New simplified channel sample source interface and corresponding up channelizer

This commit is contained in:
f4exb 2019-10-23 18:34:57 +02:00
parent 9fd190aaae
commit e7cd9c32cc
5 changed files with 484 additions and 0 deletions

View File

@ -64,8 +64,10 @@ set(sdrbase_SOURCES
dsp/agc.cpp
dsp/downchannelizer.cpp
dsp/upchannelizer.cpp
dsp/upsamplechannelizer.cpp
dsp/channelmarker.cpp
dsp/ctcssdetector.cpp
dsp/channelsamplesource.cpp
dsp/cwkeyer.cpp
dsp/cwkeyersettings.cpp
dsp/decimatorsif.cpp
@ -179,7 +181,9 @@ set(sdrbase_HEADERS
dsp/autocorrector.h
dsp/downchannelizer.h
dsp/upchannelizer.h
dsp/upsamplechannelizer.h
dsp/channelmarker.h
dsp/channelsamplesource.h
dsp/complex.h
dsp/cwkeyer.h
dsp/cwkeyersettings.h

View File

@ -0,0 +1,25 @@
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 F4EXB //
// written by Edouard Griffiths //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "channelsamplesource.h"
ChannelSampleSource::ChannelSampleSource()
{}
ChannelSampleSource::~ChannelSampleSource()
{}

View File

@ -0,0 +1,38 @@
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 F4EXB //
// written by Edouard Griffiths //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
// This is a lightweight channel sample source interface
#ifndef SDRBASE_DSP_CHANNELSAMPLESOURCE_H_
#define SDRBASE_DSP_CHANNELSAMPLESOURCE_H_
#include "export.h"
#include "dsptypes.h"
class Message;
class SDRBASE_API ChannelSampleSource {
public:
ChannelSampleSource();
virtual ~ChannelSampleSource();
virtual void pull(SampleVector::iterator begin, unsigned int nbSamples) = 0; //!< pull nbSamples from the source and write them starting at begin
virtual void pullOne(Sample& sample) = 0; //!< pull a single sample from the source
};
#endif // SDRBASE_DSP_CHANNELSAMPLESOURCE_H_

View File

@ -0,0 +1,319 @@
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 F4EXB //
// written by Edouard Griffiths //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QString>
#include <QDebug>
#include <algorithm>
#include "inthalfbandfilter.h"
#include "dspcommands.h"
#include "hbfilterchainconverter.h"
#include "upsamplechannelizer.h"
UpSampleChannelizer::UpSampleChannelizer(ChannelSampleSource* sampleSource) :
m_filterChainSetMode(false),
m_sampleSource(sampleSource),
m_outputSampleRate(0),
m_requestedInputSampleRate(0),
m_requestedCenterFrequency(0),
m_currentInputSampleRate(0),
m_currentCenterFrequency(0)
{
}
UpSampleChannelizer::~UpSampleChannelizer()
{
freeFilterChain();
}
void UpSampleChannelizer::pullOne(Sample& sample)
{
if (m_sampleSource == nullptr)
{
m_sampleBuffer.clear();
return;
}
unsigned int log2Interp = m_filterStages.size();
if (log2Interp == 0) // optimization when no downsampling is done anyway
{
m_sampleSource->pullOne(sample);
}
else
{
FilterStages::iterator stage = m_filterStages.begin();
std::vector<Sample>::iterator stageSample = m_stageSamples.begin();
for (; stage != m_filterStages.end(); ++stage, ++stageSample)
{
if(stage == m_filterStages.end() - 1)
{
if ((*stage)->work(&m_sampleIn, &(*stageSample)))
{
m_sampleSource->pullOne(m_sampleIn); // get new input sample
}
}
else
{
if (!(*stage)->work(&(*(stageSample+1)), &(*stageSample)))
{
break;
}
}
}
sample = *m_stageSamples.begin();
}
}
void UpSampleChannelizer::pull(SampleVector::iterator begin, unsigned int nbSamples)
{
if (m_sampleSource == nullptr)
{
m_sampleBuffer.clear();
return;
}
unsigned int log2Interp = m_filterStages.size();
if (log2Interp == 0) // optimization when no downsampling is done anyway
{
m_sampleSource->pull(begin, nbSamples);
}
else
{
std::for_each(
begin,
begin + nbSamples,
[this](Sample& s) {
pullOne(s);
}
);
}
}
void UpSampleChannelizer::applyConfiguration()
{
m_filterChainSetMode = false;
if (m_outputSampleRate == 0)
{
qDebug() << "UpChannelizer::applyConfiguration: aborting (out=0):"
<< " out =" << m_outputSampleRate
<< ", req =" << m_requestedInputSampleRate
<< ", in =" << m_currentInputSampleRate
<< ", fc =" << m_currentCenterFrequency;
return;
}
freeFilterChain();
m_currentCenterFrequency = createFilterChain(
m_outputSampleRate / -2, m_outputSampleRate / 2,
m_requestedCenterFrequency - m_requestedInputSampleRate / 2, m_requestedCenterFrequency + m_requestedInputSampleRate / 2);
m_currentInputSampleRate = m_outputSampleRate / (1 << m_filterStages.size());
qDebug() << "UpChannelizer::applyConfiguration:"
<< " out=" << m_outputSampleRate
<< ", req=" << m_requestedInputSampleRate
<< ", in=" << m_currentInputSampleRate
<< ", fc=" << m_currentCenterFrequency;
}
void UpSampleChannelizer::applySetting(unsigned int log2Interp, unsigned int filterChainHash)
{
m_filterChainSetMode = true;
std::vector<unsigned int> stageIndexes;
m_currentCenterFrequency = m_outputSampleRate * HBFilterChainConverter::convertToIndexes(log2Interp, filterChainHash, stageIndexes);
m_requestedCenterFrequency = m_currentCenterFrequency;
m_mutex.lock();
freeFilterChain();
m_currentCenterFrequency = m_outputSampleRate * setFilterChain(stageIndexes);
m_mutex.unlock();
m_currentInputSampleRate = m_outputSampleRate / (1 << m_filterStages.size());
m_requestedInputSampleRate = m_currentInputSampleRate;
qDebug() << "UpChannelizer::applySetting in=" << m_outputSampleRate
<< ", out=" << m_currentInputSampleRate
<< ", fc=" << m_currentCenterFrequency;
}
#ifdef USE_SSE4_1
UpSampleChannelizer::FilterStage::FilterStage(Mode mode) :
m_filter(new IntHalfbandFilterEO1<UPSAMPLECHANNELIZER_HB_FILTER_ORDER>),
m_workFunction(0)
{
switch(mode) {
case ModeCenter:
m_workFunction = &IntHalfbandFilterEO1<UPSAMPLECHANNELIZER_HB_FILTER_ORDER>::workInterpolateCenter;
break;
case ModeLowerHalf:
m_workFunction = &IntHalfbandFilterEO1<UPSAMPLECHANNELIZER_HB_FILTER_ORDER>::workInterpolateLowerHalf;
break;
case ModeUpperHalf:
m_workFunction = &IntHalfbandFilterEO1<UPSAMPLECHANNELIZER_HB_FILTER_ORDER>::workInterpolateUpperHalf;
break;
}
}
#else
UpSampleChannelizer::FilterStage::FilterStage(Mode mode) :
m_filter(new IntHalfbandFilterDB<qint32, UPSAMPLECHANNELIZER_HB_FILTER_ORDER>),
m_workFunction(0)
{
switch(mode) {
case ModeCenter:
m_workFunction = &IntHalfbandFilterDB<qint32, UPSAMPLECHANNELIZER_HB_FILTER_ORDER>::workInterpolateCenter;
break;
case ModeLowerHalf:
m_workFunction = &IntHalfbandFilterDB<qint32, UPSAMPLECHANNELIZER_HB_FILTER_ORDER>::workInterpolateLowerHalf;
break;
case ModeUpperHalf:
m_workFunction = &IntHalfbandFilterDB<qint32, UPSAMPLECHANNELIZER_HB_FILTER_ORDER>::workInterpolateUpperHalf;
break;
}
}
#endif
UpSampleChannelizer::FilterStage::~FilterStage()
{
delete m_filter;
}
bool UpSampleChannelizer::signalContainsChannel(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) const
{
//qDebug(" testing signal [%f, %f], channel [%f, %f]", sigStart, sigEnd, chanStart, chanEnd);
if(sigEnd <= sigStart)
return false;
if(chanEnd <= chanStart)
return false;
return (sigStart <= chanStart) && (sigEnd >= chanEnd);
}
Real UpSampleChannelizer::createFilterChain(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd)
{
Real sigBw = sigEnd - sigStart;
Real rot = sigBw / 4;
Sample s;
qDebug() << "UpSampleChannelizer::createFilterChain: start:"
<< " sig: [" << sigStart << ":" << sigEnd << "]"
<< " BW: " << sigBw
<< " chan: [" << chanStart << ":" << chanEnd << "]"
<< " rot: " << rot;
// check if it fits into the left half
if(signalContainsChannel(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd))
{
qDebug() << "UpSampleChannelizer::createFilterChain: take left half (rotate by +1/4 and decimate by 2):"
<< " [" << m_filterStages.size() << "]"
<< " sig: [" << sigStart << ":" << sigStart + sigBw / 2.0 << "]";
m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf));
m_stageSamples.push_back(s);
return createFilterChain(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd);
}
// check if it fits into the right half
if(signalContainsChannel(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd))
{
qDebug() << "UpSampleChannelizer::createFilterChain: take right half (rotate by -1/4 and decimate by 2):"
<< " [" << m_filterStages.size() << "]"
<< " sig: [" << sigEnd - sigBw / 2.0f << ":" << sigEnd << "]";
m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf));
m_stageSamples.push_back(s);
return createFilterChain(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd);
}
// check if it fits into the center
// Was: if(signalContainsChannel(sigStart + rot + safetyMargin, sigStart + rot + sigBw / 2.0f - safetyMargin, chanStart, chanEnd)) {
if(signalContainsChannel(sigStart + rot, sigEnd - rot, chanStart, chanEnd))
{
qDebug() << "UpSampleChannelizer::createFilterChain: take center half (decimate by 2):"
<< " [" << m_filterStages.size() << "]"
<< " sig: [" << sigStart + rot << ":" << sigEnd - rot << "]";
m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter));
m_stageSamples.push_back(s);
// Was: return createFilterChain(sigStart + rot, sigStart + sigBw / 2.0f + rot, chanStart, chanEnd);
return createFilterChain(sigStart + rot, sigEnd - rot, chanStart, chanEnd);
}
Real ofs = ((chanEnd - chanStart) / 2.0 + chanStart) - ((sigEnd - sigStart) / 2.0 + sigStart);
qDebug() << "UpSampleChannelizer::createFilterChain: complete:"
<< " #stages: " << m_filterStages.size()
<< " BW: " << sigBw
<< " ofs: " << ofs;
return ofs;
}
double UpSampleChannelizer::setFilterChain(const std::vector<unsigned int>& stageIndexes)
{
// filters are described from lower to upper level but the chain is constructed the other way round
std::vector<unsigned int>::const_reverse_iterator rit = stageIndexes.rbegin();
double ofs = 0.0, ofs_stage = 0.25;
Sample s;
// Each index is a base 3 number with 0 = low, 1 = center, 2 = high
// Functions at upper level will convert a number to base 3 to describe the filter chain. Common converting
// algorithms will go from LSD to MSD. This explains the reverse order.
for (; rit != stageIndexes.rend(); ++rit)
{
if (*rit == 0)
{
m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf));
m_stageSamples.push_back(s);
ofs -= ofs_stage;
}
else if (*rit == 1)
{
m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter));
m_stageSamples.push_back(s);
}
else if (*rit == 2)
{
m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf));
m_stageSamples.push_back(s);
ofs += ofs_stage;
}
ofs_stage /= 2;
}
return ofs;
}
void UpSampleChannelizer::freeFilterChain()
{
for(FilterStages::iterator it = m_filterStages.begin(); it != m_filterStages.end(); ++it)
delete *it;
m_filterStages.clear();
m_stageSamples.clear();
}

View File

@ -0,0 +1,98 @@
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 F4EXB //
// written by Edouard Griffiths //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef SDRBASE_DSP_UPSAMPLECHANNELIZER_H_
#define SDRBASE_DSP_UPSAMPLECHANNELIZER_H_
#include <QObject>
#include <QMutex>
#include <algorithm>
#include "export.h"
#include "channelsamplesource.h"
#ifdef USE_SSE4_1
#include "dsp/inthalfbandfiltereo1.h"
#else
#include "dsp/inthalfbandfilterdb.h"
#endif
#define UPSAMPLECHANNELIZER_HB_FILTER_ORDER 96
class SDRBASE_API UpSampleChannelizer : public ChannelSampleSource {
public:
UpSampleChannelizer(ChannelSampleSource* sampleSource);
virtual ~UpSampleChannelizer();
virtual void pull(SampleVector::iterator begin, unsigned int nbSamples);
virtual void pullOne(Sample& sample);
protected:
struct FilterStage {
enum Mode {
ModeCenter,
ModeLowerHalf,
ModeUpperHalf
};
#ifdef USE_SSE4_1
typedef bool (IntHalfbandFilterEO1<UPSAMPLECHANNELIZER_HB_FILTER_ORDER>::*WorkFunction)(Sample* sIn, Sample *sOut);
IntHalfbandFilterEO1<UPSAMPLECHANNELIZER_HB_FILTER_ORDER>* m_filter;
#else
typedef bool (IntHalfbandFilterDB<qint32, UPSAMPLECHANNELIZER_HB_FILTER_ORDER>::*WorkFunction)(Sample* sIn, Sample *sOut);
IntHalfbandFilterDB<qint32, UPSAMPLECHANNELIZER_HB_FILTER_ORDER>* m_filter;
#endif
WorkFunction m_workFunction;
FilterStage(Mode mode);
~FilterStage();
bool work(Sample* sampleIn, Sample *sampleOut) {
return (m_filter->*m_workFunction)(sampleIn, sampleOut);
}
};
typedef std::vector<FilterStage*> FilterStages;
FilterStages m_filterStages;
bool m_filterChainSetMode;
std::vector<Sample> m_stageSamples;
ChannelSampleSource* m_sampleSource; //!< Modulator
int m_outputSampleRate;
int m_requestedInputSampleRate;
int m_requestedCenterFrequency;
int m_currentInputSampleRate;
int m_currentCenterFrequency;
SampleVector m_sampleBuffer;
Sample m_sampleIn;
QMutex m_mutex;
void applyConfiguration();
void applySetting(unsigned int log2Interp, unsigned int filterChainHash);
bool signalContainsChannel(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) const;
Real createFilterChain(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd);
double setFilterChain(const std::vector<unsigned int>& stageIndexes); //!< returns offset in ratio of sample rate
void freeFilterChain();
signals:
void outputSampleRateChanged();
};
#endif // SDRBASE_DSP_UPSAMPLECHANNELIZER_H_