mirror of
https://github.com/f4exb/sdrangel.git
synced 2024-11-22 08:04:49 -05:00
Changed NFM RF threshold squelch for after demod squelch
This commit is contained in:
parent
70cce80995
commit
e66d9a417f
@ -49,6 +49,7 @@ set(sdrbase_SOURCES
|
||||
sdrbase/audio/audiofifo.cpp
|
||||
sdrbase/audio/audiooutput.cpp
|
||||
|
||||
sdrbase/dsp/afsquelch.cpp
|
||||
sdrbase/dsp/channelizer.cpp
|
||||
sdrbase/dsp/channelmarker.cpp
|
||||
sdrbase/dsp/ctcssdetector.cpp
|
||||
|
87
include-gpl/dsp/afsquelch.h
Normal file
87
include-gpl/dsp/afsquelch.h
Normal file
@ -0,0 +1,87 @@
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
// Copyright (C) 2015 Edouard Griffiths, F4EXB. //
|
||||
// //
|
||||
// This program is free software; you can redistribute it and/or modify //
|
||||
// it under the terms of the GNU General Public License as published by //
|
||||
// the Free Software Foundation as version 3 of the License, or //
|
||||
// //
|
||||
// This program is distributed in the hope that it will be useful, //
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
||||
// GNU General Public License V3 for more details. //
|
||||
// //
|
||||
// You should have received a copy of the GNU General Public License //
|
||||
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifndef INCLUDE_GPL_DSP_AFSQUELCH_H_
|
||||
#define INCLUDE_GPL_DSP_AFSQUELCH_H_
|
||||
|
||||
#include "dsp/dsptypes.h"
|
||||
|
||||
/** AFSquelch: AF squelch class based on the Modified Goertzel
|
||||
* algorithm.
|
||||
*/
|
||||
class AFSquelch {
|
||||
public:
|
||||
// Constructors and Destructor
|
||||
AFSquelch();
|
||||
// allows user defined tone pair
|
||||
AFSquelch(unsigned int nbTones, const Real *tones);
|
||||
virtual ~AFSquelch();
|
||||
|
||||
// setup the basic parameters and coefficients
|
||||
void setCoefficients(
|
||||
int N, // the algorithm "block" size
|
||||
int SampleRate, // input signal sample rate
|
||||
int _samplesAttack, // number of results before squelch opens
|
||||
int _samplesDecay); // number of results keeping squelch open
|
||||
|
||||
// set the detection threshold
|
||||
void setThreshold(double _threshold) {
|
||||
threshold = _threshold;
|
||||
}
|
||||
|
||||
// analyze a sample set and optionally filter
|
||||
// the tone frequencies.
|
||||
bool analyze(Real *sample); // input signal sample
|
||||
|
||||
// get the tone set
|
||||
const Real *getToneSet() const
|
||||
{
|
||||
return toneSet;
|
||||
}
|
||||
|
||||
bool open() const {
|
||||
return isOpen;
|
||||
}
|
||||
|
||||
void reset(); // reset the analysis algorithm
|
||||
|
||||
protected:
|
||||
void feedback(Real sample);
|
||||
void feedForward();
|
||||
void evaluate();
|
||||
|
||||
private:
|
||||
int N;
|
||||
int sampleRate;
|
||||
int samplesProcessed;
|
||||
int maxPowerIndex;
|
||||
int nTones;
|
||||
int samplesAttack;
|
||||
int attackCount;
|
||||
int samplesDecay;
|
||||
int decayCount;
|
||||
bool isOpen;
|
||||
double threshold;
|
||||
double *k;
|
||||
double *coef;
|
||||
Real *toneSet;
|
||||
double *u0;
|
||||
double *u1;
|
||||
double *power;
|
||||
};
|
||||
|
||||
|
||||
#endif /* INCLUDE_GPL_DSP_CTCSSDETECTOR_H_ */
|
@ -26,11 +26,15 @@
|
||||
|
||||
#include <iostream>
|
||||
|
||||
static const Real afSqTones[2] = {2000.0, 8000.0};
|
||||
|
||||
MESSAGE_CLASS_DEFINITION(NFMDemod::MsgConfigureNFMDemod, Message)
|
||||
|
||||
NFMDemod::NFMDemod(AudioFifo* audioFifo, SampleSink* sampleSink) :
|
||||
m_ctcssIndex(0),
|
||||
m_sampleCount(0),
|
||||
m_afSquelch(2, afSqTones),
|
||||
m_squelchOpen(false),
|
||||
m_sampleSink(sampleSink),
|
||||
m_audioFifo(audioFifo)
|
||||
{
|
||||
@ -38,7 +42,7 @@ NFMDemod::NFMDemod(AudioFifo* audioFifo, SampleSink* sampleSink) :
|
||||
m_config.m_inputFrequencyOffset = 0;
|
||||
m_config.m_rfBandwidth = 12500;
|
||||
m_config.m_afBandwidth = 3000;
|
||||
m_config.m_squelch = -40.0;
|
||||
m_config.m_squelch = -30.0;
|
||||
m_config.m_volume = 2.0;
|
||||
m_config.m_audioSampleRate = 48000;
|
||||
|
||||
@ -52,6 +56,8 @@ NFMDemod::NFMDemod(AudioFifo* audioFifo, SampleSink* sampleSink) :
|
||||
m_AGC.resize(4096, m_agcLevel, 0, 0.1*m_agcLevel);
|
||||
|
||||
m_ctcssDetector.setCoefficients(3000, 6000.0); // 0.5s / 2 Hz resolution
|
||||
m_afSquelch.setCoefficients(24, 48000.0, 1, 1); // 4000 Hz span, 250us
|
||||
m_afSquelch.setThreshold(0.001);
|
||||
}
|
||||
|
||||
NFMDemod::~NFMDemod()
|
||||
@ -109,56 +115,52 @@ void NFMDemod::feed(SampleVector::const_iterator begin, SampleVector::const_iter
|
||||
if(m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci)) {
|
||||
m_sampleBuffer.push_back(Sample(ci.real() * 32767.0, ci.imag() * 32767.0));
|
||||
|
||||
m_movingAverage.feed(ci.real() * ci.real() + ci.imag() * ci.imag());
|
||||
if(m_movingAverage.average() >= m_squelchLevel)
|
||||
m_squelchState = m_running.m_audioSampleRate/ 20;
|
||||
|
||||
qint16 sample;
|
||||
if(m_squelchState > 0)
|
||||
|
||||
m_AGC.feed(abs(ci));
|
||||
ci *= (m_agcLevel / m_AGC.getValue());
|
||||
|
||||
// demod
|
||||
/*
|
||||
Real argument = arg(ci);
|
||||
Real demod = argument - m_lastArgument;
|
||||
m_lastArgument = argument;
|
||||
*/
|
||||
|
||||
/*
|
||||
// Original NFM
|
||||
Complex d = conj(m_m1Sample) * ci;
|
||||
Real demod = atan2(d.imag(), d.real());
|
||||
demod /= M_PI;
|
||||
*/
|
||||
|
||||
/*
|
||||
Real argument1 = arg(ci);//atan2(ci.imag(), ci.real());
|
||||
Real argument2 = m_lastSample.real();
|
||||
Real demod = angleDist(argument2, argument1);
|
||||
m_lastSample = Complex(argument1, 0);
|
||||
*/
|
||||
|
||||
// Alternative without atan - needs AGC
|
||||
// http://www.embedded.com/design/configurable-systems/4212086/DSP-Tricks--Frequency-demodulation-algorithms-
|
||||
Real ip = ci.real() - m_m2Sample.real();
|
||||
Real qp = ci.imag() - m_m2Sample.imag();
|
||||
Real h1 = m_m1Sample.real() * qp;
|
||||
Real h2 = m_m1Sample.imag() * ip;
|
||||
Real demod = (h1 - h2) * 10000;
|
||||
|
||||
m_m2Sample = m_m1Sample;
|
||||
m_m1Sample = ci;
|
||||
m_sampleCount++;
|
||||
|
||||
// AF processing
|
||||
|
||||
if(m_afSquelch.analyze(&demod)) {
|
||||
m_squelchOpen = m_afSquelch.open();
|
||||
}
|
||||
|
||||
if (m_squelchOpen)
|
||||
{
|
||||
m_squelchState--;
|
||||
|
||||
m_AGC.feed(abs(ci));
|
||||
ci *= (m_agcLevel / m_AGC.getValue());
|
||||
|
||||
// demod
|
||||
/*
|
||||
Real argument = arg(ci);
|
||||
Real demod = argument - m_lastArgument;
|
||||
m_lastArgument = argument;
|
||||
*/
|
||||
|
||||
/*
|
||||
// Original NFM
|
||||
Complex d = conj(m_m1Sample) * ci;
|
||||
Real demod = atan2(d.imag(), d.real());
|
||||
demod /= M_PI;
|
||||
*/
|
||||
|
||||
/*
|
||||
Real argument1 = arg(ci);//atan2(ci.imag(), ci.real());
|
||||
Real argument2 = m_lastSample.real();
|
||||
Real demod = angleDist(argument2, argument1);
|
||||
m_lastSample = Complex(argument1, 0);
|
||||
*/
|
||||
|
||||
// Alternative without atan - needs AGC
|
||||
// http://www.embedded.com/design/configurable-systems/4212086/DSP-Tricks--Frequency-demodulation-algorithms-
|
||||
Real ip = ci.real() - m_m2Sample.real();
|
||||
Real qp = ci.imag() - m_m2Sample.imag();
|
||||
Real h1 = m_m1Sample.real() * qp;
|
||||
Real h2 = m_m1Sample.imag() * ip;
|
||||
Real demod = (h1 - h2) * 10000;
|
||||
|
||||
m_m2Sample = m_m1Sample;
|
||||
m_m1Sample = ci;
|
||||
m_sampleCount++;
|
||||
|
||||
// AF processing
|
||||
|
||||
//demod = m_lowpass.filter(demod);
|
||||
//sample = demod * 32700;
|
||||
|
||||
Real ctcss_sample = m_lowpass.filter(demod);
|
||||
|
||||
if ((m_sampleCount & 7) == 7) // decimate 48k -> 6k
|
||||
@ -186,7 +188,7 @@ void NFMDemod::feed(SampleVector::const_iterator begin, SampleVector::const_iter
|
||||
|
||||
if (m_ctcssIndexSelected && (m_ctcssIndexSelected != m_ctcssIndex))
|
||||
{
|
||||
sample = 0.0;
|
||||
sample = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -234,7 +236,6 @@ void NFMDemod::feed(SampleVector::const_iterator begin, SampleVector::const_iter
|
||||
|
||||
void NFMDemod::start()
|
||||
{
|
||||
m_squelchState = 0;
|
||||
m_audioFifo->clear();
|
||||
m_interpolatorRegulation = 0.9999;
|
||||
m_interpolatorDistance = 1.0;
|
||||
@ -292,8 +293,10 @@ void NFMDemod::apply()
|
||||
}
|
||||
|
||||
if(m_config.m_squelch != m_running.m_squelch) {
|
||||
m_squelchLevel = pow(10.0, m_config.m_squelch / 20.0);
|
||||
m_squelchLevel = pow(10.0, m_config.m_squelch / 10.0);
|
||||
m_squelchLevel *= m_squelchLevel;
|
||||
m_afSquelch.setThreshold(m_squelchLevel);
|
||||
m_afSquelch.reset();
|
||||
}
|
||||
|
||||
m_running.m_inputSampleRate = m_config.m_inputSampleRate;
|
||||
|
@ -27,6 +27,7 @@
|
||||
#include "dsp/movingaverage.h"
|
||||
#include "dsp/agc.h"
|
||||
#include "dsp/ctcssdetector.h"
|
||||
#include "dsp/afsquelch.h"
|
||||
#include "audio/audiofifo.h"
|
||||
#include "util/message.h"
|
||||
|
||||
@ -136,8 +137,10 @@ private:
|
||||
int m_ctcssIndexSelected;
|
||||
int m_sampleCount;
|
||||
|
||||
Real m_squelchLevel;
|
||||
int m_squelchState;
|
||||
double m_squelchLevel;
|
||||
//int m_squelchState;
|
||||
AFSquelch m_afSquelch;
|
||||
bool m_squelchOpen;
|
||||
|
||||
Real m_lastArgument;
|
||||
Complex m_m1Sample;
|
||||
|
@ -253,10 +253,17 @@
|
||||
</widget>
|
||||
</item>
|
||||
<item row="5" column="1">
|
||||
<widget class="QComboBox" name="ctcss"/>
|
||||
<widget class="QComboBox" name="ctcss">
|
||||
<property name="toolTip">
|
||||
<string>Set CTCSS</string>
|
||||
</property>
|
||||
</widget>
|
||||
</item>
|
||||
<item row="5" column="2">
|
||||
<widget class="QLabel" name="ctcssText">
|
||||
<property name="toolTip">
|
||||
<string>CTCSS detected</string>
|
||||
</property>
|
||||
<property name="text">
|
||||
<string>--</string>
|
||||
</property>
|
||||
|
214
sdrbase/dsp/afsquelch.cpp
Normal file
214
sdrbase/dsp/afsquelch.cpp
Normal file
@ -0,0 +1,214 @@
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
// Copyright (C) 2015 Edouard Griffiths, F4EXB. //
|
||||
// //
|
||||
// This program is free software; you can redistribute it and/or modify //
|
||||
// it under the terms of the GNU General Public License as published by //
|
||||
// the Free Software Foundation as version 3 of the License, or //
|
||||
// //
|
||||
// This program is distributed in the hope that it will be useful, //
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
||||
// GNU General Public License V3 for more details. //
|
||||
// //
|
||||
// You should have received a copy of the GNU General Public License //
|
||||
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include <cmath>
|
||||
#include "dsp/afsquelch.h"
|
||||
|
||||
AFSquelch::AFSquelch() :
|
||||
N(0),
|
||||
sampleRate(0),
|
||||
samplesProcessed(0),
|
||||
maxPowerIndex(0),
|
||||
nTones(2),
|
||||
samplesAttack(0),
|
||||
attackCount(0),
|
||||
samplesDecay(0),
|
||||
decayCount(0),
|
||||
isOpen(false),
|
||||
threshold(0.0)
|
||||
{
|
||||
k = new double[nTones];
|
||||
coef = new double[nTones];
|
||||
toneSet = new Real[nTones];
|
||||
u0 = new double[nTones];
|
||||
u1 = new double[nTones];
|
||||
power = new double[nTones];
|
||||
|
||||
toneSet[0] = 2000.0;
|
||||
toneSet[1] = 10000.0;
|
||||
}
|
||||
|
||||
AFSquelch::AFSquelch(unsigned int nbTones, const Real *tones) :
|
||||
N(0),
|
||||
sampleRate(0),
|
||||
samplesProcessed(0),
|
||||
maxPowerIndex(0),
|
||||
nTones(nbTones),
|
||||
samplesAttack(0),
|
||||
attackCount(0),
|
||||
samplesDecay(0),
|
||||
decayCount(0),
|
||||
isOpen(false),
|
||||
threshold(0.0)
|
||||
{
|
||||
k = new double[nTones];
|
||||
coef = new double[nTones];
|
||||
toneSet = new Real[nTones];
|
||||
u0 = new double[nTones];
|
||||
u1 = new double[nTones];
|
||||
power = new double[nTones];
|
||||
|
||||
for (int j = 0; j < nTones; ++j)
|
||||
{
|
||||
toneSet[j] = tones[j];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
AFSquelch::~AFSquelch()
|
||||
{
|
||||
delete[] k;
|
||||
delete[] coef;
|
||||
delete[] toneSet;
|
||||
delete[] u0;
|
||||
delete[] u1;
|
||||
delete[] power;
|
||||
}
|
||||
|
||||
|
||||
void AFSquelch::setCoefficients(int _N, int _samplerate, int _samplesAttack, int _samplesDecay )
|
||||
{
|
||||
N = _N; // save the basic parameters for use during analysis
|
||||
sampleRate = _samplerate;
|
||||
samplesAttack = _samplesAttack;
|
||||
samplesDecay = _samplesDecay;
|
||||
|
||||
// for each of the frequencies (tones) of interest calculate
|
||||
// k and the associated filter coefficient as per the Goertzel
|
||||
// algorithm. Note: we are using a real value (as apposed to
|
||||
// an integer as described in some references. k is retained
|
||||
// for later display. The tone set is specified in the
|
||||
// constructor. Notice that the resulting coefficients are
|
||||
// independent of N.
|
||||
for (int j = 0; j < nTones; ++j)
|
||||
{
|
||||
k[j] = ((double)N * toneSet[j]) / (double)sampleRate;
|
||||
coef[j] = 2.0 * cos((2.0 * M_PI * toneSet[j])/(double)sampleRate);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Analyze an input signal
|
||||
bool AFSquelch::analyze(Real *sample)
|
||||
{
|
||||
|
||||
feedback(*sample); // Goertzel feedback
|
||||
samplesProcessed += 1;
|
||||
|
||||
if (samplesProcessed == N) // completed a block of N
|
||||
{
|
||||
feedForward(); // calculate the power at each tone
|
||||
samplesProcessed = 0;
|
||||
return true; // have a result
|
||||
}
|
||||
else
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void AFSquelch::feedback(Real in)
|
||||
{
|
||||
double t;
|
||||
|
||||
// feedback for each tone
|
||||
for (int j = 0; j < nTones; ++j)
|
||||
{
|
||||
t = u0[j];
|
||||
u0[j] = in + (coef[j] * u0[j]) - u1[j];
|
||||
u1[j] = t;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void AFSquelch::feedForward()
|
||||
{
|
||||
for (int j = 0; j < nTones; ++j)
|
||||
{
|
||||
power[j] = (u0[j] * u0[j]) + (u1[j] * u1[j]) - (coef[j] * u0[j] * u1[j]);
|
||||
u0[j] = u1[j] = 0.0; // reset for next block.
|
||||
}
|
||||
|
||||
evaluate();
|
||||
}
|
||||
|
||||
|
||||
void AFSquelch::reset()
|
||||
{
|
||||
for (int j = 0; j < nTones; ++j)
|
||||
{
|
||||
power[j] = u0[j] = u1[j] = 0.0; // reset
|
||||
}
|
||||
|
||||
samplesProcessed = 0;
|
||||
maxPowerIndex = 0;
|
||||
isOpen = false;
|
||||
}
|
||||
|
||||
|
||||
void AFSquelch::evaluate()
|
||||
{
|
||||
double maxPower = 0.0;
|
||||
double minPower;
|
||||
int minIndex = 0, maxIndex = 0;
|
||||
|
||||
for (int j = 0; j < nTones; ++j)
|
||||
{
|
||||
if (power[j] > maxPower) {
|
||||
maxPower = power[j];
|
||||
maxIndex = j;
|
||||
}
|
||||
}
|
||||
|
||||
minPower = maxPower;
|
||||
|
||||
for (int j = 0; j < nTones; ++j)
|
||||
{
|
||||
if (power[j] < minPower) {
|
||||
minPower = power[j];
|
||||
minIndex = j;
|
||||
}
|
||||
}
|
||||
|
||||
// principle is to open if power is uneven because noise gives even power
|
||||
bool open = ((maxPower - minPower) > threshold) && (minIndex > maxIndex);
|
||||
|
||||
if (open)
|
||||
{
|
||||
if (attackCount < samplesAttack)
|
||||
{
|
||||
attackCount++;
|
||||
}
|
||||
else
|
||||
{
|
||||
isOpen = true;
|
||||
decayCount = 0;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (decayCount < samplesDecay)
|
||||
{
|
||||
decayCount++;
|
||||
}
|
||||
else
|
||||
{
|
||||
isOpen = false;
|
||||
attackCount = 0;
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user