)
{
double* impulse;
a->gain = gain;
impulse = FIR::fir_bandpass (a->nc, a->f_low, a->f_high, a->samplerate, a->wintype, 1, a->gain / (double)(2 * a->size));
FIRCORE::setImpulse_fircore (a->p, impulse, update);
delete[] (impulse);
}
void BANDPASS::CalcBandpassFilter (BANDPASS *a, double f_low, double f_high, double gain)
{
double* impulse;
if ((a->f_low != f_low) || (a->f_high != f_high) || (a->gain != gain))
{
a->f_low = f_low;
a->f_high = f_high;
a->gain = gain;
impulse = FIR::fir_bandpass (a->nc, a->f_low, a->f_high, a->samplerate, a->wintype, 1, a->gain / (double)(2 * a->size));
FIRCORE::setImpulse_fircore (a->p, impulse, 1);
delete[] (impulse);
}
}
/********************************************************************************************************
* *
* RXA Properties *
* *
********************************************************************************************************/
void BANDPASS::SetBandpassFreqs (RXA& rxa, double f_low, double f_high)
{
double* impulse;
BANDPASS *a = rxa.bp1.p;
if ((f_low != a->f_low) || (f_high != a->f_high))
{
impulse = FIR::fir_bandpass (a->nc, f_low, f_high, a->samplerate,
a->wintype, 1, a->gain / (double)(2 * a->size));
FIRCORE::setImpulse_fircore (a->p, impulse, 0);
delete[] (impulse);
rxa.csDSP.lock();
a->f_low = f_low;
a->f_high = f_high;
FIRCORE::setUpdate_fircore (a->p);
rxa.csDSP.unlock();
}
}
void BANDPASS::SetBandpassNC (RXA& rxa, int nc)
{
// NOTE: 'nc' must be >= 'size'
double* impulse;
BANDPASS *a;
rxa.csDSP.lock();
a = rxa.bp1.p;
if (nc != a->nc)
{
a->nc = nc;
impulse = FIR::fir_bandpass (a->nc, a->f_low, a->f_high, a->samplerate, a->wintype, 1, a->gain / (double)(2 * a->size));
FIRCORE::setNc_fircore (a->p, a->nc, impulse);
delete[] (impulse);
}
rxa.csDSP.unlock();
}
void BANDPASS::SetBandpassMP (RXA& rxa, int mp)
{
BANDPASS *a;
a = rxa.bp1.p;
if (mp != a->mp)
{
a->mp = mp;
FIRCORE::setMp_fircore (a->p, a->mp);
}
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
//PORT
//void SetTXABandpassFreqs (int channel, double f_low, double f_high)
//{
// double* impulse;
// BANDPASS a;
// a = txa.bp0.p;
// if ((f_low != a->f_low) || (f_high != a->f_high))
// {
// a->f_low = f_low;
// a->f_high = f_high;
// impulse = fir_bandpass (a->nc, a->f_low, a->f_high, a->samplerate, a->wintype, 1, a->gain / (double)(2 * a->size));
// setImpulse_fircore (a->p, impulse, 1);
// delete[] (impulse);
// }
// a = txa.bp1.p;
// if ((f_low != a->f_low) || (f_high != a->f_high))
// {
// a->f_low = f_low;
// a->f_high = f_high;
// impulse = fir_bandpass (a->nc, a->f_low, a->f_high, a->samplerate, a->wintype, 1, a->gain / (double)(2 * a->size));
// setImpulse_fircore (a->p, impulse, 1);
// delete[] (impulse);
// }
// a = txa.bp2.p;
// if ((f_low != a->f_low) || (f_high != a->f_high))
// {
// a->f_low = f_low;
// a->f_high = f_high;
// impulse = fir_bandpass (a->nc, a->f_low, a->f_high, a->samplerate, a->wintype, 1, a->gain / (double)(2 * a->size));
// setImpulse_fircore (a->p, impulse, 1);
// delete[] (impulse);
// }
//}
void BANDPASS::SetBandpassNC (TXA& txa, int nc)
{
// NOTE: 'nc' must be >= 'size'
double* impulse;
BANDPASS *a;
txa.csDSP.lock();
a = txa.bp0.p;
if (a->nc != nc)
{
a->nc = nc;
impulse = FIR::fir_bandpass (a->nc, a->f_low, a->f_high, a->samplerate, a->wintype, 1, a->gain / (double)(2 * a->size));
FIRCORE::setNc_fircore (a->p, a->nc, impulse);
delete[] (impulse);
}
a = txa.bp1.p;
if (a->nc != nc)
{
a->nc = nc;
impulse = FIR::fir_bandpass (a->nc, a->f_low, a->f_high, a->samplerate, a->wintype, 1, a->gain / (double)(2 * a->size));
FIRCORE::setNc_fircore (a->p, a->nc, impulse);
delete[] (impulse);
}
a = txa.bp2.p;
if (a->nc != nc)
{
a->nc = nc;
impulse = FIR::fir_bandpass (a->nc, a->f_low, a->f_high, a->samplerate, a->wintype, 1, a->gain / (double)(2 * a->size));
FIRCORE::setNc_fircore (a->p, a->nc, impulse);
delete[] (impulse);
}
txa.csDSP.unlock();
}
void BANDPASS::SetBandpassMP (TXA& txa, int mp)
{
BANDPASS *a;
a = txa.bp0.p;
if (mp != a->mp)
{
a->mp = mp;
FIRCORE::setMp_fircore (a->p, a->mp);
}
a = txa.bp1.p;
if (mp != a->mp)
{
a->mp = mp;
FIRCORE::setMp_fircore (a->p, a->mp);
}
a = txa.bp2.p;
if (mp != a->mp)
{
a->mp = mp;
FIRCORE::setMp_fircore (a->p, a->mp);
}
}
} // namespace WDSP

90
wdsp/bandpass.hpp Normal file
View File

@ -0,0 +1,90 @@
/* bandpass.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2016, 2017 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
/********************************************************************************************************
* *
* Overlap-Save Bandpass *
* *
********************************************************************************************************/
#ifndef wdsp_bandpass_h
#define wdsp_bandpass_h
#include "fftw3.h"
#include "export.h"
/********************************************************************************************************
* *
* Partitioned Overlap-Save Bandpass *
* *
********************************************************************************************************/
namespace WDSP {
class FIRCORE;
class RXA;
class TXA;
class WDSP_API BANDPASS
{
public:
int run;
int position;
int size;
int nc;
int mp;
double* in;
double* out;
double f_low;
double f_high;
double samplerate;
int wintype;
double gain;
FIRCORE *p;
static BANDPASS *create_bandpass (int run, int position, int size, int nc, int mp, double* in, double* out,
double f_low, double f_high, int samplerate, int wintype, double gain);
static void destroy_bandpass (BANDPASS *a);
static void flush_bandpass (BANDPASS *a);
static void xbandpass (BANDPASS *a, int pos);
static void setBuffers_bandpass (BANDPASS *a, double* in, double* out);
static void setSamplerate_bandpass (BANDPASS *a, int rate);
static void setSize_bandpass (BANDPASS *a, int size);
static void setGain_bandpass (BANDPASS *a, double gain, int update);
static void CalcBandpassFilter (BANDPASS *a, double f_low, double f_high, double gain);
// RXA Prototypes
static void SetBandpassFreqs (RXA& rxa, double f_low, double f_high);
static void SetBandpassNC (RXA& rxa, int nc);
static void SetBandpassMP (RXA& rxa, int mp);
// TXA Prototypes
static void SetBandpassNC (TXA& txa, int nc);
static void SetBandpassMP (TXA& txa, int mp);
};
} // namespace WDSP
#endif

404
wdsp/bldr.cpp Normal file
View File

@ -0,0 +1,404 @@
/* lmath.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2015, 2016, 2023 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "bldr.hpp"
namespace WDSP {
BLDR* BLDR::create_builder(int points, int ints)
{
// for the create function, 'points' and 'ints' are the MAXIMUM values that will be encountered
BLDR *a = new BLDR;
a->catxy = new double[2 * points]; // (double*)malloc0(2 * points * sizeof(double));
a->sx = new double[points]; // (double*)malloc0( points * sizeof(double));
a->sy = new double[points]; // (double*)malloc0( points * sizeof(double));
a->h = new double[ints]; // (double*)malloc0( ints * sizeof(double));
a->p = new int[ints]; // (int*) malloc0( ints * sizeof(int));
a->np = new int[ints]; // (int*) malloc0( ints * sizeof(int));
a->taa = new double[ints]; // (double*)malloc0( ints * sizeof(double));
a->tab = new double[ints]; // (double*)malloc0( ints * sizeof(double));
a->tag = new double[ints]; // (double*)malloc0( ints * sizeof(double));
a->tad = new double[ints]; // (double*)malloc0( ints * sizeof(double));
a->tbb = new double[ints]; // (double*)malloc0( ints * sizeof(double));
a->tbg = new double[ints]; // (double*)malloc0( ints * sizeof(double));
a->tbd = new double[ints]; // (double*)malloc0( ints * sizeof(double));
a->tgg = new double[ints]; // (double*)malloc0( ints * sizeof(double));
a->tgd = new double[ints]; // (double*)malloc0( ints * sizeof(double));
a->tdd = new double[ints]; // (double*)malloc0( ints * sizeof(double));
int nsize = 3 * ints + 1;
int intp1 = ints + 1;
int intm1 = ints - 1;
a->A = new double[intp1 * intp1]; // (double*)malloc0(intp1 * intp1 * sizeof(double));
a->B = new double[intp1 * intp1]; // (double*)malloc0(intp1 * intp1 * sizeof(double));
a->C = new double[intp1 * intp1]; // (double*)malloc0(intm1 * intp1 * sizeof(double));
a->D = new double[intp1]; // (double*)malloc0(intp1 * sizeof(double));
a->E = new double[intp1 * intp1]; // (double*)malloc0(intp1 * intp1 * sizeof(double));
a->F = new double[intm1 * intp1]; // (double*)malloc0(intm1 * intp1 * sizeof(double));
a->G = new double[intp1]; // (double*)malloc0(intp1 * sizeof(double));
a->MAT = new double[nsize * nsize]; // (double*)malloc0(nsize * nsize * sizeof(double));
a->RHS = new double[nsize]; // (double*)malloc0(nsize * sizeof(double));
a->SLN = new double[nsize]; // (double*)malloc0(nsize * sizeof(double));
a->z = new double[intp1]; // (double*)malloc0(intp1 * sizeof(double));
a->zp = new double[intp1]; // (double*)malloc0(intp1 * sizeof(double));
a->wrk = new double[nsize]; // (double*)malloc0(nsize * sizeof(double));
a->ipiv = new int[nsize]; // (int*) malloc0(nsize * sizeof(int));
return a;
}
void BLDR::destroy_builder(BLDR *a)
{
delete[](a->ipiv);
delete[](a->wrk);
delete[](a->catxy);
delete[](a->sx);
delete[](a->sy);
delete[](a->h);
delete[](a->p);
delete[](a->np);
delete[](a->taa);
delete[](a->tab);
delete[](a->tag);
delete[](a->tad);
delete[](a->tbb);
delete[](a->tbg);
delete[](a->tbd);
delete[](a->tgg);
delete[](a->tgd);
delete[](a->tdd);
delete[](a->A);
delete[](a->B);
delete[](a->C);
delete[](a->D);
delete[](a->E);
delete[](a->F);
delete[](a->G);
delete[](a->MAT);
delete[](a->RHS);
delete[](a->SLN);
delete[](a->z);
delete[](a->zp);
delete(a);
}
void BLDRflush_builder(BLDR *a, int points, int ints)
{
memset(a->catxy, 0, 2 * points * sizeof(double));
memset(a->sx, 0, points * sizeof(double));
memset(a->sy, 0, points * sizeof(double));
memset(a->h, 0, ints * sizeof(double));
memset(a->p, 0, ints * sizeof(int));
memset(a->np, 0, ints * sizeof(int));
memset(a->taa, 0, ints * sizeof(double));
memset(a->tab, 0, ints * sizeof(double));
memset(a->tag, 0, ints * sizeof(double));
memset(a->tad, 0, ints * sizeof(double));
memset(a->tbb, 0, ints * sizeof(double));
memset(a->tbg, 0, ints * sizeof(double));
memset(a->tbd, 0, ints * sizeof(double));
memset(a->tgg, 0, ints * sizeof(double));
memset(a->tgd, 0, ints * sizeof(double));
memset(a->tdd, 0, ints * sizeof(double));
int nsize = 3 * ints + 1;
int intp1 = ints + 1;
int intm1 = ints - 1;
memset(a->A, 0, intp1 * intp1 * sizeof(double));
memset(a->B, 0, intp1 * intp1 * sizeof(double));
memset(a->C, 0, intm1 * intp1 * sizeof(double));
memset(a->D, 0, intp1 * sizeof(double));
memset(a->E, 0, intp1 * intp1 * sizeof(double));
memset(a->F, 0, intm1 * intp1 * sizeof(double));
memset(a->G, 0, intp1 * sizeof(double));
memset(a->MAT, 0, nsize * nsize * sizeof(double));
memset(a->RHS, 0, nsize * sizeof(double));
memset(a->SLN, 0, nsize * sizeof(double));
memset(a->z, 0, intp1 * sizeof(double));
memset(a->zp, 0, intp1 * sizeof(double));
memset(a->wrk, 0, nsize * sizeof(double));
memset(a->ipiv, 0, nsize * sizeof(int));
}
int BLDR::fcompare(const void* a, const void* b)
{
if (*(double*)a < *(double*)b)
return -1;
else if (*(double*)a == *(double*)b)
return 0;
else
return 1;
}
void BLDR::decomp(int n, double* a, int* piv, int* info, double* wrk)
{
int i, j, k;
int t_piv;
double m_row, mt_row, m_col, mt_col;
*info = 0;
for (i = 0; i < n; i++)
{
piv[i] = i;
m_row = 0.0;
for (j = 0; j < n; j++)
{
mt_row = a[n * i + j];
if (mt_row < 0.0) mt_row = -mt_row;
if (mt_row > m_row) m_row = mt_row;
}
if (m_row == 0.0)
{
*info = i;
goto cleanup;
}
wrk[i] = m_row;
}
for (k = 0; k < n - 1; k++)
{
j = k;
m_col = a[n * piv[k] + k] / wrk[piv[k]];
if (m_col < 0) m_col = -m_col;
for (i = k + 1; i < n; i++)
{
mt_col = a[n * piv[i] + k] / wrk[piv[k]];
if (mt_col < 0.0) mt_col = -mt_col;
if (mt_col > m_col)
{
m_col = mt_col;
j = i;
}
}
if (m_col == 0)
{
*info = -k;
goto cleanup;
}
t_piv = piv[k];
piv[k] = piv[j];
piv[j] = t_piv;
for (i = k + 1; i < n; i++)
{
a[n * piv[i] + k] /= a[n * piv[k] + k];
for (j = k + 1; j < n; j++)
a[n * piv[i] + j] -= a[n * piv[i] + k] * a[n * piv[k] + j];
}
}
if (a[n * n - 1] == 0.0)
*info = -n;
cleanup:
return;
}
void BLDR::dsolve(int n, double* a, int* piv, double* b, double* x)
{
int j, k;
double sum;
for (k = 0; k < n; k++)
{
sum = 0.0;
for (j = 0; j < k; j++)
sum += a[n * piv[k] + j] * x[j];
x[k] = b[piv[k]] - sum;
}
for (k = n - 1; k >= 0; k--)
{
sum = 0.0;
for (j = k + 1; j < n; j++)
sum += a[n * piv[k] + j] * x[j];
x[k] = (x[k] - sum) / a[n * piv[k] + k];
}
}
void BLDR::cull(int* n, int ints, double* x, double* t, double ptol)
{
int k = 0;
int i = *n;
int ntopint;
int npx;
while (x[i - 1] > t[ints - 1])
i--;
ntopint = *n - i;
npx = (int)(ntopint * (1.0 - ptol));
i = *n;
while ((k < npx) && (x[--i] > t[ints]))
k++;
*n -= k;
}
void BLDR::xbuilder(BLDR *a, int points, double* x, double* y, int ints, double* t, int* info, double* c, double ptol)
{
double u, v, alpha, beta, gamma, delta;
int nsize = 3 * ints + 1;
int intp1 = ints + 1;
int intm1 = ints - 1;
int i, j, k, m;
int dinfo;
flush_builder(a, points, ints);
for (i = 0; i < points; i++)
{
a->catxy[2 * i + 0] = x[i];
a->catxy[2 * i + 1] = y[i];
}
qsort(a->catxy, points, 2 * sizeof(double), fcompare);
for (i = 0; i < points; i++)
{
a->sx[i] = a->catxy[2 * i + 0];
a->sy[i] = a->catxy[2 * i + 1];
}
cull(&points, ints, a->sx, t, ptol);
if (points <= 0 || a->sx[points - 1] > t[ints])
{
*info = -1000;
goto cleanup;
}
else *info = 0;
for (j = 0; j < ints; j++)
a->h[j] = t[j + 1] - t[j];
a->p[0] = 0;
j = 0;
for (i = 0; i < points; i++)
{
if (a->sx[i] <= t[j + 1])
a->np[j]++;
else
{
a->p[++j] = i;
while (a->sx[i] > t[j + 1])
a->p[++j] = i;
a->np[j] = 1;
}
}
for (i = 0; i < ints; i++)
for (j = a->p[i]; j < a->p[i] + a->np[i]; j++)
{
u = (a->sx[j] - t[i]) / a->h[i];
v = u - 1.0;
alpha = (2.0 * u + 1.0) * v * v;
beta = u * u * (1.0 - 2.0 * v);
gamma = a->h[i] * u * v * v;
delta = a->h[i] * u * u * v;
a->taa[i] += alpha * alpha;
a->tab[i] += alpha * beta;
a->tag[i] += alpha * gamma;
a->tad[i] += alpha * delta;
a->tbb[i] += beta * beta;
a->tbg[i] += beta * gamma;
a->tbd[i] += beta * delta;
a->tgg[i] += gamma * gamma;
a->tgd[i] += gamma * delta;
a->tdd[i] += delta * delta;
a->D[i + 0] += 2.0 * a->sy[j] * alpha;
a->D[i + 1] += 2.0 * a->sy[j] * beta;
a->G[i + 0] += 2.0 * a->sy[j] * gamma;
a->G[i + 1] += 2.0 * a->sy[j] * delta;
}
for (i = 0; i < ints; i++)
{
a->A[(i + 0) * intp1 + (i + 0)] += 2.0 * a->taa[i];
a->A[(i + 1) * intp1 + (i + 1)] = 2.0 * a->tbb[i];
a->A[(i + 0) * intp1 + (i + 1)] = 2.0 * a->tab[i];
a->A[(i + 1) * intp1 + (i + 0)] = 2.0 * a->tab[i];
a->B[(i + 0) * intp1 + (i + 0)] += 2.0 * a->tag[i];
a->B[(i + 1) * intp1 + (i + 1)] = 2.0 * a->tbd[i];
a->B[(i + 0) * intp1 + (i + 1)] = 2.0 * a->tbg[i];
a->B[(i + 1) * intp1 + (i + 0)] = 2.0 * a->tad[i];
a->E[(i + 0) * intp1 + (i + 0)] += 2.0 * a->tgg[i];
a->E[(i + 1) * intp1 + (i + 1)] = 2.0 * a->tdd[i];
a->E[(i + 0) * intp1 + (i + 1)] = 2.0 * a->tgd[i];
a->E[(i + 1) * intp1 + (i + 0)] = 2.0 * a->tgd[i];
}
for (i = 0; i < intm1; i++)
{
a->C[i * intp1 + (i + 0)] = +3.0 * a->h[i + 1] / a->h[i];
a->C[i * intp1 + (i + 2)] = -3.0 * a->h[i] / a->h[i + 1];
a->C[i * intp1 + (i + 1)] = -a->C[i * intp1 + (i + 0)] - a->C[i * intp1 + (i + 2)];
a->F[i * intp1 + (i + 0)] = a->h[i + 1];
a->F[i * intp1 + (i + 1)] = 2.0 * (a->h[i] + a->h[i + 1]);
a->F[i * intp1 + (i + 2)] = a->h[i];
}
for (i = 0, k = 0; i < intp1; i++, k++)
{
for (j = 0, m = 0; j < intp1; j++, m++)
a->MAT[k * nsize + m] = a->A[i * intp1 + j];
for (j = 0, m = intp1; j < intp1; j++, m++)
a->MAT[k * nsize + m] = a->B[j * intp1 + i];
for (j = 0, m = 2 * intp1; j < intm1; j++, m++)
a->MAT[k * nsize + m] = a->C[j * intp1 + i];
a->RHS[k] = a->D[i];
}
for (i = 0, k = intp1; i < intp1; i++, k++)
{
for (j = 0, m = 0; j < intp1; j++, m++)
a->MAT[k * nsize + m] = a->B[i * intp1 + j];
for (j = 0, m = intp1; j < intp1; j++, m++)
a->MAT[k * nsize + m] = a->E[i * intp1 + j];
for (j = 0, m = 2 * intp1; j < intm1; j++, m++)
a->MAT[k * nsize + m] = a->F[j * intp1 + i];
a->RHS[k] = a->G[i];
}
for (i = 0, k = 2 * intp1; i < intm1; i++, k++)
{
for (j = 0, m = 0; j < intp1; j++, m++)
a->MAT[k * nsize + m] = a->C[i * intp1 + j];
for (j = 0, m = intp1; j < intp1; j++, m++)
a->MAT[k * nsize + m] = a->F[i * intp1 + j];
for (j = 0, m = 2 * intp1; j < intm1; j++, m++)
a->MAT[k * nsize + m] = 0.0;
a->RHS[k] = 0.0;
}
decomp(nsize, a->MAT, a->ipiv, &dinfo, a->wrk);
dsolve(nsize, a->MAT, a->ipiv, a->RHS, a->SLN);
if (dinfo != 0)
{
*info = dinfo;
goto cleanup;
}
for (i = 0; i <= ints; i++)
{
a->z[i] = a->SLN[i];
a->zp[i] = a->SLN[i + ints + 1];
}
for (i = 0; i < ints; i++)
{
c[4 * i + 0] = a->z[i];
c[4 * i + 1] = a->zp[i];
c[4 * i + 2] = -3.0 / (a->h[i] * a->h[i]) * (a->z[i] - a->z[i + 1]) - 1.0 / a->h[i] * (2.0 * a->zp[i] + a->zp[i + 1]);
c[4 * i + 3] = 2.0 / (a->h[i] * a->h[i] * a->h[i]) * (a->z[i] - a->z[i + 1]) + 1.0 / (a->h[i] * a->h[i]) * (a->zp[i] + a->zp[i + 1]);
}
cleanup:
return;
}
} // namespace WDSP

83
wdsp/bldr.hpp Normal file
View File

@ -0,0 +1,83 @@
/* lmath.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2015, 2023 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#ifndef wdsp_bldr_h
#define wdsp_bldr_h
#include "export.h"
namespace WDSP {
class WDSP_API BLDR
{
public:
double* catxy;
double* sx;
double* sy;
double* h;
int* p;
int* np;
double* taa;
double* tab;
double* tag;
double* tad;
double* tbb;
double* tbg;
double* tbd;
double* tgg;
double* tgd;
double* tdd;
double* A;
double* B;
double* C;
double* D;
double* E;
double* F;
double* G;
double* MAT;
double* RHS;
double* SLN;
double* z;
double* zp;
double* wrk;
int* ipiv;
static BLDR* create_builder(int points, int ints);
static void destroy_builder(BLDR *a);
static void flush_builder(BLDR *a, int points, int ints);
static void xbuilder(BLDR *a, int points, double* x, double* y, int ints, double* t, int* info, double* c, double ptol);
private:
static int fcompare(const void* a, const void* b);
static void decomp(int n, double* a, int* piv, int* info, double* wrk);
static void dsolve(int n, double* a, int* piv, double* b, double* x);
static void cull(int* n, int ints, double* x, double* t, double ptol);
};
} // namespace WDSP
#endif

281
wdsp/bps.cpp Normal file
View File

@ -0,0 +1,281 @@
/* bandpass.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2016, 2017 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include <QRecursiveMutex>
#include "comm.hpp"
#include "bps.hpp"
#include "fir.hpp"
#include "bandpass.hpp"
#include "RXA.hpp"
#include "TXA.hpp"
namespace WDSP {
/********************************************************************************************************
* *
* Overlap-Save Bandpass *
* *
********************************************************************************************************/
void BPS::calc_bps (BPS *a)
{
double* impulse;
a->infilt = new double[2 * a->size * 2]; // (double *)malloc0(2 * a->size * sizeof(dcomplex));
a->product = new double[2 * a->size * 2]; // (double *)malloc0(2 * a->size * sizeof(dcomplex));
impulse = FIR::fir_bandpass(a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (double)(2 * a->size));
a->mults = FIR::fftcv_mults(2 * a->size, impulse);
a->CFor = fftw_plan_dft_1d(2 * a->size, (fftw_complex *)a->infilt, (fftw_complex *)a->product, FFTW_FORWARD, FFTW_PATIENT);
a->CRev = fftw_plan_dft_1d(2 * a->size, (fftw_complex *)a->product, (fftw_complex *)a->out, FFTW_BACKWARD, FFTW_PATIENT);
delete[](impulse);
}
void BPS::decalc_bps (BPS *a)
{
fftw_destroy_plan(a->CRev);
fftw_destroy_plan(a->CFor);
delete[] (a->mults);
delete[] (a->product);
delete[] (a->infilt);
}
BPS* BPS::create_bps (int run, int position, int size, double* in, double* out,
double f_low, double f_high, int samplerate, int wintype, double gain)
{
BPS *a = new BPS;
a->run = run;
a->position = position;
a->size = size;
a->samplerate = (double)samplerate;
a->wintype = wintype;
a->gain = gain;
a->in = in;
a->out = out;
a->f_low = f_low;
a->f_high = f_high;
calc_bps (a);
return a;
}
void BPS::destroy_bps (BPS *a)
{
decalc_bps (a);
delete a;
}
void BPS::flush_bps (BPS *a)
{
memset (a->infilt, 0, 2 * a->size * sizeof (dcomplex));
}
void BPS::xbps (BPS *a, int pos)
{
int i;
double I, Q;
if (a->run && pos == a->position)
{
memcpy (&(a->infilt[2 * a->size]), a->in, a->size * sizeof (dcomplex));
fftw_execute (a->CFor);
for (i = 0; i < 2 * a->size; i++)
{
I = a->gain * a->product[2 * i + 0];
Q = a->gain * a->product[2 * i + 1];
a->product[2 * i + 0] = I * a->mults[2 * i + 0] - Q * a->mults[2 * i + 1];
a->product[2 * i + 1] = I * a->mults[2 * i + 1] + Q * a->mults[2 * i + 0];
}
fftw_execute (a->CRev);
memcpy (a->infilt, &(a->infilt[2 * a->size]), a->size * sizeof(dcomplex));
}
else if (a->in != a->out)
memcpy (a->out, a->in, a->size * sizeof (dcomplex));
}
void BPS::setBuffers_bps (BPS *a, double* in, double* out)
{
decalc_bps (a);
a->in = in;
a->out = out;
calc_bps (a);
}
void BPS::setSamplerate_bps (BPS *a, int rate)
{
decalc_bps (a);
a->samplerate = rate;
calc_bps (a);
}
void BPS::setSize_bps (BPS *a, int size)
{
decalc_bps (a);
a->size = size;
calc_bps (a);
}
void BPS::setFreqs_bps (BPS *a, double f_low, double f_high)
{
decalc_bps (a);
a->f_low = f_low;
a->f_high = f_high;
calc_bps (a);
}
/********************************************************************************************************
* *
* Overlap-Save Bandpass: RXA Properties *
* *
********************************************************************************************************/
void BPS::SetBPSRun (RXA& rxa, int run)
{
rxa.csDSP.lock();
rxa.bp1.p->run = run;
rxa.csDSP.unlock();
}
void BPS::SetBPSFreqs (RXA& rxa, double f_low, double f_high)
{
double* impulse;
BPS *a1;
rxa.csDSP.lock();
a1 = rxa.bps1.p;
if ((f_low != a1->f_low) || (f_high != a1->f_high))
{
a1->f_low = f_low;
a1->f_high = f_high;
delete[] (a1->mults);
impulse = FIR::fir_bandpass(a1->size + 1, f_low, f_high, a1->samplerate, a1->wintype, 1, 1.0 / (double)(2 * a1->size));
a1->mults = FIR::fftcv_mults (2 * a1->size, impulse);
delete[] (impulse);
}
rxa.csDSP.unlock();
}
void BPS::SetBPSWindow (RXA& rxa, int wintype)
{
double* impulse;
BPS *a1;
rxa.csDSP.lock();
a1 = rxa.bps1.p;
if ((a1->wintype != wintype))
{
a1->wintype = wintype;
delete[] (a1->mults);
impulse = FIR::fir_bandpass(a1->size + 1, a1->f_low, a1->f_high, a1->samplerate, a1->wintype, 1, 1.0 / (double)(2 * a1->size));
a1->mults = FIR::fftcv_mults (2 * a1->size, impulse);
delete[] (impulse);
}
rxa.csDSP.unlock();
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
// UNCOMMENT properties when pointers in place in txa
void BPS::SetBPSRun (TXA& txa, int run)
{
txa.csDSP.lock();
txa.bp1.p->run = run;
txa.csDSP.unlock();
}
void BPS::SetBPSFreqs (TXA& txa, double f_low, double f_high)
{
double* impulse;
BPS *a;
txa.csDSP.lock();
a = txa.bps0.p;
if ((f_low != a->f_low) || (f_high != a->f_high))
{
a->f_low = f_low;
a->f_high = f_high;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, f_low, f_high, a->samplerate, a->wintype, 1, 1.0 / (double)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps1.p;
if ((f_low != a->f_low) || (f_high != a->f_high))
{
a->f_low = f_low;
a->f_high = f_high;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, f_low, f_high, a->samplerate, a->wintype, 1, 1.0 / (double)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps2.p;
if ((f_low != a->f_low) || (f_high != a->f_high))
{
a->f_low = f_low;
a->f_high = f_high;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, f_low, f_high, a->samplerate, a->wintype, 1, 1.0 / (double)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
txa.csDSP.unlock();
}
void BPS::SetBPSWindow (TXA& txa, int wintype)
{
double* impulse;
BPS *a;
txa.csDSP.lock();
a = txa.bps0.p;
if (a->wintype != wintype)
{
a->wintype = wintype;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (double)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps1.p;
if (a->wintype != wintype)
{
a->wintype = wintype;
delete[] (a->mults);
impulse = FIR::fir_bandpass(a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (double)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
a = txa.bps2.p;
if (a->wintype != wintype)
{
a->wintype = wintype;
delete[] (a->mults);
impulse = FIR::fir_bandpass (a->size + 1, a->f_low, a->f_high, a->samplerate, a->wintype, 1, 1.0 / (double)(2 * a->size));
a->mults = FIR::fftcv_mults (2 * a->size, impulse);
delete[] (impulse);
}
txa.csDSP.unlock();
}
} // namespace WDSP

91
wdsp/bps.hpp Normal file
View File

@ -0,0 +1,91 @@
/* bandpass.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2016, 2017 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
/********************************************************************************************************
* *
* Overlap-Save Bandpass *
* *
********************************************************************************************************/
#ifndef wdsp_bps_h
#define wdsp_bps_h
#include "fftw3.h"
#include "export.h"
namespace WDSP {
class RXA;
class TXA;
class WDSP_API BPS
{
public:
int run;
int position;
int size;
double* in;
double* out;
double f_low;
double f_high;
double* infilt;
double* product;
double* mults;
double samplerate;
int wintype;
double gain;
fftw_plan CFor;
fftw_plan CRev;
static BPS* create_bps (int run, int position, int size, double* in, double* out,
double f_low, double f_high, int samplerate, int wintype, double gain);
static void destroy_bps (BPS *a);
static void flush_bps (BPS *a);
static void xbps (BPS *a, int pos);
static void setBuffers_bps (BPS *a, double* in, double* out);
static void setSamplerate_bps (BPS *a, int rate);
static void setSize_bps (BPS *a, int size);
static void setFreqs_bps (BPS *a, double f_low, double f_high);
// RXA Prototypes
static void SetBPSRun (RXA& rxa, int run);
static void SetBPSFreqs (RXA& rxa, double low, double high);
static void SetBPSWindow (RXA& rxa, int wintype);
// TXA Prototypes
static void SetBPSRun (TXA& txa, int run);
static void SetBPSFreqs (TXA& txa, double low, double high);
static void SetBPSWindow (TXA& txa, int wintype);
private:
static void calc_bps (BPS *a);
static void decalc_bps (BPS *a);
};
} // namespace WDSP
#endif

29078
wdsp/calculus.cpp Normal file

File diff suppressed because it is too large Load Diff

45
wdsp/calculus.hpp Normal file
View File

@ -0,0 +1,45 @@
/* calculus.hpp
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2016, 2017 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#ifndef wdsp_calculus_h
#define wdsp_calculus_h
#include "export.h"
namespace WDSP {
class WDSP_API Calculus
{
public:
static const double GG[];
static const double GGS[];
};
} // namespace WDSP
#endif

132
wdsp/cblock.cpp Normal file
View File

@ -0,0 +1,132 @@
/* cblock.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2016 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "cblock.hpp"
#include "RXA.hpp"
namespace WDSP {
void CBL::calc_cbl (CBL *a)
{
a->prevIin = 0.0;
a->prevQin = 0.0;
a->prevIout = 0.0;
a->prevQout = 0.0;
a->mtau = exp(-1.0 / (a->sample_rate * a->tau));
}
CBL* CBL::create_cbl
(
int run,
int buff_size,
double *in_buff,
double *out_buff,
int mode,
int sample_rate,
double tau
)
{
CBL *a = new CBL;
a->run = run;
a->buff_size = buff_size;
a->in_buff = in_buff;
a->out_buff = out_buff;
a->mode = mode;
a->sample_rate = (double)sample_rate;
a->tau = tau;
calc_cbl (a);
return a;
}
void CBL::destroy_cbl(CBL *a)
{
delete a;
}
void CBL::flush_cbl (CBL *a)
{
a->prevIin = 0.0;
a->prevQin = 0.0;
a->prevIout = 0.0;
a->prevQout = 0.0;
}
void CBL::xcbl (CBL *a)
{
if (a->run)
{
int i;
double tempI, tempQ;
for (i = 0; i < a->buff_size; i++)
{
tempI = a->in_buff[2 * i + 0];
tempQ = a->in_buff[2 * i + 1];
a->out_buff[2 * i + 0] = a->in_buff[2 * i + 0] - a->prevIin + a->mtau * a->prevIout;
a->out_buff[2 * i + 1] = a->in_buff[2 * i + 1] - a->prevQin + a->mtau * a->prevQout;
a->prevIin = tempI;
a->prevQin = tempQ;
if (fabs(a->prevIout = a->out_buff[2 * i + 0]) < 1.0e-100) a->prevIout = 0.0;
if (fabs(a->prevQout = a->out_buff[2 * i + 1]) < 1.0e-100) a->prevQout = 0.0;
}
}
else if (a->in_buff != a->out_buff)
memcpy (a->out_buff, a->in_buff, a->buff_size * sizeof (dcomplex));
}
void CBL::setBuffers_cbl (CBL *a, double* in, double* out)
{
a->in_buff = in;
a->out_buff = out;
}
void CBL::setSamplerate_cbl (CBL *a, int rate)
{
a->sample_rate = rate;
calc_cbl (a);
}
void CBL::setSize_cbl (CBL *a, int size)
{
a->buff_size = size;
flush_cbl (a);
}
/********************************************************************************************************
* *
* RXA Properties *
* *
********************************************************************************************************/
void CBL::SetCBLRun(RXA& rxa, int setit)
{
rxa.csDSP.lock();
rxa.cbl.p->run = setit;
rxa.csDSP.unlock();
}
} // namespace WDSP

78
wdsp/cblock.hpp Normal file
View File

@ -0,0 +1,78 @@
/* cblock.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#ifndef wdsp_cblock_h
#define wdsp_cblock_h
#include "export.h"
namespace WDSP {
class RXA;
class WDSP_API CBL
{
public:
int run; //run
int buff_size; //buffer size
double *in_buff; //pointer to input buffer
double *out_buff; //pointer to output buffer
int mode;
double sample_rate; //sample rate
double prevIin;
double prevQin;
double prevIout;
double prevQout;
double tau; //carrier removal time constant
double mtau; //carrier removal multiplier
static CBL* create_cbl
(
int run,
int buff_size,
double *in_buff,
double *out_buff,
int mode,
int sample_rate,
double tau
);
static void destroy_cbl (CBL *a);
static void flush_cbl (CBL *a);
static void xcbl (CBL *a);
static void setBuffers_cbl (CBL *a, double* in, double* out);
static void setSamplerate_cbl (CBL *a, int rate);
static void setSize_cbl (CBL *a, int size);
// RXA Properties
static void SetCBLRun(RXA& rxa, int setit);
private:
static void calc_cbl (CBL *a);
};
} // namespace WDSP
#endif

521
wdsp/cfcomp.cpp Normal file
View File

@ -0,0 +1,521 @@
/* cfcomp.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2017, 2021 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "cfcomp.hpp"
#include "meterlog10.hpp"
#include "TXA.hpp"
namespace WDSP {
void CFCOMP::calc_cfcwindow (CFCOMP *a)
{
int i;
double arg0, arg1, cgsum, igsum, coherent_gain, inherent_power_gain, wmult;
switch (a->wintype)
{
case 0:
arg0 = 2.0 * PI / (double)a->fsize;
cgsum = 0.0;
igsum = 0.0;
for (i = 0; i < a->fsize; i++)
{
a->window[i] = sqrt (0.54 - 0.46 * cos((double)i * arg0));
cgsum += a->window[i];
igsum += a->window[i] * a->window[i];
}
coherent_gain = cgsum / (double)a->fsize;
inherent_power_gain = igsum / (double)a->fsize;
wmult = 1.0 / sqrt (inherent_power_gain);
for (i = 0; i < a->fsize; i++)
a->window[i] *= wmult;
a->winfudge = sqrt (1.0 / coherent_gain);
break;
case 1:
arg0 = 2.0 * PI / (double)a->fsize;
cgsum = 0.0;
igsum = 0.0;
for (i = 0; i < a->fsize; i++)
{
arg1 = cos(arg0 * (double)i);
a->window[i] = sqrt (+0.21747
+ arg1 * (-0.45325
+ arg1 * (+0.28256
+ arg1 * (-0.04672))));
cgsum += a->window[i];
igsum += a->window[i] * a->window[i];
}
coherent_gain = cgsum / (double)a->fsize;
inherent_power_gain = igsum / (double)a->fsize;
wmult = 1.0 / sqrt (inherent_power_gain);
for (i = 0; i < a->fsize; i++)
a->window[i] *= wmult;
a->winfudge = sqrt (1.0 / coherent_gain);
break;
}
}
int CFCOMP::fCOMPcompare (const void *a, const void *b)
{
if (*(double*)a < *(double*)b)
return -1;
else if (*(double*)a == *(double*)b)
return 0;
else
return 1;
}
void CFCOMP::calc_comp (CFCOMP *a)
{
int i, j;
double f, frac, fincr, fmax;
double* sary;
a->precomplin = pow (10.0, 0.05 * a->precomp);
a->prepeqlin = pow (10.0, 0.05 * a->prepeq);
fmax = 0.5 * a->rate;
for (i = 0; i < a->nfreqs; i++)
{
a->F[i] = std::max (a->F[i], 0.0);
a->F[i] = std::min (a->F[i], fmax);
a->G[i] = std::max (a->G[i], 0.0);
}
sary = new double[3 * a->nfreqs]; // (double *)malloc0 (3 * a->nfreqs * sizeof (double));
for (i = 0; i < a->nfreqs; i++)
{
sary[3 * i + 0] = a->F[i];
sary[3 * i + 1] = a->G[i];
sary[3 * i + 2] = a->E[i];
}
qsort (sary, a->nfreqs, 3 * sizeof (double), fCOMPcompare);
for (i = 0; i < a->nfreqs; i++)
{
a->F[i] = sary[3 * i + 0];
a->G[i] = sary[3 * i + 1];
a->E[i] = sary[3 * i + 2];
}
delete[] (sary);
a->fp[0] = 0.0;
a->fp[a->nfreqs + 1] = fmax;
a->gp[0] = a->G[0];
a->gp[a->nfreqs + 1] = a->G[a->nfreqs - 1];
a->ep[0] = a->E[0]; // cutoff?
a->ep[a->nfreqs + 1] = a->E[a->nfreqs - 1]; // cutoff?
for (i = 0, j = 1; i < a->nfreqs; i++, j++)
{
a->fp[j] = a->F[i];
a->gp[j] = a->G[i];
a->ep[j] = a->E[i];
}
fincr = a->rate / (double)a->fsize;
j = 0;
// print_impulse ("gp.txt", a->nfreqs+2, a->gp, 0, 0);
for (i = 0; i < a->msize; i++)
{
f = fincr * (double)i;
while (f >= a->fp[j + 1] && j < a->nfreqs) j++;
frac = (f - a->fp[j]) / (a->fp[j + 1] - a->fp[j]);
a->comp[i] = pow (10.0, 0.05 * (frac * a->gp[j + 1] + (1.0 - frac) * a->gp[j]));
a->peq[i] = pow (10.0, 0.05 * (frac * a->ep[j + 1] + (1.0 - frac) * a->ep[j]));
a->cfc_gain[i] = a->precomplin * a->comp[i];
}
// print_impulse ("comp.txt", a->msize, a->comp, 0, 0);
delete[] sary;
}
void CFCOMP::calc_cfcomp(CFCOMP *a)
{
int i;
a->incr = a->fsize / a->ovrlp;
if (a->fsize > a->bsize)
a->iasize = a->fsize;
else
a->iasize = a->bsize + a->fsize - a->incr;
a->iainidx = 0;
a->iaoutidx = 0;
if (a->fsize > a->bsize)
{
if (a->bsize > a->incr) a->oasize = a->bsize;
else a->oasize = a->incr;
a->oainidx = (a->fsize - a->bsize - a->incr) % a->oasize;
}
else
{
a->oasize = a->bsize;
a->oainidx = a->fsize - a->incr;
}
a->init_oainidx = a->oainidx;
a->oaoutidx = 0;
a->msize = a->fsize / 2 + 1;
a->window = new double[a->fsize]; // (double *)malloc0 (a->fsize * sizeof(double));
a->inaccum = new double[a->iasize]; // (double *)malloc0 (a->iasize * sizeof(double));
a->forfftin = new double[a->fsize]; // (double *)malloc0 (a->fsize * sizeof(double));
a->forfftout = new double[a->msize * 2]; // (double *)malloc0 (a->msize * sizeof(complex));
a->cmask = new double[a->msize]; // (double *)malloc0 (a->msize * sizeof(double));
a->mask = new double[a->msize]; // (double *)malloc0 (a->msize * sizeof(double));
a->cfc_gain = new double[a->msize]; // (double *)malloc0 (a->msize * sizeof(double));
a->revfftin = new double[a->msize * 2]; // (double *)malloc0 (a->msize * sizeof(complex));
a->revfftout = new double[a->fsize]; // (double *)malloc0 (a->fsize * sizeof(double));
a->save = new double*[a->ovrlp]; // (double **)malloc0(a->ovrlp * sizeof(double *));
for (i = 0; i < a->ovrlp; i++)
a->save[i] = new double[a->fsize]; // (double *)malloc0(a->fsize * sizeof(double));
a->outaccum = new double[a->oasize]; // (double *)malloc0(a->oasize * sizeof(double));
a->nsamps = 0;
a->saveidx = 0;
a->Rfor = fftw_plan_dft_r2c_1d(a->fsize, a->forfftin, (fftw_complex *)a->forfftout, FFTW_ESTIMATE);
a->Rrev = fftw_plan_dft_c2r_1d(a->fsize, (fftw_complex *)a->revfftin, a->revfftout, FFTW_ESTIMATE);
calc_cfcwindow(a);
a->pregain = (2.0 * a->winfudge) / (double)a->fsize;
a->postgain = 0.5 / ((double)a->ovrlp * a->winfudge);
a->fp = new double[a->nfreqs + 2]; // (double *) malloc0 ((a->nfreqs + 2) * sizeof (double));
a->gp = new double[a->nfreqs + 2]; // (double *) malloc0 ((a->nfreqs + 2) * sizeof (double));
a->ep = new double[a->nfreqs + 2]; // (double *) malloc0 ((a->nfreqs + 2) * sizeof (double));
a->comp = new double[a->msize]; // (double *) malloc0 (a->msize * sizeof (double));
a->peq = new double[a->msize]; // (double *) malloc0 (a->msize * sizeof (double));
calc_comp (a);
a->gain = 0.0;
a->mmult = exp (-1.0 / (a->rate * a->ovrlp * a->mtau));
a->dmult = exp (-(double)a->fsize / (a->rate * a->ovrlp * a->dtau));
a->delta = new double[a->msize]; // (double*)malloc0 (a->msize * sizeof(double));
a->delta_copy = new double[a->msize]; // (double*)malloc0 (a->msize * sizeof(double));
a->cfc_gain_copy = new double[a->msize]; // (double*)malloc0 (a->msize * sizeof(double));
}
void CFCOMP::decalc_cfcomp(CFCOMP *a)
{
int i;
delete[] (a->cfc_gain_copy);
delete[] (a->delta_copy);
delete[] (a->delta);
delete[] (a->peq);
delete[] (a->comp);
delete[] (a->ep);
delete[] (a->gp);
delete[] (a->fp);
fftw_destroy_plan(a->Rrev);
fftw_destroy_plan(a->Rfor);
delete[](a->outaccum);
for (i = 0; i < a->ovrlp; i++)
delete[](a->save[i]);
delete[](a->save);
delete[](a->revfftout);
delete[](a->revfftin);
delete[](a->cfc_gain);
delete[](a->mask);
delete[](a->cmask);
delete[](a->forfftout);
delete[](a->forfftin);
delete[](a->inaccum);
delete[](a->window);
}
CFCOMP* CFCOMP::create_cfcomp (int run, int position, int peq_run, int size, double* in, double* out, int fsize, int ovrlp,
int rate, int wintype, int comp_method, int nfreqs, double precomp, double prepeq, double* F, double* G, double* E, double mtau, double dtau)
{
CFCOMP *a = new CFCOMP;
a->run = run;
a->position = position;
a->peq_run = peq_run;
a->bsize = size;
a->in = in;
a->out = out;
a->fsize = fsize;
a->ovrlp = ovrlp;
a->rate = rate;
a->wintype = wintype;
a->comp_method = comp_method;
a->nfreqs = nfreqs;
a->precomp = precomp;
a->prepeq = prepeq;
a->mtau = mtau; // compression metering time constant
a->dtau = dtau; // compression display time constant
a->F = new double[a->nfreqs]; // (double *)malloc0 (a->nfreqs * sizeof (double));
a->G = new double[a->nfreqs]; // (double *)malloc0 (a->nfreqs * sizeof (double));
a->E = new double[a->nfreqs]; // (double *)malloc0 (a->nfreqs * sizeof (double));
memcpy (a->F, F, a->nfreqs * sizeof (double));
memcpy (a->G, G, a->nfreqs * sizeof (double));
memcpy (a->E, E, a->nfreqs * sizeof (double));
calc_cfcomp (a);
return a;
}
void CFCOMP::flush_cfcomp (CFCOMP *a)
{
int i;
memset (a->inaccum, 0, a->iasize * sizeof (double));
for (i = 0; i < a->ovrlp; i++)
memset (a->save[i], 0, a->fsize * sizeof (double));
memset (a->outaccum, 0, a->oasize * sizeof (double));
a->nsamps = 0;
a->iainidx = 0;
a->iaoutidx = 0;
a->oainidx = a->init_oainidx;
a->oaoutidx = 0;
a->saveidx = 0;
a->gain = 0.0;
memset(a->delta, 0, a->msize * sizeof(double));
}
void CFCOMP::destroy_cfcomp (CFCOMP *a)
{
decalc_cfcomp (a);
delete[] (a->E);
delete[] (a->G);
delete[] (a->F);
delete (a);
}
void CFCOMP::calc_mask (CFCOMP *a)
{
int i;
double comp, mask, delta;
switch (a->comp_method)
{
case 0:
{
double mag, test;
for (i = 0; i < a->msize; i++)
{
mag = sqrt (a->forfftout[2 * i + 0] * a->forfftout[2 * i + 0]
+ a->forfftout[2 * i + 1] * a->forfftout[2 * i + 1]);
comp = a->cfc_gain[i];
test = comp * mag;
if (test > 1.0)
mask = 1.0 / mag;
else
mask = comp;
a->cmask[i] = mask;
if (test > a->gain) a->gain = test;
else a->gain = a->mmult * a->gain;
delta = a->cfc_gain[i] - a->cmask[i];
if (delta > a->delta[i]) a->delta[i] = delta;
else a->delta[i] *= a->dmult;
}
break;
}
}
if (a->peq_run)
{
for (i = 0; i < a->msize; i++)
{
a->mask[i] = a->cmask[i] * a->prepeqlin * a->peq[i];
}
}
else
memcpy (a->mask, a->cmask, a->msize * sizeof (double));
// print_impulse ("mask.txt", a->msize, a->mask, 0, 0);
a->mask_ready = 1;
}
void CFCOMP::xcfcomp (CFCOMP *a, int pos)
{
if (a->run && pos == a->position)
{
int i, j, k, sbuff, sbegin;
for (i = 0; i < 2 * a->bsize; i += 2)
{
a->inaccum[a->iainidx] = a->in[i];
a->iainidx = (a->iainidx + 1) % a->iasize;
}
a->nsamps += a->bsize;
while (a->nsamps >= a->fsize)
{
for (i = 0, j = a->iaoutidx; i < a->fsize; i++, j = (j + 1) % a->iasize)
a->forfftin[i] = a->pregain * a->window[i] * a->inaccum[j];
a->iaoutidx = (a->iaoutidx + a->incr) % a->iasize;
a->nsamps -= a->incr;
fftw_execute (a->Rfor);
calc_mask(a);
for (i = 0; i < a->msize; i++)
{
a->revfftin[2 * i + 0] = a->mask[i] * a->forfftout[2 * i + 0];
a->revfftin[2 * i + 1] = a->mask[i] * a->forfftout[2 * i + 1];
}
fftw_execute (a->Rrev);
for (i = 0; i < a->fsize; i++)
a->save[a->saveidx][i] = a->postgain * a->window[i] * a->revfftout[i];
for (i = a->ovrlp; i > 0; i--)
{
sbuff = (a->saveidx + i) % a->ovrlp;
sbegin = a->incr * (a->ovrlp - i);
for (j = sbegin, k = a->oainidx; j < a->incr + sbegin; j++, k = (k + 1) % a->oasize)
{
if ( i == a->ovrlp)
a->outaccum[k] = a->save[sbuff][j];
else
a->outaccum[k] += a->save[sbuff][j];
}
}
a->saveidx = (a->saveidx + 1) % a->ovrlp;
a->oainidx = (a->oainidx + a->incr) % a->oasize;
}
for (i = 0; i < a->bsize; i++)
{
a->out[2 * i + 0] = a->outaccum[a->oaoutidx];
a->out[2 * i + 1] = 0.0;
a->oaoutidx = (a->oaoutidx + 1) % a->oasize;
}
}
else if (a->out != a->in)
memcpy (a->out, a->in, a->bsize * sizeof (dcomplex));
}
void CFCOMP::setBuffers_cfcomp (CFCOMP *a, double* in, double* out)
{
a->in = in;
a->out = out;
}
void CFCOMP::setSamplerate_cfcomp (CFCOMP *a, int rate)
{
decalc_cfcomp (a);
a->rate = rate;
calc_cfcomp (a);
}
void CFCOMP::setSize_cfcomp (CFCOMP *a, int size)
{
decalc_cfcomp (a);
a->bsize = size;
calc_cfcomp (a);
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
void CFCOMP::SetCFCOMPRun (TXA& txa, int run)
{
CFCOMP *a = txa.cfcomp.p;
if (a->run != run)
{
txa.csDSP.lock();
a->run = run;
txa.csDSP.unlock();
}
}
void CFCOMP::SetCFCOMPPosition (TXA& txa, int pos)
{
CFCOMP *a = txa.cfcomp.p;
if (a->position != pos)
{
txa.csDSP.lock();
a->position = pos;
txa.csDSP.unlock();
}
}
void CFCOMP::SetCFCOMPprofile (TXA& txa, int nfreqs, double* F, double* G, double *E)
{
CFCOMP *a = txa.cfcomp.p;
txa.csDSP.lock();
a->nfreqs = nfreqs;
delete[] (a->E);
delete[] (a->F);
delete[] (a->G);
a->F = new double[a->nfreqs]; // (double *)malloc0 (a->nfreqs * sizeof (double));
a->G = new double[a->nfreqs]; // (double *)malloc0 (a->nfreqs * sizeof (double));
a->E = new double[a->nfreqs]; // (double *)malloc0 (a->nfreqs * sizeof (double));
memcpy (a->F, F, a->nfreqs * sizeof (double));
memcpy (a->G, G, a->nfreqs * sizeof (double));
memcpy (a->E, E, a->nfreqs * sizeof (double));
delete[] (a->ep);
delete[] (a->gp);
delete[] (a->fp);
a->fp = new double[a->nfreqs]; // (double *) malloc0 ((a->nfreqs + 2) * sizeof (double));
a->gp = new double[a->nfreqs]; // (double *) malloc0 ((a->nfreqs + 2) * sizeof (double));
a->ep = new double[a->nfreqs]; // (double *) malloc0 ((a->nfreqs + 2) * sizeof (double));
calc_comp(a);
txa.csDSP.unlock();
}
void CFCOMP::SetCFCOMPPrecomp (TXA& txa, double precomp)
{
CFCOMP *a = txa.cfcomp.p;
if (a->precomp != precomp)
{
txa.csDSP.lock();
a->precomp = precomp;
a->precomplin = pow (10.0, 0.05 * a->precomp);
for (int i = 0; i < a->msize; i++)
{
a->cfc_gain[i] = a->precomplin * a->comp[i];
}
txa.csDSP.unlock();
}
}
void CFCOMP::SetCFCOMPPeqRun (TXA& txa, int run)
{
CFCOMP *a = txa.cfcomp.p;
if (a->peq_run != run)
{
txa.csDSP.lock();
a->peq_run = run;
txa.csDSP.unlock();
}
}
void CFCOMP::SetCFCOMPPrePeq (TXA& txa, double prepeq)
{
CFCOMP *a = txa.cfcomp.p;
txa.csDSP.lock();
a->prepeq = prepeq;
a->prepeqlin = pow (10.0, 0.05 * a->prepeq);
txa.csDSP.unlock();
}
void CFCOMP::GetCFCOMPDisplayCompression (TXA& txa, double* comp_values, int* ready)
{
int i;
CFCOMP *a = txa.cfcomp.p;
txa.csDSP.lock();
if ((*ready = a->mask_ready))
{
memcpy(a->delta_copy, a->delta, a->msize * sizeof(double));
memcpy(a->cfc_gain_copy, a->cfc_gain, a->msize * sizeof(double));
a->mask_ready = 0;
}
txa.csDSP.unlock();
if (*ready)
{
for (i = 0; i < a->msize; i++)
comp_values[i] = 20.0 * MemLog::mlog10 (a->cfc_gain_copy[i] / (a->cfc_gain_copy[i] - a->delta_copy[i]));
}
}
} // namespace WDSP

152
wdsp/cfcomp.hpp Normal file
View File

@ -0,0 +1,152 @@
/* cfcomp.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2017, 2021 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#ifndef wdsp_cfcomp_h
#define wdsp_cfcomp_h
#include "fftw3.h"
#include "export.h"
namespace WDSP {
class TXA;
class WDSP_API CFCOMP
{
public:
int run;
int position;
int bsize;
double* in;
double* out;
int fsize;
int ovrlp;
int incr;
double* window;
int iasize;
double* inaccum;
double* forfftin;
double* forfftout;
int msize;
double* cmask;
double* mask;
int mask_ready;
double* cfc_gain;
double* revfftin;
double* revfftout;
double** save;
int oasize;
double* outaccum;
double rate;
int wintype;
double pregain;
double postgain;
int nsamps;
int iainidx;
int iaoutidx;
int init_oainidx;
int oainidx;
int oaoutidx;
int saveidx;
fftw_plan Rfor;
fftw_plan Rrev;
int comp_method;
int nfreqs;
double* F;
double* G;
double* E;
double* fp;
double* gp;
double* ep;
double* comp;
double precomp;
double precomplin;
double* peq;
int peq_run;
double prepeq;
double prepeqlin;
double winfudge;
double gain;
double mtau;
double mmult;
// display stuff
double dtau;
double dmult;
double* delta;
double* delta_copy;
double* cfc_gain_copy;
static CFCOMP* create_cfcomp (
int run,
int position,
int peq_run,
int size,
double* in,
double* out,
int fsize,
int ovrlp,
int rate,
int wintype,
int comp_method,
int nfreqs,
double precomp,
double prepeq,
double* F,
double* G,
double* E,
double mtau,
double dtau
);
static void destroy_cfcomp (CFCOMP *a);
static void flush_cfcomp (CFCOMP *a);
static void xcfcomp (CFCOMP *a, int pos);
static void setBuffers_cfcomp (CFCOMP *a, double* in, double* out);
static void setSamplerate_cfcomp (CFCOMP *a, int rate);
static void setSize_cfcomp (CFCOMP *a, int size);
// TXA Properties
static void SetCFCOMPRun (TXA& txa, int run);
static void SetCFCOMPPosition (TXA& txa, int pos);
static void SetCFCOMPprofile (TXA& txa, int nfreqs, double* F, double* G, double *E);
static void SetCFCOMPPrecomp (TXA& txa, double precomp);
static void SetCFCOMPPeqRun (TXA& txa, int run);
static void SetCFCOMPPrePeq (TXA& txa, double prepeq);
static void GetCFCOMPDisplayCompression (TXA& txa, double* comp_values, int* ready);
private:
static void calc_cfcwindow (CFCOMP *a);
static int fCOMPcompare (const void *a, const void *b);
static void calc_comp (CFCOMP *a);
static void calc_cfcomp(CFCOMP *a);
static void decalc_cfcomp(CFCOMP *a);
static void calc_mask (CFCOMP *a);
};
} // namespace WDSP
#endif

260
wdsp/cfir.cpp Normal file
View File

@ -0,0 +1,260 @@
/* cfir.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2014, 2016, 2021 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "cfir.hpp"
#include "fir.hpp"
#include "firmin.hpp"
#include "TXA.hpp"
namespace WDSP {
void CFIR::calc_cfir (CFIR *a)
{
double* impulse;
a->scale = 1.0 / (double)(2 * a->size);
impulse = cfir_impulse (a->nc, a->DD, a->R, a->Pairs, a->runrate, a->cicrate, a->cutoff, a->xtype, a->xbw, 1, a->scale, a->wintype);
a->p = FIRCORE::create_fircore (a->size, a->in, a->out, a->nc, a->mp, impulse);
delete[] (impulse);
}
void CFIR::decalc_cfir (CFIR *a)
{
FIRCORE::destroy_fircore (a->p);
}
CFIR* CFIR::create_cfir (int run, int size, int nc, int mp, double* in, double* out, int runrate, int cicrate,
int DD, int R, int Pairs, double cutoff, int xtype, double xbw, int wintype)
// run: 0 - no action; 1 - operate
// size: number of complex samples in an input buffer to the CFIR filter
// nc: number of filter coefficients
// mp: minimum phase flag
// in: pointer to the input buffer
// out: pointer to the output buffer
// rate: samplerate
// DD: differential delay of the CIC to be compensated (usually 1 or 2)
// R: interpolation factor of CIC
// Pairs: number of comb-integrator pairs in the CIC
// cutoff: cutoff frequency
// xtype: 0 - fourth power transition; 1 - raised cosine transition; 2 - brick wall
// xbw: width of raised cosine transition
{
CFIR *a = new CFIR;
a->run = run;
a->size = size;
a->nc = nc;
a->mp = mp;
a->in = in;
a->out = out;
a->runrate = runrate;
a->cicrate = cicrate;
a->DD = DD;
a->R = R;
a->Pairs = Pairs;
a->cutoff = cutoff;
a->xtype = xtype;
a->xbw = xbw;
a->wintype = wintype;
calc_cfir (a);
return a;
}
void CFIR::destroy_cfir (CFIR *a)
{
decalc_cfir (a);
delete (a);
}
void CFIR::flush_cfir (CFIR *a)
{
FIRCORE::flush_fircore (a->p);
}
void CFIR::xcfir (CFIR *a)
{
if (a->run)
FIRCORE::xfircore (a->p);
else if (a->in != a->out)
memcpy (a->out, a->in, a->size * sizeof (dcomplex));
}
void CFIR::setBuffers_cfir (CFIR *a, double* in, double* out)
{
decalc_cfir (a);
a->in = in;
a->out = out;
calc_cfir (a);
}
void CFIR::setSamplerate_cfir (CFIR *a, int rate)
{
decalc_cfir (a);
a->runrate = rate;
calc_cfir (a);
}
void CFIR::setSize_cfir (CFIR *a, int size)
{
decalc_cfir (a);
a->size = size;
calc_cfir (a);
}
void CFIR::setOutRate_cfir (CFIR *a, int rate)
{
decalc_cfir (a);
a->cicrate = rate;
calc_cfir (a);
}
double* CFIR::cfir_impulse (int N, int DD, int R, int Pairs, double runrate, double cicrate, double cutoff, int xtype, double xbw, int rtype, double scale, int wintype)
{
// N: number of impulse response samples
// DD: differential delay used in the CIC filter
// R: interpolation / decimation factor of the CIC
// Pairs: number of comb-integrator pairs in the CIC
// runrate: sample rate at which this filter is to run (assumes there may be flat interp. between this filter and the CIC)
// cicrate: sample rate at interface to CIC
// cutoff: cutoff frequency
// xtype: transition type, 0 for 4th-power rolloff, 1 for raised cosine, 2 for brick wall
// xbw: transition bandwidth for raised cosine
// rtype: 0 for real output, 1 for complex output
// scale: scale factor to be applied to the output
int i, j;
double tmp, local_scale, ri, mag, fn;
double* impulse;
double* A = new double[N]; // (double *) malloc0 (N * sizeof (double));
double ft = cutoff / cicrate; // normalized cutoff frequency
int u_samps = (N + 1) / 2; // number of unique samples, OK for odd or even N
int c_samps = (int)(cutoff / runrate * N) + (N + 1) / 2 - N / 2; // number of unique samples within bandpass, OK for odd or even N
int x_samps = (int)(xbw / runrate * N); // number of unique samples in transition region, OK for odd or even N
double offset = 0.5 - 0.5 * (double)((N + 1) / 2 - N / 2); // sample offset from center, OK for odd or even N
double* xistion = new double[x_samps + 1]; // (double *) malloc0 ((x_samps + 1) * sizeof (double));
double delta = PI / (double)x_samps;
double L = cicrate / runrate;
double phs = 0.0;
for (i = 0; i <= x_samps; i++)
{
xistion[i] = 0.5 * (cos (phs) + 1.0);
phs += delta;
}
if ((tmp = DD * R * sin (PI * ft / R) / sin (PI * DD * ft)) < 0.0) //normalize by peak gain
tmp = -tmp;
local_scale = scale / pow (tmp, Pairs);
if (xtype == 0)
{
for (i = 0, ri = offset; i < u_samps; i++, ri += 1.0)
{
fn = ri / (L * (double)N);
if (fn <= ft)
{
if (fn == 0.0) tmp = 1.0;
else if ((tmp = DD * R * sin (PI * fn / R) / sin (PI * DD * fn)) < 0.0)
tmp = -tmp;
mag = pow (tmp, Pairs) * local_scale;
}
else
mag *= (ft * ft * ft * ft) / (fn * fn * fn * fn);
A[i] = mag;
}
}
else if (xtype == 1)
{
for (i = 0, ri = offset; i < u_samps; i++, ri += 1.0)
{
fn = ri / (L *(double)N);
if (i < c_samps)
{
if (fn == 0.0) tmp = 1.0;
else if ((tmp = DD * R * sin (PI * fn / R) / sin (PI * DD * fn)) < 0.0)
tmp = -tmp;
mag = pow (tmp, Pairs) * local_scale;
A[i] = mag;
}
else if ( i >= c_samps && i <= c_samps + x_samps)
A[i] = mag * xistion[i - c_samps];
else
A[i] = 0.0;
}
}
else if (xtype == 2)
{
for (i = 0, ri = offset; i < u_samps; i++, ri += 1.0)
{
fn = ri / (L * (double)N);
if (fn <= ft)
{
if (fn == 0.0) tmp = 1.0;
else if ((tmp = DD * R * sin(PI * fn / R) / sin(PI * DD * fn)) < 0.0)
tmp = -tmp;
mag = pow (tmp, Pairs) * local_scale;
}
else
mag = 0.0;
A[i] = mag;
}
}
if (N & 1)
for (i = u_samps, j = 2; i < N; i++, j++)
A[i] = A[u_samps - j];
else
for (i = u_samps, j = 1; i < N; i++, j++)
A[i] = A[u_samps - j];
impulse = FIR::fir_fsamp (N, A, rtype, 1.0, wintype);
// print_impulse ("cfirImpulse.txt", N, impulse, 1, 0);
delete[] (A);
return impulse;
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
void CFIR::SetCFIRRun (TXA& txa, int run)
{
txa.csDSP.lock();
txa.cfir.p->run = run;
txa.csDSP.unlock();
}
void CFIR::SetCFIRNC(TXA& txa, int nc)
{
// NOTE: 'nc' must be >= 'size'
CFIR *a;
txa.csDSP.lock();
a = txa.cfir.p;
if (a->nc != nc)
{
a->nc = nc;
decalc_cfir(a);
calc_cfir(a);
}
txa.csDSP.unlock();
}
} // namespace WDSP

108
wdsp/cfir.hpp Normal file
View File

@ -0,0 +1,108 @@
/* cfir.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2014, 2016 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#ifndef wdsp_cfir_h
#define wdsp_cfir_h
#include "export.h"
namespace WDSP {
class FIRCORE;
class TXA;
class WDSP_API CFIR
{
public:
int run;
int size;
int nc;
int mp;
double* in;
double* out;
int runrate;
int cicrate;
int DD;
int R;
int Pairs;
double cutoff;
double scale;
int xtype;
double xbw;
int wintype;
FIRCORE *p;
static CFIR* create_cfir (
int run,
int size,
int nc,
int mp,
double* in,
double* out,
int runrate,
int cicrate,
int DD,
int R,
int Pairs,
double cutoff,
int xtype,
double xbw,
int wintype
);
static void destroy_cfir (CFIR *a);
static void flush_cfir (CFIR *a);
static void xcfir (CFIR *a);
static void setBuffers_cfir (CFIR *a, double* in, double* out);
static void setSamplerate_cfir (CFIR *a, int rate);
static void setSize_cfir (CFIR *a, int size);
static void setOutRate_cfir (CFIR *a, int rate);
static double* cfir_impulse (
int N,
int DD,
int R,
int Pairs,
double runrate,
double cicrate,
double cutoff,
int xtype,
double xbw,
int rtype,
double scale,
int wintype
);
// TXA Properties
static void SetCFIRRun(TXA& txa, int run);
static void SetCFIRNC(TXA& txa, int nc);
private:
static void calc_cfir (CFIR *a);
static void decalc_cfir (CFIR *a);
};
} // namespace WDSP
#endif

95
wdsp/channel.hpp Normal file
View File

@ -0,0 +1,95 @@
/* channel.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#ifndef wdsp_channel_h
#define wdsp_channel_h
#include <atomic>
#include <QRecursiveMutex>
#include <QThread>
#include "export.h"
class WDSP_API Channel
{
public:
int type;
bool run; // thread running
int in_rate; // input samplerate
int out_rate; // output samplerate
int in_size; // input buffsize (complex samples) in a fexchange() operation
int dsp_rate; // sample rate for mainstream dsp processing
int dsp_size; // number complex samples processed per buffer in mainstream dsp processing
int dsp_insize; // size (complex samples) of the output of the r1 (input) buffer
int dsp_outsize; // size (complex samples) of the input of the r2 (output) buffer
int out_size; // output buffsize (complex samples) in a fexchange() operation
QRecursiveMutex csDSP; // used to block dsp while parameters are updated or buffers flushed
QRecursiveMutex csEXCH; // used to block fexchange() while parameters are updated or buffers flushed
int state; // 0 for channel OFF; 1 for channel ON
double tdelayup;
double tslewup;
double tdelaydown;
double tslewdown;
int bfo; // 'block_for_output', block fexchange until output is available
volatile long flushflag;
QThread channelThread;
std::atomic<long> upslew;
// struct //io buffers
// {
// IOB pc, pd, pe, pf; // copies for console calls, dsp, exchange, and flush thread
// volatile long ch_upslew;
// } iob;
static void create_channel (
int channel,
int in_size,
int dsp_size,
int input_samplerate,
int dsp_rate,
int output_samplerate,
int type,
int state,
double tdelayup,
double tslewup,
double tdelaydown,
double tslewdown,
int bfo
);
static void destroy_channel (int channel);
static void flush_channel (int channel);
// static void set_type (int channel, int type);
// static void SetInputBuffsize (int channel, int in_size);
// static void SetDSPBuffsize (int channel, int dsp_size);
// static void SetInputSamplerate (int channel, int samplerate);
// static void SetDSPSamplerate (int channel, int samplerate);
// static void SetOutputSamplerate (int channel, int samplerate);
// static void SetAllRates (int channel, int in_rate, int dsp_rate, int out_rate);
// static int SetChannelState (int channel, int state, int dmode);
};
#endif

80
wdsp/comm.hpp Normal file
View File

@ -0,0 +1,80 @@
/* comm.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#ifdef ANDROID
#include <android/log.h>
#define APPNAME "WDSP"
#define LOGD(LOG_TAG, ...) __android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, __VA_ARGS__)
#define LOGI(LOG_TAG, ...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG,__VA_ARGS__)
#define LOGV(LOG_TAG, ...) __android_log_print(ANDROID_LOG_VERBOSE, LOG_TAG, __VA_ARGS__)
#define LOGW(LOG_TAG, ...) __android_log_print(ANDROID_LOG_WARN, LOG_TAG, __VA_ARGS__)
#define LOGE(LOG_TAG, ...) __android_log_print(ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__)
#endif
// manage differences among consoles
#define _Thetis
// channel definitions
#define MAX_CHANNELS 32 // maximum number of supported channels
#define DSP_MULT 2 // number of dsp_buffsizes that are held in an iobuff pseudo-ring
#define INREAL float // data type for channel input buffer
#define OUTREAL float // data type for channel output buffer
// display definitions
#define dMAX_DISPLAYS 64 // maximum number of displays = max instances
#define dMAX_STITCH 4 // maximum number of sub-spans to stitch together
#define dMAX_NUM_FFT 1 // maximum number of ffts for an elimination
#define dMAX_PIXELS 16384 // maximum number of pixels that can be requested
#define dMAX_AVERAGE 60 // maximum number of pixel frames that will be window-averaged
#ifdef _Thetis
#define dINREAL double
#else
#define dINREAL float
#endif
#define dOUTREAL float
#define dSAMP_BUFF_MULT 2 // ratio of input sample buffer size to fft size (for overlap)
#define dNUM_PIXEL_BUFFS 3 // number of pixel output buffers
#define dMAX_M 1 // number of variables to calibrate
#define dMAX_N 100 // maximum number of frequencies at which to calibrate
#define dMAX_CAL_SETS 2 // maximum number of calibration data sets
#define dMAX_PIXOUTS 4 // maximum number of det/avg/outputs per display instance
// wisdom definitions
#define MAX_WISDOM_SIZE_DISPLAY 262144
#define MAX_WISDOM_SIZE_FILTER 262144 // was 32769
// math definitions
#define PI 3.1415926535897932
#define TWOPI 6.2831853071795864
// miscellaneous
typedef double dcomplex[2];
#include <string.h>
#include <math.h>
#include <cstdint>
#include <algorithm>

119
wdsp/compress.cpp Normal file
View File

@ -0,0 +1,119 @@
/* compress.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2011, 2013, 2017 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
This software is based upon the algorithm described by Peter Martinez, G3PLX,
in the January 2010 issue of RadCom magazine.
*/
#include "comm.hpp"
#include "compress.hpp"
#include "TXA.hpp"
namespace WDSP {
COMPRESSOR* create_compressor (
int run,
int buffsize,
double* inbuff,
double* outbuff,
double gain )
{
COMPRESSOR *a = new COMPRESSOR;
a->run = run;
a->inbuff = inbuff;
a->outbuff = outbuff;
a->buffsize = buffsize;
a->gain = gain;
return a;
}
void COMPRESSOR::destroy_compressor (COMPRESSOR *a)
{
delete (a);
}
void COMPRESSOR::flush_compressor (COMPRESSOR *)
{
}
void COMPRESSOR::xcompressor (COMPRESSOR *a)
{
int i;
double mag;
if (a->run)
for (i = 0; i < a->buffsize; i++)
{
mag = sqrt(a->inbuff[2 * i + 0] * a->inbuff[2 * i + 0] + a->inbuff[2 * i + 1] * a->inbuff[2 * i + 1]);
if (a->gain * mag > 1.0)
a->outbuff[2 * i + 0] = a->inbuff[2 * i + 0] / mag;
else
a->outbuff[2 * i + 0] = a->inbuff[2 * i + 0] * a->gain;
a->outbuff[2 * i + 1] = 0.0;
}
else if (a->inbuff != a->outbuff)
memcpy(a->outbuff, a->inbuff, a->buffsize * sizeof (dcomplex));
}
void COMPRESSOR::setBuffers_compressor (COMPRESSOR *a, double* in, double* out)
{
a->inbuff = in;
a->outbuff = out;
}
void COMPRESSOR::setSamplerate_compressor (COMPRESSOR *, int)
{
}
void COMPRESSOR::setSize_compressor (COMPRESSOR *a, int size)
{
a->buffsize = size;
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
void COMPRESSOR::SetCompressorRun (TXA& txa, int run)
{
if (txa.compressor.p->run != run)
{
txa.csDSP.lock();
txa.compressor.p->run = run;
TXA::SetupBPFilters (txa);
txa.csDSP.unlock();
}
}
void COMPRESSOR::SetCompressorGain (TXA& txa, double gain)
{
txa.csDSP.lock();
txa.compressor.p->gain = pow (10.0, gain / 20.0);
txa.csDSP.unlock();
}
} // namespace WDSP

66
wdsp/compress.hpp Normal file
View File

@ -0,0 +1,66 @@
/* compress.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2011, 2013 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#ifndef wdsp_compressor_h
#define wdsp_compressor_h
#include "export.h"
namespace WDSP {
class TXA;
class WDSP_API COMPRESSOR
{
public:
int run;
int buffsize;
double *inbuff;
double *outbuff;
double gain;
static COMPRESSOR* create_compressor (
int run,
int buffsize,
double* inbuff,
double* outbuff,
double gain
);
static void destroy_compressor (COMPRESSOR *a);
static void flush_compressor (COMPRESSOR *a);
static void xcompressor (COMPRESSOR *a);
static void setBuffers_compressor (COMPRESSOR *a, double* in, double* out);
static void setSamplerate_compressor (COMPRESSOR *a, int rate);
static void setSize_compressor (COMPRESSOR *a, int size);
// TXA Properties
static void SetCompressorRun (TXA& txa, int run);
static void SetCompressorGain (TXA& txa, double gain);
};
} // namespace WDSP
#endif

141
wdsp/delay.cpp Normal file
View File

@ -0,0 +1,141 @@
/* delay.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2019 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "delay.hpp"
#include "fir.hpp"
namespace WDSP {
DELAY* create_delay (int run, int size, double* in, double* out, int rate, double tdelta, double tdelay)
{
DELAY *a = new DELAY;
a->run = run;
a->size = size;
a->in = in;
a->out = out;
a->rate = rate;
a->tdelta = tdelta;
a->tdelay = tdelay;
a->L = (int)(0.5 + 1.0 / (a->tdelta * (double)a->rate));
a->adelta = 1.0 / (a->rate * a->L);
a->ft = 0.45 / (double)a->L;
a->ncoef = (int)(60.0 / a->ft);
a->ncoef = (a->ncoef / a->L + 1) * a->L;
a->cpp = a->ncoef / a->L;
a->phnum = (int)(0.5 + a->tdelay / a->adelta);
a->snum = a->phnum / a->L;
a->phnum %= a->L;
a->idx_in = 0;
a->adelay = a->adelta * (a->snum * a->L + a->phnum);
a->h = FIR::fir_bandpass (a->ncoef,-a->ft, +a->ft, 1.0, 1, 0, (double)a->L);
a->rsize = a->cpp + (WSDEL - 1);
a->ring = new double[a->rsize * 2]; // (double *) malloc0 (a->rsize * sizeof (complex));
return a;
}
void DELAY::destroy_delay (DELAY *a)
{
delete[] (a->ring);
delete[] (a->h);
delete (a);
}
void DELAY::flush_delay (DELAY *a)
{
memset (a->ring, 0, a->cpp * sizeof (dcomplex));
a->idx_in = 0;
}
void DELAY::xdelay (DELAY *a)
{
a->cs_update.lock();
if (a->run)
{
int i, j, k, idx, n;
double Itmp, Qtmp;
for (i = 0; i < a->size; i++)
{
a->ring[2 * a->idx_in + 0] = a->in[2 * i + 0];
a->ring[2 * a->idx_in + 1] = a->in[2 * i + 1];
Itmp = 0.0;
Qtmp = 0.0;
if ((n = a->idx_in + a->snum) >= a->rsize) n -= a->rsize;
for (j = 0, k = a->L - 1 - a->phnum; j < a->cpp; j++, k+= a->L)
{
if ((idx = n + j) >= a->rsize) idx -= a->rsize;
Itmp += a->ring[2 * idx + 0] * a->h[k];
Qtmp += a->ring[2 * idx + 1] * a->h[k];
}
a->out[2 * i + 0] = Itmp;
a->out[2 * i + 1] = Qtmp;
if (--a->idx_in < 0) a->idx_in = a->rsize - 1;
}
}
else if (a->out != a->in)
memcpy (a->out, a->in, a->size * sizeof (dcomplex));
a->cs_update.unlock();
}
/********************************************************************************************************
* *
* Properties *
* *
********************************************************************************************************/
void DELAY::SetDelayRun (DELAY *a, int run)
{
a->cs_update.lock();
a->run = run;
a->cs_update.unlock();
}
double DELAY::SetDelayValue (DELAY *a, double tdelay)
{
double adelay;
a->cs_update.lock();
a->tdelay = tdelay;
a->phnum = (int)(0.5 + a->tdelay / a->adelta);
a->snum = a->phnum / a->L;
a->phnum %= a->L;
a->adelay = a->adelta * (a->snum * a->L + a->phnum);
adelay = a->adelay;
a->cs_update.unlock();
return adelay;
}
void DELAY::SetDelayBuffs (DELAY *a, int size, double* in, double* out)
{
a->cs_update.lock();
a->size = size;
a->in = in;
a->out = out;
a->cs_update.unlock();
}
} // namespace WDSP

79
wdsp/delay.hpp Normal file
View File

@ -0,0 +1,79 @@
/* delay.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2019 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#ifndef wdsp_delay_h
#define wdsp_delay_h
#include <QRecursiveMutex>
#include "export.h"
#define WSDEL 1025 // number of supported whole sample delays
namespace WDSP {
class WDSP_API DELAY
{
public:
int run; // run
int size; // number of input samples per buffer
double* in; // input buffer
double* out; // output buffer
int rate; // samplerate
double tdelta; // delay increment required (seconds)
double tdelay; // delay requested (seconds)
int L; // interpolation factor
int ncoef; // number of coefficients
int cpp; // coefficients per phase
double ft; // normalized cutoff frequency
double* h; // coefficients
int snum; // starting sample number (0 for sub-sample delay)
int phnum; // phase number
int idx_in; // index for input into ring
int rsize; // ring size in complex samples
double* ring; // ring buffer
double adelta; // actual delay increment
double adelay; // actual delay
QRecursiveMutex cs_update;
static DELAY* create_delay (int run, int size, double* in, double* out, int rate, double tdelta, double tdelay);
static void destroy_delay (DELAY *a);
static void flush_delay (DELAY *a);
static void xdelay (DELAY *a);
// Properties
static void SetDelayRun (DELAY *a, int run);
static double SetDelayValue (DELAY *a, double delay); // returns actual delay in seconds
static void SetDelayBuffs (DELAY *a, int size, double* in, double* out);
};
} // namespace WDSP
#endif

963
wdsp/emnr.cpp Normal file
View File

@ -0,0 +1,963 @@
/* emnr.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2015 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "calculus.hpp"
#include "emnr.hpp"
#include "amd.hpp"
#include "anr.hpp"
#include "anf.hpp"
#include "snb.hpp"
#include "bandpass.hpp"
#include "RXA.hpp"
namespace WDSP {
/********************************************************************************************************
* *
* Special Functions *
* *
********************************************************************************************************/
// MODIFIED BESSEL FUNCTIONS OF THE 0TH AND 1ST ORDERS, Polynomial Approximations
// M. Abramowitz and I. Stegun, Eds., "Handbook of Mathematical Functions." Washington, DC: National
// Bureau of Standards, 1964.
// Shanjie Zhang and Jianming Jin, "Computation of Special Functions." New York, NY, John Wiley and Sons,
// Inc., 1996. [Sample code given in FORTRAN]
double EMNR::bessI0 (double x)
{
double res, p;
if (x == 0.0)
res = 1.0;
else
{
if (x < 0.0) x = -x;
if (x <= 3.75)
{
p = x / 3.75;
p = p * p;
res = ((((( 0.0045813 * p
+ 0.0360768) * p
+ 0.2659732) * p
+ 1.2067492) * p
+ 3.0899424) * p
+ 3.5156229) * p
+ 1.0;
}
else
{
p = 3.75 / x;
res = exp (x) / sqrt (x)
* (((((((( + 0.00392377 * p
- 0.01647633) * p
+ 0.02635537) * p
- 0.02057706) * p
+ 0.00916281) * p
- 0.00157565) * p
+ 0.00225319) * p
+ 0.01328592) * p
+ 0.39894228);
}
}
return res;
}
double EMNR::bessI1 (double x)
{
double res, p;
if (x == 0.0)
res = 0.0;
else
{
if (x < 0.0) x = -x;
if (x <= 3.75)
{
p = x / 3.75;
p = p * p;
res = x
* (((((( 0.00032411 * p
+ 0.00301532) * p
+ 0.02658733) * p
+ 0.15084934) * p
+ 0.51498869) * p
+ 0.87890594) * p
+ 0.5);
}
else
{
p = 3.75 / x;
res = exp (x) / sqrt (x)
* (((((((( - 0.00420059 * p
+ 0.01787654) * p
- 0.02895312) * p
+ 0.02282967) * p
- 0.01031555) * p
+ 0.00163801) * p
- 0.00362018) * p
- 0.03988024) * p
+ 0.39894228);
}
}
return res;
}
// EXPONENTIAL INTEGRAL, E1(x)
// M. Abramowitz and I. Stegun, Eds., "Handbook of Mathematical Functions." Washington, DC: National
// Bureau of Standards, 1964.
// Shanjie Zhang and Jianming Jin, "Computation of Special Functions." New York, NY, John Wiley and Sons,
// Inc., 1996. [Sample code given in FORTRAN]
double EMNR::e1xb (double x)
{
double e1, ga, r, t, t0;
int k, m;
if (x == 0.0)
e1 = 1.0e300;
else if (x <= 1.0)
{
e1 = 1.0;
r = 1.0;
for (k = 1; k <= 25; k++)
{
r = -r * k * x / ((k + 1.0)*(k + 1.0));
e1 = e1 + r;
if ( fabs (r) <= fabs (e1) * 1.0e-15 )
break;
}
ga = 0.5772156649015328;
e1 = - ga - log (x) + x * e1;
}
else
{
m = 20 + (int)(80.0 / x);
t0 = 0.0;
for (k = m; k >= 1; k--)
t0 = (double)k / (1.0 + k / (x + t0));
t = 1.0 / (x + t0);
e1 = exp (- x) * t;
}
return e1;
}
/********************************************************************************************************
* *
* Main Body of Code *
* *
********************************************************************************************************/
void EMNR::calc_window (EMNR *a)
{
int i;
double arg, sum, inv_coherent_gain;
switch (a->wintype)
{
case 0:
arg = 2.0 * PI / (double)a->fsize;
sum = 0.0;
for (i = 0; i < a->fsize; i++)
{
a->window[i] = sqrt (0.54 - 0.46 * cos((double)i * arg));
sum += a->window[i];
}
inv_coherent_gain = (double)a->fsize / sum;
for (i = 0; i < a->fsize; i++)
a->window[i] *= inv_coherent_gain;
break;
}
}
void EMNR::interpM (double* res, double x, int nvals, double* xvals, double* yvals)
{
if (x <= xvals[0])
*res = yvals[0];
else if (x >= xvals[nvals - 1])
*res = yvals[nvals - 1];
else
{
int idx = 0;
double xllow, xlhigh, frac;
while (x >= xvals[idx]) idx++;
xllow = log10 (xvals[idx - 1]);
xlhigh = log10(xvals[idx]);
frac = (log10 (x) - xllow) / (xlhigh - xllow);
*res = yvals[idx - 1] + frac * (yvals[idx] - yvals[idx - 1]);
}
}
void EMNR::calc_emnr(EMNR *a)
{
int i;
double Dvals[18] = { 1.0, 2.0, 5.0, 8.0, 10.0, 15.0, 20.0, 30.0, 40.0,
60.0, 80.0, 120.0, 140.0, 160.0, 180.0, 220.0, 260.0, 300.0 };
double Mvals[18] = { 0.000, 0.260, 0.480, 0.580, 0.610, 0.668, 0.705, 0.762, 0.800,
0.841, 0.865, 0.890, 0.900, 0.910, 0.920, 0.930, 0.935, 0.940 };
// double Hvals[18] = { 0.000, 0.150, 0.480, 0.780, 0.980, 1.550, 2.000, 2.300, 2.520,
// 3.100, 3.380, 4.150, 4.350, 4.250, 3.900, 4.100, 4.700, 5.000 };
a->incr = a->fsize / a->ovrlp;
a->gain = a->ogain / a->fsize / (double)a->ovrlp;
if (a->fsize > a->bsize)
a->iasize = a->fsize;
else
a->iasize = a->bsize + a->fsize - a->incr;
a->iainidx = 0;
a->iaoutidx = 0;
if (a->fsize > a->bsize)
{
if (a->bsize > a->incr) a->oasize = a->bsize;
else a->oasize = a->incr;
a->oainidx = (a->fsize - a->bsize - a->incr) % a->oasize;
}
else
{
a->oasize = a->bsize;
a->oainidx = a->fsize - a->incr;
}
a->init_oainidx = a->oainidx;
a->oaoutidx = 0;
a->msize = a->fsize / 2 + 1;
a->window = new double[a->fsize]; // (double *)malloc0(a->fsize * sizeof(double));
a->inaccum = new double[a->iasize]; // (double *)malloc0(a->iasize * sizeof(double));
a->forfftin = new double[a->fsize]; // (double *)malloc0(a->fsize * sizeof(double));
a->forfftout = new double[a->msize * 2]; // (double *)malloc0(a->msize * sizeof(complex));
a->mask = new double[a->msize]; // (double *)malloc0(a->msize * sizeof(double));
a->revfftin = new double[a->msize * 2]; // (double *)malloc0(a->msize * sizeof(complex));
a->revfftout = new double[a->fsize]; // (double *)malloc0(a->fsize * sizeof(double));
a->save = new double*[a->ovrlp]; // (double **)malloc0(a->ovrlp * sizeof(double *));
for (i = 0; i < a->ovrlp; i++)
a->save[i] = new double[a->fsize]; // (double *)malloc0(a->fsize * sizeof(double));
a->outaccum = new double[a->oasize]; // (double *)malloc0(a->oasize * sizeof(double));
a->nsamps = 0;
a->saveidx = 0;
a->Rfor = fftw_plan_dft_r2c_1d(a->fsize, a->forfftin, (fftw_complex *)a->forfftout, FFTW_ESTIMATE);
a->Rrev = fftw_plan_dft_c2r_1d(a->fsize, (fftw_complex *)a->revfftin, a->revfftout, FFTW_ESTIMATE);
calc_window(a);
a->g.msize = a->msize;
a->g.mask = a->mask;
a->g.y = a->forfftout;
a->g.lambda_y = new double[a->msize]; // (double *)malloc0(a->msize * sizeof(double));
a->g.lambda_d = new double[a->msize]; // (double *)malloc0(a->msize * sizeof(double));
a->g.prev_gamma = new double[a->msize]; // (double *)malloc0(a->msize * sizeof(double));
a->g.prev_mask = new double[a->msize]; // (double *)malloc0(a->msize * sizeof(double));
a->g.gf1p5 = sqrt(PI) / 2.0;
{
double tau = -128.0 / 8000.0 / log(0.98);
a->g.alpha = exp(-a->incr / a->rate / tau);
}
a->g.eps_floor = 1.0e-300;
a->g.gamma_max = 1000.0;
a->g.q = 0.2;
for (i = 0; i < a->g.msize; i++)
{
a->g.prev_mask[i] = 1.0;
a->g.prev_gamma[i] = 1.0;
}
a->g.gmax = 10000.0;
//
a->g.GG = new double[241 * 241]; // (double *)malloc0(241 * 241 * sizeof(double));
a->g.GGS = new double[241 * 241]; // (double *)malloc0(241 * 241 * sizeof(double));
if ((a->g.fileb = fopen("calculus", "rb")))
{
std::size_t lgg = fread(a->g.GG, sizeof(double), 241 * 241, a->g.fileb);
if (lgg != 241 * 241) {
fprintf(stderr, "GG file has an invalid size\n");
}
std::size_t lggs =fread(a->g.GGS, sizeof(double), 241 * 241, a->g.fileb);
if (lggs != 241 * 241) {
fprintf(stderr, "GGS file has an invalid size\n");
}
fclose(a->g.fileb);
}
else
{
memcpy (a->g.GG, Calculus::GG, 241 * 241 * sizeof(double));
memcpy (a->g.GGS, Calculus::GGS, 241 * 241 * sizeof(double));
}
//
a->np.incr = a->incr;
a->np.rate = a->rate;
a->np.msize = a->msize;
a->np.lambda_y = a->g.lambda_y;
a->np.lambda_d = a->g.lambda_d;
{
double tau = -128.0 / 8000.0 / log(0.7);
a->np.alphaCsmooth = exp(-a->np.incr / a->np.rate / tau);
}
{
double tau = -128.0 / 8000.0 / log(0.96);
a->np.alphaMax = exp(-a->np.incr / a->np.rate / tau);
}
{
double tau = -128.0 / 8000.0 / log(0.7);
a->np.alphaCmin = exp(-a->np.incr / a->np.rate / tau);
}
{
double tau = -128.0 / 8000.0 / log(0.3);
a->np.alphaMin_max_value = exp(-a->np.incr / a->np.rate / tau);
}
a->np.snrq = -a->np.incr / (0.064 * a->np.rate);
{
double tau = -128.0 / 8000.0 / log(0.8);
a->np.betamax = exp(-a->np.incr / a->np.rate / tau);
}
a->np.invQeqMax = 0.5;
a->np.av = 2.12;
a->np.Dtime = 8.0 * 12.0 * 128.0 / 8000.0;
a->np.U = 8;
a->np.V = (int)(0.5 + (a->np.Dtime * a->np.rate / (a->np.U * a->np.incr)));
if (a->np.V < 4) a->np.V = 4;
if ((a->np.U = (int)(0.5 + (a->np.Dtime * a->np.rate / (a->np.V * a->np.incr)))) < 1) a->np.U = 1;
a->np.D = a->np.U * a->np.V;
interpM(&a->np.MofD, a->np.D, 18, Dvals, Mvals);
interpM(&a->np.MofV, a->np.V, 18, Dvals, Mvals);
a->np.invQbar_points[0] = 0.03;
a->np.invQbar_points[1] = 0.05;
a->np.invQbar_points[2] = 0.06;
a->np.invQbar_points[3] = 1.0e300;
{
double db;
db = 10.0 * log10(8.0) / (12.0 * 128 / 8000);
a->np.nsmax[0] = pow(10.0, db / 10.0 * a->np.V * a->np.incr / a->np.rate);
db = 10.0 * log10(4.0) / (12.0 * 128 / 8000);
a->np.nsmax[1] = pow(10.0, db / 10.0 * a->np.V * a->np.incr / a->np.rate);
db = 10.0 * log10(2.0) / (12.0 * 128 / 8000);
a->np.nsmax[2] = pow(10.0, db / 10.0 * a->np.V * a->np.incr /