1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-10 18:43:28 -05:00

WDSP: more Sonar fixes

This commit is contained in:
f4exb 2024-08-10 23:46:47 +02:00
parent ef0255f2bb
commit eaa5445702
10 changed files with 214 additions and 207 deletions

View File

@ -41,31 +41,41 @@ namespace WDSP {
void EMPH::calc()
{
infilt = new float[2 * size * 2];
product = new float[2 * size * 2];
infilt.resize(2 * size * 2);
product.resize(2 * size * 2);
FCurve::fc_mults(
mults,
size,
f_low,
f_high,
-20.0 * log10(f_high / f_low),
(float) f_low,
(float) f_high,
(float) (-20.0 * log10(f_high / f_low)),
0.0,
ctype,
rate,
1.0 / (2.0 * size),
(float) rate,
(float) (1.0 / (2.0 * size)),
0,
0
);
CFor = fftwf_plan_dft_1d(2 * size, (fftwf_complex *)infilt, (fftwf_complex *)product, FFTW_FORWARD, FFTW_PATIENT);
CRev = fftwf_plan_dft_1d(2 * size, (fftwf_complex *)product, (fftwf_complex *)out, FFTW_BACKWARD, FFTW_PATIENT);
CFor = fftwf_plan_dft_1d(
2 * size,
(fftwf_complex *)infilt.data(),
(fftwf_complex *)product.data(),
FFTW_FORWARD,
FFTW_PATIENT)
;
CRev = fftwf_plan_dft_1d(
2 * size,
(fftwf_complex *)product.data(),
(fftwf_complex *)out,
FFTW_BACKWARD,
FFTW_PATIENT
);
}
void EMPH::decalc()
{
fftwf_destroy_plan(CRev);
fftwf_destroy_plan(CFor);
delete[] product;
delete[] infilt;
}
EMPH::EMPH(
@ -99,7 +109,7 @@ EMPH::~EMPH()
void EMPH::flush()
{
std::fill(infilt, infilt + 2 * size * 2, 0);
std::fill(infilt.begin(), infilt.end(), 0);
}
void EMPH::execute(int _position)
@ -118,7 +128,7 @@ void EMPH::execute(int _position)
product[2 * i + 1] = (float) (I * mults[2 * i + 1] + Q * mults[2 * i + 0]);
}
fftwf_execute (CRev);
std::copy(&(infilt[2 * size]), &(infilt[2 * size]) + size * 2, infilt);
std::copy(&(infilt[2 * size]), &(infilt[2 * size]) + size * 2, infilt.begin());
}
else if (in != out)
std::copy( in, in + size * 2, out);

View File

@ -52,8 +52,8 @@ public:
int ctype;
double f_low;
double f_high;
float* infilt;
float* product;
std::vector<float> infilt;
std::vector<float> product;
std::vector<float> mults;
double rate;
fftwf_plan CFor;

View File

@ -82,7 +82,7 @@ EMPHP::EMPHP(
EMPHP::~EMPHP()
{
delete (p);
delete p;
}
void EMPHP::flush()
@ -112,13 +112,13 @@ void EMPHP::setSamplerate(int _rate)
FCurve::fc_impulse (
impulse,
nc,
f_low,
f_high,
-20.0 * log10(f_high / f_low),
(float) f_low,
(float) f_high,
(float) (-20.0 * log10(f_high / f_low)),
0.0,
ctype,
rate,
1.0 / (2.0 * size),
(float) rate,
(float) (1.0 / (2.0 * size)),
0, 0
);
p->setImpulse(impulse, 1);
@ -132,13 +132,13 @@ void EMPHP::setSize(int _size)
FCurve::fc_impulse (
impulse,
nc,
f_low,
f_high,
-20.0 * log10(f_high / f_low),
(float) f_low,
(float) f_high,
(float) (-20.0 * log10(f_high / f_low)),
0.0,
ctype,
rate,
1.0 / (2.0 * size),
(float) rate,
(float) (1.0 / (2.0 * size)),
0,
0
);
@ -198,13 +198,13 @@ void EMPHP::setFreqs(double low, double high)
FCurve::fc_impulse (
impulse,
nc,
f_low,
f_high,
-20.0 * log10(f_high / f_low),
(float) f_low,
(float) f_high,
(float) (-20.0 * log10(f_high / f_low)),
0.0,
ctype,
rate,
1.0 / (2.0 * size),
(float) rate,
(float) (1.0 / (2.0 * size)),
0,
0
);

View File

@ -94,7 +94,7 @@ void GEN::calc_pulse ()
pulse.pcount = pulse.pnoff;
pulse.state = PState::OFF;
pulse.ctrans = new double[pulse.pntrans + 1];
pulse.ctrans.resize(pulse.pntrans + 1);
delta = PI / (float)pulse.pntrans;
theta = 0.0;
for (int i = 0; i <= pulse.pntrans; i++)
@ -114,11 +114,6 @@ void GEN::calc()
calc_pulse();
}
void GEN::decalc()
{
delete[] (pulse.ctrans);
}
GEN::GEN(
int _run,
int _size,
@ -165,11 +160,6 @@ GEN::GEN(
calc();
}
GEN::~GEN()
{
decalc();
}
void GEN::flush()
{
pulse.state = PState::OFF;
@ -365,7 +355,6 @@ void GEN::setBuffers(float* _in, float* _out)
void GEN::setSamplerate(int _rate)
{
decalc();
rate = _rate;
calc();
}

View File

@ -28,6 +28,8 @@ warren@wpratt.com
#ifndef wdsp_gen_h
#define wdsp_gen_h
#include <vector>
#include "export.h"
namespace WDSP {
@ -120,7 +122,7 @@ public:
double pf;
double pdutycycle;
double ptranstime;
double* ctrans;
std::vector<double> ctrans;
int pcount;
int pnon;
int pntrans;
@ -143,7 +145,9 @@ public:
int rate,
int mode
);
~GEN();
GEN(const GEN&) = delete;
GEN& operator=(const GEN& other) = delete;
~GEN() = default;
void flush();
void execute();
@ -197,7 +201,6 @@ private:
void calc_triangle();
void calc_pulse();
void calc();
void decalc();
};
} // namespace WDSP

View File

@ -25,6 +25,8 @@ warren@pratt.one
*/
#include <vector>
#include "comm.hpp"
#include "fircore.hpp"
#include "fir.hpp"
@ -32,35 +34,35 @@ warren@pratt.one
namespace WDSP {
void ICFIR::calc_icfir (ICFIR *a)
void ICFIR::calc()
{
std::vector<float> impulse;
a->scale = 1.0f / (float)(2 * a->size);
icfir_impulse (impulse, a->nc, a->DD, a->R, a->Pairs, (float) a->runrate, (float) a->cicrate, a->cutoff, a->xtype, a->xbw, 1, a->scale, a->wintype);
a->p = new FIRCORE(a->size, a->in, a->out, a->mp, impulse);
scale = 1.0f / (float)(2 * size);
icfir_impulse (impulse, nc, DD, R, Pairs, (float) runrate, (float) cicrate, cutoff, xtype, xbw, 1, scale, wintype);
p = new FIRCORE(size, in, out, mp, impulse);
}
void ICFIR::decalc_icfir (ICFIR *a)
void ICFIR::decalc()
{
delete (a->p);
delete p;
}
ICFIR* ICFIR::create_icfir (
int run,
int size,
int nc,
int mp,
float* in,
float* out,
int runrate,
int cicrate,
int DD,
int R,
int Pairs,
float cutoff,
int xtype,
float xbw,
int wintype
ICFIR::ICFIR(
int _run,
int _size,
int _nc,
int _mp,
float* _in,
float* _out,
int _runrate,
int _cicrate,
int _DD,
int _R,
int _Pairs,
float _cutoff,
int _xtype,
float _xbw,
int _wintype
)
// run: 0 - no action; 1 - operate
// size: number of complex samples in an input buffer to the CFIR filter
@ -76,88 +78,85 @@ ICFIR* ICFIR::create_icfir (
// xtype: 0 - fourth power transition; 1 - raised cosine transition
// xbw: width of raised cosine transition
{
ICFIR *a = new ICFIR;
a->run = run;
a->size = size;
a->nc = nc;
a->mp = mp;
a->in = in;
a->out = out;
a->runrate = runrate;
a->cicrate = cicrate;
a->DD = DD;
a->R = R;
a->Pairs = Pairs;
a->cutoff = cutoff;
a->xtype = xtype;
a->xbw = xbw;
a->wintype = wintype;
calc_icfir (a);
return a;
run = _run;
size = _size;
nc = _nc;
mp = _mp;
in = _in;
out = _out;
runrate = _runrate;
cicrate = _cicrate;
DD = _DD;
R = _R;
Pairs = _Pairs;
cutoff = _cutoff;
xtype = _xtype;
xbw = _xbw;
wintype = _wintype;
calc();
}
void ICFIR::destroy_icfir (ICFIR *a)
ICFIR::~ICFIR()
{
decalc_icfir (a);
delete[] (a);
decalc();
}
void ICFIR::flush_icfir (ICFIR *a)
void ICFIR::flush()
{
a->p->flush();
p->flush();
}
void ICFIR::xicfir (ICFIR *a)
void ICFIR::execute()
{
if (a->run)
a->p->execute();
else if (a->in != a->out)
std::copy( a->in, a->in + a->size * 2, a->out);
if (run)
p->execute();
else if (in != out)
std::copy( in, in + size * 2, out);
}
void ICFIR::setBuffers_icfir (ICFIR *a, float* in, float* out)
void ICFIR::setBuffers(float* _in, float* _out)
{
decalc_icfir (a);
a->in = in;
a->out = out;
calc_icfir (a);
decalc();
in = _in;
out = _out;
calc();
}
void ICFIR::setSamplerate_icfir (ICFIR *a, int rate)
void ICFIR::setSamplerate(int _rate)
{
decalc_icfir (a);
a->runrate = rate;
calc_icfir (a);
decalc();
runrate = _rate;
calc();
}
void ICFIR::setSize_icfir (ICFIR *a, int size)
void ICFIR::setSize(int _size)
{
decalc_icfir (a);
a->size = size;
calc_icfir (a);
decalc();
size = _size;
calc();
}
void ICFIR::setOutRate_icfir (ICFIR *a, int rate)
void ICFIR::setOutRate(int _rate)
{
decalc_icfir (a);
a->cicrate = rate;
calc_icfir (a);
decalc();
cicrate = _rate;
calc();
}
void ICFIR::icfir_impulse (
std::vector<float>& impulse,
int N,
int DD,
int R,
int Pairs,
float runrate,
float cicrate,
float cutoff,
int xtype,
float xbw,
int rtype,
float scale,
int wintype
std::vector<float>& _impulse,
int _N,
int _DD,
int _R,
int _Pairs,
float _runrate,
float _cicrate,
float _cutoff,
int _xtype,
float _xbw,
int _rtype,
float _scale,
int _wintype
)
{
// N: number of impulse response samples
@ -173,75 +172,73 @@ void ICFIR::icfir_impulse (
// scale: scale factor to be applied to the output
int i;
int j;
float tmp;
float local_scale;
float ri;
float mag;
float fn;
auto* A = new float[N];
float ft = cutoff / cicrate; // normalized cutoff frequency
int u_samps = (N + 1) / 2; // number of unique samples, OK for odd or even N
int c_samps = (int)(cutoff / runrate * N) + (N + 1) / 2 - N / 2; // number of unique samples within bandpass, OK for odd or even N
auto x_samps = (int)(xbw / runrate * N); // number of unique samples in transition region, OK for odd or even N
float offset = 0.5f - 0.5f * (float)((N + 1) / 2 - N / 2); // sample offset from center, OK for odd or even N
auto* xistion = new float[x_samps + 1];
float delta = PI / (float)x_samps;
float L = cicrate / runrate;
float phs = 0.0;
double tmp;
double local_scale;
double ri;
double mag = 0;
double fn;
std::vector<float> A(_N);
double ft = _cutoff / _cicrate; // normalized cutoff frequency
int u_samps = (_N + 1) / 2; // number of unique samples, OK for odd or even N
int c_samps = (int)(_cutoff / _runrate * _N) + (_N + 1) / 2 - _N / 2; // number of unique samples within bandpass, OK for odd or even N
auto x_samps = (int)(_xbw / _runrate * _N); // number of unique samples in transition region, OK for odd or even N
double offset = 0.5f - 0.5f * (float)((_N + 1) / 2 - _N / 2); // sample offset from center, OK for odd or even N
std::vector<double> xistion(x_samps + 1);
double delta = PI / (float)x_samps;
double L = _cicrate / _runrate;
double phs = 0.0;
for (i = 0; i <= x_samps; i++)
{
xistion[i] = 0.5 * (cos (phs) + 1.0);
phs += delta;
}
if ((tmp = DD * R * sin (PI * ft / R) / sin (PI * DD * ft)) < 0.0) //normalize by peak gain
if ((tmp = _DD * _R * sin (PI * ft / _R) / sin (PI * _DD * ft)) < 0.0) //normalize by peak gain
tmp = -tmp;
local_scale = scale / pow (tmp, Pairs);
if (xtype == 0)
local_scale = _scale / pow (tmp, _Pairs);
if (_xtype == 0)
{
for (i = 0, ri = offset; i < u_samps; i++, ri += 1.0)
{
fn = ri / (L * (float)N);
fn = ri / (L * (float)_N);
if (fn <= ft)
{
if (fn == 0.0) tmp = 1.0;
else if ((tmp = sin (PI * DD * fn) / (DD * R * sin (PI * fn / R))) < 0.0)
else if ((tmp = sin (PI * _DD * fn) / (_DD * _R * sin (PI * fn / _R))) < 0.0)
tmp = -tmp;
mag = pow (tmp, Pairs) * local_scale;
mag = pow (tmp, _Pairs) * local_scale;
}
else
mag *= (ft * ft * ft * ft) / (fn * fn * fn * fn);
A[i] = mag;
A[i] = (float) mag;
}
}
else if (xtype == 1)
else if (_xtype == 1)
{
for (i = 0, ri = offset; i < u_samps; i++, ri += 1.0)
{
fn = ri / (L *(float)N);
fn = ri / (L *(float)_N);
if (i < c_samps)
{
if (fn == 0.0) tmp = 1.0;
else if ((tmp = sin (PI * DD * fn) / (DD * R * sin (PI * fn / R))) < 0.0)
else if ((tmp = sin (PI * _DD * fn) / (_DD * _R * sin (PI * fn / _R))) < 0.0)
tmp = -tmp;
mag = pow (tmp, Pairs) * local_scale;
A[i] = mag;
mag = pow (tmp, _Pairs) * local_scale;
A[i] = (float) mag;
}
else if ( i >= c_samps && i <= c_samps + x_samps)
A[i] = mag * xistion[i - c_samps];
A[i] = (float) (mag * xistion[i - c_samps]);
else
A[i] = 0.0;
}
}
if (N & 1)
for (i = u_samps, j = 2; i < N; i++, j++)
if (_N & 1)
for (i = u_samps, j = 2; i < _N; i++, j++)
A[i] = A[u_samps - j];
else
for (i = u_samps, j = 1; i < N; i++, j++)
for (i = u_samps, j = 1; i < _N; i++, j++)
A[i] = A[u_samps - j];
impulse.resize(2 * N);
FIR::fir_fsamp (impulse, N, A, rtype, 1.0, wintype);
delete[] (A);
delete[] xistion;
_impulse.resize(2 * _N);
FIR::fir_fsamp (_impulse, _N, A.data(), _rtype, 1.0, _wintype);
}

View File

@ -55,7 +55,7 @@ public:
int wintype;
FIRCORE *p;
static ICFIR* create_icfir (
ICFIR(
int run,
int size,
int nc,
@ -72,14 +72,17 @@ public:
float xbw,
int wintype
);
static void destroy_icfir (ICFIR *a);
static void flush_icfir (ICFIR *a);
static void xicfir (ICFIR *a);
static void setBuffers_icfir (ICFIR *a, float* in, float* out);
static void setSamplerate_icfir (ICFIR *a, int rate);
static void setSize_icfir (ICFIR *a, int size);
static void setOutRate_icfir (ICFIR *a, int rate);
static void icfir_impulse (
ICFIR(const ICFIR&) = delete;
ICFIR& operator=(const ICFIR& other) = delete;
~ICFIR();
void flush();
void execute();
void setBuffers(float* in, float* out);
void setSamplerate(int rate);
void setSize(int size);
void setOutRate(int rate);
static void icfir_impulse(
std::vector<float>& impulse,
int N,
int DD,
@ -96,8 +99,8 @@ public:
);
private:
static void calc_icfir (ICFIR *a);
static void decalc_icfir (ICFIR *a);
void calc();
void decalc();
};
} // namespace WDSP

View File

@ -39,7 +39,14 @@ namespace WDSP {
* *
************************************************************************************************/
RESAMPLEF* RESAMPLEF::create_resampleF ( int run, int size, float* in, float* out, int in_rate, int out_rate)
RESAMPLEF* RESAMPLEF::create_resampleF (
int _run,
int _size,
float* _in,
float* _out,
int _in_rate,
int _out_rate
)
{
auto *a = new RESAMPLEF;
int x;
@ -51,12 +58,12 @@ RESAMPLEF* RESAMPLEF::create_resampleF ( int run, int size, float* in, float* ou
float fc;
float fc_norm;
std::vector<float> impulse;
a->run = run;
a->size = size;
a->in = in;
a->out = out;
x = in_rate;
y = out_rate;
a->run = _run;
a->size = _size;
a->in = _in;
a->out = _out;
x = _in_rate;
y = _out_rate;
while (y != 0)
{
@ -65,19 +72,19 @@ RESAMPLEF* RESAMPLEF::create_resampleF ( int run, int size, float* in, float* ou
x = z;
}
a->L = out_rate / x;
a->M = in_rate / x;
a->L = _out_rate / x;
a->M = _in_rate / x;
a->L = a->L <= 0 ? 1 : a->L;
a->M = a->M <= 0 ? 1 : a->M;
if (in_rate < out_rate)
min_rate = in_rate;
if (_in_rate < _out_rate)
min_rate = _in_rate;
else
min_rate = out_rate;
min_rate = _out_rate;
fc = 0.45f * (float)min_rate;
full_rate = (float)(in_rate * a->L);
full_rate = (float)(_in_rate * a->L);
fc_norm = fc / full_rate;
a->ncoef = (int)(60.0 / fc_norm);
a->ncoef = (a->ncoef / a->L + 1) * a->L;
@ -164,25 +171,25 @@ int RESAMPLEF::xresampleF (RESAMPLEF *a)
// Exported calls
void* RESAMPLEF::create_resampleFV (int in_rate, int out_rate)
void* RESAMPLEF::create_resampleFV (int _in_rate, int _out_rate)
{
return (void *) create_resampleF (1, 0, nullptr, nullptr, in_rate, out_rate);
return (void *) create_resampleF (1, 0, nullptr, nullptr, _in_rate, _out_rate);
}
void RESAMPLEF::xresampleFV (float* input, float* output, int numsamps, int* outsamps, void* ptr)
void RESAMPLEF::xresampleFV (float* _input, float* _output, int _numsamps, int* _outsamps, void* _ptr)
{
auto *a = (RESAMPLEF*) ptr;
a->in = input;
a->out = output;
a->size = numsamps;
*outsamps = xresampleF(a);
auto *a = (RESAMPLEF*) _ptr;
a->in = _input;
a->out = _output;
a->size = _numsamps;
*_outsamps = xresampleF(a);
}
void RESAMPLEF::destroy_resampleFV (void* ptr)
void RESAMPLEF::destroy_resampleFV (void* _ptr)
{
destroy_resampleF ( (RESAMPLEF*) ptr );
destroy_resampleF ( (RESAMPLEF*) _ptr );
}
} // namespace WDSP

View File

@ -114,8 +114,8 @@ void SNBA::calc()
else
isize = bsize * (internalrate / inrate);
inbuff = new float[isize * 2];
outbuff = new float[isize * 2];
inbuff.resize(isize * 2);
outbuff.resize(isize * 2);
if (inrate != internalrate)
resamprun = 1;
@ -126,7 +126,7 @@ void SNBA::calc()
resamprun,
bsize,
in,
inbuff,
inbuff.data(),
inrate,
internalrate,
0.0,
@ -137,7 +137,7 @@ void SNBA::calc()
outresamp = new RESAMPLE(
resamprun,
isize,
outbuff,
outbuff.data(),
out,
internalrate,
inrate,
@ -217,8 +217,6 @@ SNBA::SNBA(
isize(0),
inresamp(nullptr),
outresamp(nullptr),
inbuff(nullptr),
outbuff(nullptr),
out_low_cut(_out_low_cut),
out_high_cut(_out_high_cut),
exec(_xsize, _asize, _npasses),
@ -237,8 +235,6 @@ void SNBA::decalc()
{
delete outresamp;
delete inresamp;
delete[] outbuff;
delete[] inbuff;
}
SNBA::~SNBA()
@ -259,8 +255,8 @@ void SNBA::flush()
std::fill(inaccum.begin(), inaccum.end(), 0);
std::fill(outaccum.begin(), outaccum.end(), 0);
std::fill(xaux, xaux + xsize, 0);
std::fill(inbuff, inbuff + isize * 2, 0);
std::fill(outbuff, outbuff + isize * 2, 0);
std::fill(inbuff.begin(), inbuff.end(), 0);
std::fill(outbuff.begin(), outbuff.end(), 0);
inresamp->flush();
outresamp->flush();

View File

@ -64,8 +64,8 @@ public:
int isize;
RESAMPLE *inresamp;
RESAMPLE *outresamp;
float* inbuff;
float* outbuff;
std::vector<float> inbuff;
std::vector<float> outbuff;
double out_low_cut;
double out_high_cut;
static const int MAXIMP = 256;
@ -155,6 +155,8 @@ public:
double out_low_cut,
double out_high_cut
);
SNBA(const SNBA&) = delete;
SNBA& operator=(const SNBA& other) = delete;
~SNBA();
void flush();