1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2025-05-29 13:32:26 -04:00

FT8 support: removed stats stuff that are never used

This commit is contained in:
f4exb 2023-01-24 23:43:03 +01:00
parent 494f3bf055
commit e23db7e65c
3 changed files with 43 additions and 76 deletions

View File

@ -37,7 +37,7 @@ FFTEngine *FFTEngine::GetInstance()
return m_instance; return m_instance;
} }
FFTEngine::Plan *FFTEngine::get_plan(int n, const char *why) FFTEngine::Plan *FFTEngine::get_plan(int n)
{ {
// cache fftw plans in the parent process, // cache fftw plans in the parent process,
// so they will already be there for fork()ed children. // so they will already be there for fork()ed children.
@ -49,7 +49,6 @@ FFTEngine::Plan *FFTEngine::get_plan(int n, const char *why)
if (m_plans[i]->n_ == n && m_plans[i]->type_ == M_FFTW_TYPE) if (m_plans[i]->n_ == n && m_plans[i]->type_ == M_FFTW_TYPE)
{ {
Plan *p = m_plans[i]; Plan *p = m_plans[i];
p->uses_ += 1;
m_plansmu.unlock(); m_plansmu.unlock();
return p; return p;
} }
@ -67,8 +66,6 @@ FFTEngine::Plan *FFTEngine::get_plan(int n, const char *why)
Plan *p = new Plan; Plan *p = new Plan;
p->n_ = n; p->n_ = n;
p->uses_ = 1;
p->why_ = why;
p->r_ = (float *)fftwf_malloc(n * sizeof(float)); p->r_ = (float *)fftwf_malloc(n * sizeof(float));
// assert(p->r_); // assert(p->r_);
p->c_ = (fftwf_complex *)fftwf_malloc(((n / 2) + 1) * sizeof(fftwf_complex)); p->c_ = (fftwf_complex *)fftwf_malloc(((n / 2) + 1) * sizeof(fftwf_complex));
@ -118,7 +115,6 @@ std::vector<std::complex<float>> FFTEngine::one_fft(
const std::vector<float> &samples, const std::vector<float> &samples,
int i0, int i0,
int block, int block,
const char *why,
FFTEngine::Plan *p FFTEngine::Plan *p
) )
{ {
@ -128,15 +124,10 @@ std::vector<std::complex<float>> FFTEngine::one_fft(
int nsamples = samples.size(); int nsamples = samples.size();
int nbins = (block / 2) + 1; int nbins = (block / 2) + 1;
if (p) if (!p) {
{ p = get_plan(block);
// assert(p->n_ == block);
p->uses_ += 1;
}
else
{
p = get_plan(block, why);
} }
fftwf_plan m_plan = p->fwd_; fftwf_plan m_plan = p->fwd_;
// assert((int)samples.size() - i0 >= block); // assert((int)samples.size() - i0 >= block);
@ -188,7 +179,7 @@ std::vector<std::complex<float>> FFTEngine::one_fft(
// do a full set of FFTs, one per symbol-time. // do a full set of FFTs, one per symbol-time.
// bins[time][frequency] // bins[time][frequency]
// //
FFTEngine::ffts_t FFTEngine::ffts(const std::vector<float> &samples, int i0, int block, const char *why) FFTEngine::ffts_t FFTEngine::ffts(const std::vector<float> &samples, int i0, int block)
{ {
// assert(i0 >= 0); // assert(i0 >= 0);
// assert(block > 1 && (block % 2) == 0); // assert(block > 1 && (block % 2) == 0);
@ -197,12 +188,12 @@ FFTEngine::ffts_t FFTEngine::ffts(const std::vector<float> &samples, int i0, int
int nbins = (block / 2) + 1; int nbins = (block / 2) + 1;
int nblocks = (nsamples - i0) / block; int nblocks = (nsamples - i0) / block;
ffts_t bins(nblocks); ffts_t bins(nblocks);
for (int si = 0; si < nblocks; si++)
{ for (int si = 0; si < nblocks; si++) {
bins[si].resize(nbins); bins[si].resize(nbins);
} }
Plan *p = get_plan(block, why); Plan *p = get_plan(block);
fftwf_plan m_plan = p->fwd_; fftwf_plan m_plan = p->fwd_;
// allocate our own b/c using p->m_in and p->m_out isn't thread-safe. // allocate our own b/c using p->m_in and p->m_out isn't thread-safe.
@ -254,8 +245,7 @@ FFTEngine::ffts_t FFTEngine::ffts(const std::vector<float> &samples, int i0, int
std::vector<std::complex<float>> FFTEngine::one_fft_c( std::vector<std::complex<float>> FFTEngine::one_fft_c(
const std::vector<float> &samples, const std::vector<float> &samples,
int i0, int i0,
int block, int block
const char *why
) )
{ {
// assert(i0 >= 0); // assert(i0 >= 0);
@ -263,7 +253,7 @@ std::vector<std::complex<float>> FFTEngine::one_fft_c(
int nsamples = samples.size(); int nsamples = samples.size();
Plan *p = get_plan(block, why); Plan *p = get_plan(block);
fftwf_plan m_plan = p->cfwd_; fftwf_plan m_plan = p->cfwd_;
fftwf_complex *m_in = (fftwf_complex *)fftwf_malloc(block * sizeof(fftwf_complex)); fftwf_complex *m_in = (fftwf_complex *)fftwf_malloc(block * sizeof(fftwf_complex));
@ -286,8 +276,8 @@ std::vector<std::complex<float>> FFTEngine::one_fft_c(
fftwf_execute_dft(m_plan, m_in, m_out); fftwf_execute_dft(m_plan, m_in, m_out);
std::vector<std::complex<float>> out(block); std::vector<std::complex<float>> out(block);
float norm = 1.0 / sqrt(block); float norm = 1.0 / sqrt(block);
for (int bi = 0; bi < block; bi++) for (int bi = 0; bi < block; bi++)
{ {
float re = m_out[bi][0]; float re = m_out[bi][0];
@ -306,8 +296,7 @@ std::vector<std::complex<float>> FFTEngine::one_fft_c(
std::vector<std::complex<float>> FFTEngine::one_fft_cc( std::vector<std::complex<float>> FFTEngine::one_fft_cc(
const std::vector<std::complex<float>> &samples, const std::vector<std::complex<float>> &samples,
int i0, int i0,
int block, int block
const char *why
) )
{ {
// assert(i0 >= 0); // assert(i0 >= 0);
@ -315,7 +304,7 @@ std::vector<std::complex<float>> FFTEngine::one_fft_cc(
int nsamples = samples.size(); int nsamples = samples.size();
Plan *p = get_plan(block, why); Plan *p = get_plan(block);
fftwf_plan m_plan = p->cfwd_; fftwf_plan m_plan = p->cfwd_;
fftwf_complex *m_in = (fftwf_complex *)fftwf_malloc(block * sizeof(fftwf_complex)); fftwf_complex *m_in = (fftwf_complex *)fftwf_malloc(block * sizeof(fftwf_complex));
@ -357,13 +346,12 @@ std::vector<std::complex<float>> FFTEngine::one_fft_cc(
} }
std::vector<std::complex<float>> FFTEngine::one_ifft_cc( std::vector<std::complex<float>> FFTEngine::one_ifft_cc(
const std::vector<std::complex<float>> &bins, const std::vector<std::complex<float>> &bins
const char *why
) )
{ {
int block = bins.size(); int block = bins.size();
Plan *p = get_plan(block, why); Plan *p = get_plan(block);
fftwf_plan m_plan = p->crev_; fftwf_plan m_plan = p->crev_;
fftwf_complex *m_in = (fftwf_complex *)fftwf_malloc(block * sizeof(fftwf_complex)); fftwf_complex *m_in = (fftwf_complex *)fftwf_malloc(block * sizeof(fftwf_complex));
@ -397,12 +385,12 @@ std::vector<std::complex<float>> FFTEngine::one_ifft_cc(
return out; return out;
} }
std::vector<float> FFTEngine::one_ifft(const std::vector<std::complex<float>> &bins, const char *why) std::vector<float> FFTEngine::one_ifft(const std::vector<std::complex<float>> &bins)
{ {
int nbins = bins.size(); int nbins = bins.size();
int block = (nbins - 1) * 2; int block = (nbins - 1) * 2;
Plan *p = get_plan(block, why); Plan *p = get_plan(block);
fftwf_plan m_plan = p->rev_; fftwf_plan m_plan = p->rev_;
fftwf_complex *m_in = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * ((p->n_ / 2) + 1)); fftwf_complex *m_in = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * ((p->n_ / 2) + 1));
@ -437,11 +425,11 @@ std::vector<float> FFTEngine::one_ifft(const std::vector<std::complex<float>> &b
// //
// the return value is x + iy, where y is the hilbert transform of x. // the return value is x + iy, where y is the hilbert transform of x.
// //
std::vector<std::complex<float>> FFTEngine::analytic(const std::vector<float> &x, const char *why) std::vector<std::complex<float>> FFTEngine::analytic(const std::vector<float> &x)
{ {
ulong n = x.size(); ulong n = x.size();
std::vector<std::complex<float>> y = one_fft_c(x, 0, n, why); std::vector<std::complex<float>> y = one_fft_c(x, 0, n);
// assert(y.size() == n); // assert(y.size() == n);
// leave y[0] alone. // leave y[0] alone.
@ -463,7 +451,7 @@ std::vector<std::complex<float>> FFTEngine::analytic(const std::vector<float> &x
y[i] = 0; y[i] = 0;
} }
std::vector<std::complex<float>> z = one_ifft_cc(y, why); std::vector<std::complex<float>> z = one_ifft_cc(y);
return z; return z;
} }
@ -482,7 +470,7 @@ std::vector<std::complex<float>> FFTEngine::analytic(const std::vector<float> &x
std::vector<float> FFTEngine::hilbert_shift(const std::vector<float> &x, float hz0, float hz1, int rate) std::vector<float> FFTEngine::hilbert_shift(const std::vector<float> &x, float hz0, float hz1, int rate)
{ {
// y = scipy.signal.hilbert(x) // y = scipy.signal.hilbert(x)
std::vector<std::complex<float>> y = analytic(x, "hilbert_shift"); std::vector<std::complex<float>> y = analytic(x);
// assert(y.size() == x.size()); // assert(y.size() == x.size());
float dt = 1.0 / rate; float dt = 1.0 / rate;
@ -501,18 +489,4 @@ std::vector<float> FFTEngine::hilbert_shift(const std::vector<float> &x, float h
return ret; return ret;
} }
void FFTEngine::fft_stats()
{
for (int i = 0; i < m_nplans; i++)
{
Plan *p = m_plans[i];
qDebug("FT8::FFTEngine::fft_stats: %-13s %6d %9d %6.3fn",
p->why_,
p->n_,
p->uses_,
0.0
);
}
}
} // namespace FT8 } // namespace FT8

View File

@ -58,25 +58,21 @@ public:
fftwf_complex *cc2_; // n fftwf_complex *cc2_; // n
fftwf_plan cfwd_; // forward plan fftwf_plan cfwd_; // forward plan
fftwf_plan crev_; // reverse plan fftwf_plan crev_; // reverse plan
// how much CPU time spent in FFTs that use this plan.
const char *why_;
int uses_;
}; // Plan }; // Plan
FFTEngine(FFTEngine& other) = delete; FFTEngine(FFTEngine& other) = delete;
void operator=(const FFTEngine &) = delete; void operator=(const FFTEngine &) = delete;
static FFTEngine *GetInstance(); static FFTEngine *GetInstance();
Plan *get_plan(int n, const char *why); Plan *get_plan(int n);
std::vector<std::complex<float>> one_fft(const std::vector<float> &samples, int i0, int block, const char *why, Plan *p); std::vector<std::complex<float>> one_fft(const std::vector<float> &samples, int i0, int block, Plan *p);
std::vector<float> one_ifft(const std::vector<std::complex<float>> &bins, const char *why); std::vector<float> one_ifft(const std::vector<std::complex<float>> &bins);
typedef std::vector<std::vector<std::complex<float>>> ffts_t; typedef std::vector<std::vector<std::complex<float>>> ffts_t;
ffts_t ffts(const std::vector<float> &samples, int i0, int block, const char *why); ffts_t ffts(const std::vector<float> &samples, int i0, int block);
std::vector<std::complex<float>> one_fft_c(const std::vector<float> &samples, int i0, int block, const char *why); std::vector<std::complex<float>> one_fft_c(const std::vector<float> &samples, int i0, int block);
std::vector<std::complex<float>> one_fft_cc(const std::vector<std::complex<float>> &samples, int i0, int block, const char *why); std::vector<std::complex<float>> one_fft_cc(const std::vector<std::complex<float>> &samples, int i0, int block);
std::vector<std::complex<float>> one_ifft_cc(const std::vector<std::complex<float>> &bins, const char *why); std::vector<std::complex<float>> one_ifft_cc(const std::vector<std::complex<float>> &bins);
std::vector<float> hilbert_shift(const std::vector<float> &x, float hz0, float hz1, int rate); std::vector<float> hilbert_shift(const std::vector<float> &x, float hz0, float hz1, int rate);
protected: protected:
@ -86,8 +82,7 @@ protected:
static FFTEngine *m_instance; static FFTEngine *m_instance;
private: private:
std::vector<std::complex<float>> analytic(const std::vector<float> &x, const char *why); std::vector<std::complex<float>> analytic(const std::vector<float> &x);
void fft_stats();
QMutex m_plansmu; QMutex m_plansmu;
QMutex m_plansmu2; QMutex m_plansmu2;
Plan *m_plans[1000]; Plan *m_plans[1000];

View File

@ -585,8 +585,7 @@ std::vector<float> FT8::reduce_rate(
} }
int alen = a.size(); int alen = a.size();
std::vector<std::complex<float>> bins1 = fftEngine_->one_fft( std::vector<std::complex<float>> bins1 = fftEngine_->one_fft(a, 0, alen, 0);
a, 0, alen, "reduce_rate1", 0);
int nbins1 = bins1.size(); int nbins1 = bins1.size();
float bin_hz = arate / (float)alen; float bin_hz = arate / (float)alen;
@ -636,8 +635,7 @@ std::vector<float> FT8::reduce_rate(
} }
// use ifft to reduce the rate. // use ifft to reduce the rate.
std::vector<float> vvv = fftEngine_->one_ifft(bbins, "reduce_rate2"); std::vector<float> vvv = fftEngine_->one_ifft(bbins);
delta_hz = delta * bin_hz; delta_hz = delta * bin_hz;
return vvv; return vvv;
@ -646,7 +644,7 @@ std::vector<float> FT8::reduce_rate(
void FT8::go(int npasses) void FT8::go(int npasses)
{ {
// cache to avoid cost of fftw planner mutex. // cache to avoid cost of fftw planner mutex.
plan32_ = fftEngine_->get_plan(32, "cache32"); plan32_ = fftEngine_->get_plan(32);
if (0) if (0)
{ {
@ -838,7 +836,7 @@ void FT8::go(int npasses)
// just do this once, re-use for every fractional fft_shift // just do this once, re-use for every fractional fft_shift
// and down_v7_f() to 200 sps. // and down_v7_f() to 200 sps.
std::vector<std::complex<float>> bins = fftEngine_->one_fft( std::vector<std::complex<float>> bins = fftEngine_->one_fft(
samples_, 0, samples_.size(), "go1", 0); samples_, 0, samples_.size(), 0);
for (int hz_frac_i = 0; hz_frac_i < params.coarse_hz_n; hz_frac_i++) for (int hz_frac_i = 0; hz_frac_i < params.coarse_hz_n; hz_frac_i++)
{ {
@ -857,7 +855,7 @@ void FT8::go(int npasses)
for (int off_frac_i = 0; off_frac_i < params.coarse_off_n; off_frac_i++) for (int off_frac_i = 0; off_frac_i < params.coarse_off_n; off_frac_i++)
{ {
int off_frac = off_frac_i * (block / params.coarse_off_n); int off_frac = off_frac_i * (block / params.coarse_off_n);
FFTEngine::ffts_t bins = fftEngine_->ffts(samples1, off_frac, block, "go2"); FFTEngine::ffts_t bins = fftEngine_->ffts(samples1, off_frac, block);
std::vector<Strength> oo = coarse(bins, si0, si1); std::vector<Strength> oo = coarse(bins, si0, si1);
for (int i = 0; i < (int)oo.size(); i++) for (int i = 0; i < (int)oo.size(); i++)
{ {
@ -933,7 +931,7 @@ float FT8::one_strength(const std::vector<float> &samples200, float hz, int off)
int start = starts[which]; int start = starts[which];
for (int si = 0; si < 7; si++) for (int si = 0; si < 7; si++)
{ {
auto fft = fftEngine_->one_fft(samples200, off + (si + start) * 32, 32, "one_strength", plan32_); auto fft = fftEngine_->one_fft(samples200, off + (si + start) * 32, 32, plan32_);
for (int bi = 0; bi < 8; bi++) for (int bi = 0; bi < 8; bi++)
{ {
float x = std::abs(fft[bin0 + bi]); float x = std::abs(fft[bin0 + bi]);
@ -1010,7 +1008,7 @@ float FT8::one_strength_known(
for (int si = 0; si < 79; si += params.known_sparse) for (int si = 0; si < 79; si += params.known_sparse)
{ {
auto fft = fftEngine_->one_fft(samples, off + si * block, block, "one_strength_known", 0); auto fft = fftEngine_->one_fft(samples, off + si * block, block, 0);
if (params.known_strength_how == 7) if (params.known_strength_how == 7)
{ {
@ -1233,7 +1231,7 @@ void FT8::search_both_known(
int best_off = 0; int best_off = 0;
float best_strength = 0; float best_strength = 0;
std::vector<std::complex<float>> bins = fftEngine_->one_fft(samples, 0, samples.size(), "stfk", 0); std::vector<std::complex<float>> bins = fftEngine_->one_fft(samples, 0, samples.size(), 0);
float hz_start, hz_inc, hz_end; float hz_start, hz_inc, hz_end;
if (params.third_hz_n > 1) if (params.third_hz_n > 1)
@ -1297,7 +1295,7 @@ std::vector<float> FT8::fft_shift(
} }
else else
{ {
bins = fftEngine_->one_fft(samples, off, len, "fft_shift", 0); bins = fftEngine_->one_fft(samples, off, len, 0);
hack_bins_ = bins; hack_bins_ = bins;
hack_size_ = samples.size(); hack_size_ = samples.size();
hack_off_ = off; hack_off_ = off;
@ -1338,7 +1336,7 @@ std::vector<float> FT8::fft_shift_f(
bins1[i] = 0; bins1[i] = 0;
} }
} }
std::vector<float> out = fftEngine_->one_ifft(bins1, "fft_shift"); std::vector<float> out = fftEngine_->one_ifft(bins1);
return out; return out;
} }
@ -1366,7 +1364,7 @@ std::vector<float> FT8::shift200(
FFTEngine::ffts_t FT8::extract(const std::vector<float> &samples200, float, int off) FFTEngine::ffts_t FT8::extract(const std::vector<float> &samples200, float, int off)
{ {
FFTEngine::ffts_t bins3 = fftEngine_->ffts(samples200, off, 32, "extract"); FFTEngine::ffts_t bins3 = fftEngine_->ffts(samples200, off, 32);
FFTEngine::ffts_t m79(79); FFTEngine::ffts_t m79(79);
for (int si = 0; si < 79; si++) for (int si = 0; si < 79; si++)
@ -2615,7 +2613,7 @@ std::vector<std::complex<float>> FT8::fbandpass(
std::vector<float> FT8::down_v7(const std::vector<float> &samples, float hz) std::vector<float> FT8::down_v7(const std::vector<float> &samples, float hz)
{ {
int len = samples.size(); int len = samples.size();
std::vector<std::complex<float>> bins = fftEngine_->one_fft(samples, 0, len, "down_v7a", 0); std::vector<std::complex<float>> bins = fftEngine_->one_fft(samples, 0, len, 0);
return down_v7_f(bins, len, hz); return down_v7_f(bins, len, hz);
} }
@ -2660,7 +2658,7 @@ std::vector<float> FT8::down_v7_f(const std::vector<std::complex<float>> &bins,
std::vector<std::complex<float>> bbins(blen / 2 + 1); std::vector<std::complex<float>> bbins(blen / 2 + 1);
for (int i = 0; i < (int)bbins.size(); i++) for (int i = 0; i < (int)bbins.size(); i++)
bbins[i] = bins1[i]; bbins[i] = bins1[i];
std::vector<float> out = fftEngine_->one_ifft(bbins, "down_v7b"); std::vector<float> out = fftEngine_->one_ifft(bbins);
return out; return out;
} }
@ -3164,7 +3162,7 @@ void FT8::subtract(
float diff1 = (bin0 * bin_hz) - hz1; float diff1 = (bin0 * bin_hz) - hz1;
std::vector<float> moved = fftEngine_->hilbert_shift(nsamples_, diff0, diff1, rate_); std::vector<float> moved = fftEngine_->hilbert_shift(nsamples_, diff0, diff1, rate_);
FFTEngine::ffts_t bins = fftEngine_->ffts(moved, off0, block, "subtract"); FFTEngine::ffts_t bins = fftEngine_->ffts(moved, off0, block);
if (bin0 + 8 > (int)bins[0].size()) if (bin0 + 8 > (int)bins[0].size())
return; return;