MIMO: add channel to TestMI (1)

This commit is contained in:
f4exb 2019-05-26 02:14:35 +02:00
parent 6c71893143
commit eff28e8b63
20 changed files with 1523 additions and 1049 deletions

View File

@ -25,6 +25,7 @@
#include "SWGDeviceSettings.h"
#include "SWGDeviceState.h"
#include "SWGTestMISettings.h"
#include "device/deviceapi.h"
#include "dsp/dspcommands.h"
@ -44,16 +45,17 @@ MESSAGE_CLASS_DEFINITION(TestMI::MsgStartStop, Message)
TestMI::TestMI(DeviceAPI *deviceAPI) :
m_deviceAPI(deviceAPI),
m_settings(),
m_testSourceThread(0),
m_deviceDescription(),
m_running(false),
m_masterTimer(deviceAPI->getMasterTimer())
{
m_fileSink = new FileRecord(QString("test_%1.sdriq").arg(m_deviceAPI->getDeviceUID()));
m_deviceAPI->setNbSourceStreams(1);
m_deviceAPI->setNbSourceStreams(2);
m_deviceAPI->addSourceStream(); // Add a new source stream data set in the engine
m_deviceAPI->addSourceStream(); // Add a new source stream data set in the engine
m_deviceAPI->addAncillarySink(m_fileSink);
m_sampleSinkFifos.push_back(SampleSinkFifo(96000 * 4));
m_sampleSinkFifos.push_back(SampleSinkFifo(96000 * 4));
m_networkManager = new QNetworkAccessManager();
connect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*)));
}
@ -69,6 +71,7 @@ TestMI::~TestMI()
m_deviceAPI->removeAncillarySink(m_fileSink);
m_deviceAPI->removeLastSourceStream(); // Remove the last source stream data set in the engine
m_deviceAPI->removeLastSourceStream(); // Remove the last source stream data set in the engine
delete m_fileSink;
}
@ -88,9 +91,13 @@ bool TestMI::start()
if (m_running) stop();
m_testSourceThread = new TestMIThread(&m_sampleSinkFifos[0]);
m_testSourceThread->setSamplerate(m_settings.m_sampleRate);
m_testSourceThread->startStop(true);
m_testSourceThreads.push_back(new TestMIThread(&m_sampleSinkFifos[0]));
m_testSourceThreads.back()->setSamplerate(m_settings.m_streams[0].m_sampleRate);
m_testSourceThreads.back()->startStop(true);
m_testSourceThreads.push_back(new TestMIThread(&m_sampleSinkFifos[1]));
m_testSourceThreads.back()->setSamplerate(m_settings.m_streams[1].m_sampleRate);
m_testSourceThreads.back()->startStop(true);
mutexLocker.unlock();
@ -104,13 +111,15 @@ void TestMI::stop()
{
QMutexLocker mutexLocker(&m_mutex);
if (m_testSourceThread != 0)
{
m_testSourceThread->startStop(false);
m_testSourceThread->deleteLater();
m_testSourceThread = 0;
}
std::vector<TestMIThread*>::iterator it = m_testSourceThreads.begin();
for (; it != m_testSourceThreads.end(); ++it)
{
(*it)->startStop(false);
(*it)->deleteLater();
}
m_testSourceThreads.clear();
m_running = false;
}
@ -148,29 +157,38 @@ const QString& TestMI::getDeviceDescription() const
int TestMI::getSourceSampleRate(int index) const
{
(void) index;
return m_settings.m_sampleRate/(1<<m_settings.m_log2Decim);
if (index < (int) m_settings.m_streams.size()) {
return m_settings.m_streams[index].m_sampleRate/(1<<m_settings.m_streams[index].m_log2Decim);
} else {
return 0;
}
}
quint64 TestMI::getSourceCenterFrequency(int index) const
{
(void) index;
return m_settings.m_centerFrequency;
if (index < (int) m_settings.m_streams.size()) {
return m_settings.m_streams[index].m_centerFrequency;
} else {
return 0;
}
}
void TestMI::setSourceCenterFrequency(qint64 centerFrequency, int index)
{
(void) index;
TestMISettings settings = m_settings;
settings.m_centerFrequency = centerFrequency;
TestMISettings settings = m_settings; // note: calls copy constructor
MsgConfigureTestSource* message = MsgConfigureTestSource::create(settings, false);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue)
if (index < (int) settings.m_streams.size())
{
MsgConfigureTestSource* messageToGUI = MsgConfigureTestSource::create(settings, false);
m_guiMessageQueue->push(messageToGUI);
settings.m_streams[index].m_centerFrequency = centerFrequency;
MsgConfigureTestSource* message = MsgConfigureTestSource::create(settings, false);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue)
{
MsgConfigureTestSource* messageToGUI = MsgConfigureTestSource::create(settings, false);
m_guiMessageQueue->push(messageToGUI);
}
}
}
@ -243,204 +261,213 @@ bool TestMI::handleMessage(const Message& message)
bool TestMI::applySettings(const TestMISettings& settings, bool force)
{
QList<QString> reverseAPIKeys;
DeviceSettingsKeys deviceSettingsKeys;
if ((m_settings.m_autoCorrOptions != settings.m_autoCorrOptions) || force)
QList<QList<QString>> streamReverseAPIKeys; // FIXME: one set of keys per streams
for (unsigned int istream = 0; istream < m_settings.m_streams.size(); istream++)
{
reverseAPIKeys.append("autoCorrOptions");
deviceSettingsKeys.m_streamsSettingsKeys.push_back(QList<QString>());
QList<QString>& reverseAPIKeys = streamReverseAPIKeys.back();
switch(settings.m_autoCorrOptions)
if ((m_settings.m_streams[istream].m_autoCorrOptions != settings.m_streams[istream].m_autoCorrOptions) || force)
{
case TestMISettings::AutoCorrDC:
m_deviceAPI->configureCorrections(true, false);
break;
case TestMISettings::AutoCorrDCAndIQ:
m_deviceAPI->configureCorrections(true, true);
break;
case TestMISettings::AutoCorrNone:
default:
m_deviceAPI->configureCorrections(false, false);
break;
}
}
reverseAPIKeys.append("autoCorrOptions");
if ((m_settings.m_sampleRate != settings.m_sampleRate) || force)
{
reverseAPIKeys.append("sampleRate");
if (m_testSourceThread != 0)
{
m_testSourceThread->setSamplerate(settings.m_sampleRate);
qDebug("TestMI::applySettings: sample rate set to %d", settings.m_sampleRate);
}
}
if ((m_settings.m_log2Decim != settings.m_log2Decim) || force)
{
reverseAPIKeys.append("log2Decim");
if (m_testSourceThread != 0)
{
m_testSourceThread->setLog2Decimation(settings.m_log2Decim);
qDebug() << "TestMI::applySettings: set decimation to " << (1<<settings.m_log2Decim);
}
}
if ((m_settings.m_centerFrequency != settings.m_centerFrequency)
|| (m_settings.m_fcPos != settings.m_fcPos)
|| (m_settings.m_frequencyShift != settings.m_frequencyShift)
|| (m_settings.m_sampleRate != settings.m_sampleRate)
|| (m_settings.m_log2Decim != settings.m_log2Decim) || force)
{
reverseAPIKeys.append("centerFrequency");
reverseAPIKeys.append("fcPos");
reverseAPIKeys.append("frequencyShift");
qint64 deviceCenterFrequency = DeviceSampleSource::calculateDeviceCenterFrequency(
settings.m_centerFrequency,
0, // no transverter mode
settings.m_log2Decim,
(DeviceSampleSource::fcPos_t) settings.m_fcPos,
settings.m_sampleRate,
DeviceSampleSource::FrequencyShiftScheme::FSHIFT_STD,
false);
int frequencyShift = settings.m_frequencyShift;
quint32 devSampleRate = settings.m_sampleRate;
if (settings.m_log2Decim != 0)
{
frequencyShift += DeviceSampleSource::calculateFrequencyShift(
settings.m_log2Decim,
(DeviceSampleSource::fcPos_t) settings.m_fcPos,
settings.m_sampleRate,
DeviceSampleSource::FSHIFT_STD);
}
if (m_testSourceThread != 0)
{
m_testSourceThread->setFcPos((int) settings.m_fcPos);
m_testSourceThread->setFrequencyShift(frequencyShift);
qDebug() << "TestMI::applySettings:"
<< " center freq: " << settings.m_centerFrequency << " Hz"
<< " device center freq: " << deviceCenterFrequency << " Hz"
<< " device sample rate: " << devSampleRate << "Hz"
<< " Actual sample rate: " << devSampleRate/(1<<m_settings.m_log2Decim) << "Hz"
<< " f shift: " << settings.m_frequencyShift;
}
}
if ((m_settings.m_amplitudeBits != settings.m_amplitudeBits) || force)
{
reverseAPIKeys.append("amplitudeBits");
if (m_testSourceThread != 0) {
m_testSourceThread->setAmplitudeBits(settings.m_amplitudeBits);
}
}
if ((m_settings.m_dcFactor != settings.m_dcFactor) || force)
{
reverseAPIKeys.append("dcFactor");
if (m_testSourceThread != 0) {
m_testSourceThread->setDCFactor(settings.m_dcFactor);
}
}
if ((m_settings.m_iFactor != settings.m_iFactor) || force)
{
reverseAPIKeys.append("iFactor");
if (m_testSourceThread != 0) {
m_testSourceThread->setIFactor(settings.m_iFactor);
}
}
if ((m_settings.m_qFactor != settings.m_qFactor) || force)
{
reverseAPIKeys.append("qFactor");
if (m_testSourceThread != 0) {
m_testSourceThread->setQFactor(settings.m_qFactor);
}
}
if ((m_settings.m_phaseImbalance != settings.m_phaseImbalance) || force)
{
reverseAPIKeys.append("phaseImbalance");
if (m_testSourceThread != 0) {
m_testSourceThread->setPhaseImbalance(settings.m_phaseImbalance);
}
}
if ((m_settings.m_sampleSizeIndex != settings.m_sampleSizeIndex) || force)
{
reverseAPIKeys.append("sampleSizeIndex");
if (m_testSourceThread != 0) {
m_testSourceThread->setBitSize(settings.m_sampleSizeIndex);
}
}
if ((m_settings.m_sampleRate != settings.m_sampleRate)
|| (m_settings.m_centerFrequency != settings.m_centerFrequency)
|| (m_settings.m_log2Decim != settings.m_log2Decim)
|| (m_settings.m_fcPos != settings.m_fcPos) || force)
{
int sampleRate = settings.m_sampleRate/(1<<settings.m_log2Decim);
DSPSignalNotification *notif = new DSPSignalNotification(sampleRate, settings.m_centerFrequency);
m_fileSink->handleMessage(*notif); // forward to file sink
DSPDeviceMIMOEngine::SignalNotification *engineNotif = new DSPDeviceMIMOEngine::SignalNotification(
sampleRate, settings.m_centerFrequency, true, 0);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(engineNotif);
}
if ((m_settings.m_modulationTone != settings.m_modulationTone) || force)
{
reverseAPIKeys.append("modulationTone");
if (m_testSourceThread != 0) {
m_testSourceThread->setToneFrequency(settings.m_modulationTone * 10);
}
}
if ((m_settings.m_modulation != settings.m_modulation) || force)
{
reverseAPIKeys.append("modulation");
if (m_testSourceThread != 0)
{
m_testSourceThread->setModulation(settings.m_modulation);
if (settings.m_modulation == TestMISettings::ModulationPattern0) {
m_testSourceThread->setPattern0();
} else if (settings.m_modulation == TestMISettings::ModulationPattern1) {
m_testSourceThread->setPattern1();
} else if (settings.m_modulation == TestMISettings::ModulationPattern2) {
m_testSourceThread->setPattern2();
switch(settings.m_streams[istream].m_autoCorrOptions)
{
case TestMIStreamSettings::AutoCorrDC:
m_deviceAPI->configureCorrections(true, false, istream);
break;
case TestMIStreamSettings::AutoCorrDCAndIQ:
m_deviceAPI->configureCorrections(true, true, istream);
break;
case TestMIStreamSettings::AutoCorrNone:
default:
m_deviceAPI->configureCorrections(false, false, istream);
break;
}
}
}
if ((m_settings.m_amModulation != settings.m_amModulation) || force)
{
reverseAPIKeys.append("amModulation");
if ((m_settings.m_streams[istream].m_sampleRate != settings.m_streams[istream].m_sampleRate) || force)
{
reverseAPIKeys.append("sampleRate");
if (m_testSourceThread != 0) {
m_testSourceThread->setAMModulation(settings.m_amModulation / 100.0f);
if ((istream < m_testSourceThreads.size()) && (m_testSourceThreads[istream]))
{
m_testSourceThreads[istream]->setSamplerate(settings.m_streams[istream].m_sampleRate);
qDebug("TestMI::applySettings: sample rate set to %d", settings.m_streams[istream].m_sampleRate);
}
}
}
if ((m_settings.m_fmDeviation != settings.m_fmDeviation) || force)
{
reverseAPIKeys.append("fmDeviation");
if ((m_settings.m_streams[istream].m_log2Decim != settings.m_streams[istream].m_log2Decim) || force)
{
reverseAPIKeys.append("log2Decim");
if (m_testSourceThread != 0) {
m_testSourceThread->setFMDeviation(settings.m_fmDeviation * 100.0f);
if ((istream < m_testSourceThreads.size()) && (m_testSourceThreads[istream]))
{
m_testSourceThreads[istream]->setLog2Decimation(settings.m_streams[istream].m_log2Decim);
qDebug() << "TestMI::applySettings: set decimation to " << (1<<settings.m_streams[istream].m_log2Decim);
}
}
}
if ((m_settings.m_streams[istream].m_centerFrequency != settings.m_streams[istream].m_centerFrequency)
|| (m_settings.m_streams[istream].m_fcPos != settings.m_streams[istream].m_fcPos)
|| (m_settings.m_streams[istream].m_frequencyShift != settings.m_streams[istream].m_frequencyShift)
|| (m_settings.m_streams[istream].m_sampleRate != settings.m_streams[istream].m_sampleRate)
|| (m_settings.m_streams[istream].m_log2Decim != settings.m_streams[istream].m_log2Decim) || force)
{
reverseAPIKeys.append("centerFrequency");
reverseAPIKeys.append("fcPos");
reverseAPIKeys.append("frequencyShift");
qint64 deviceCenterFrequency = DeviceSampleSource::calculateDeviceCenterFrequency(
settings.m_streams[istream].m_centerFrequency,
0, // no transverter mode
settings.m_streams[istream].m_log2Decim,
(DeviceSampleSource::fcPos_t) settings.m_streams[istream].m_fcPos,
settings.m_streams[istream].m_sampleRate,
DeviceSampleSource::FrequencyShiftScheme::FSHIFT_STD,
false);
int frequencyShift = settings.m_streams[istream].m_frequencyShift;
quint32 devSampleRate = settings.m_streams[istream].m_sampleRate;
if (settings.m_streams[istream].m_log2Decim != 0)
{
frequencyShift += DeviceSampleSource::calculateFrequencyShift(
settings.m_streams[istream].m_log2Decim,
(DeviceSampleSource::fcPos_t) settings.m_streams[istream].m_fcPos,
settings.m_streams[istream].m_sampleRate,
DeviceSampleSource::FSHIFT_STD);
}
if ((istream < m_testSourceThreads.size()) && (m_testSourceThreads[istream]))
{
m_testSourceThreads[istream]->setFcPos((int) settings.m_streams[istream].m_fcPos);
m_testSourceThreads[istream]->setFrequencyShift(frequencyShift);
qDebug() << "TestMI::applySettings:"
<< " istream: " << istream
<< " center freq: " << settings.m_streams[istream].m_centerFrequency << " Hz"
<< " device center freq: " << deviceCenterFrequency << " Hz"
<< " device sample rate: " << devSampleRate << "Hz"
<< " Actual sample rate: " << devSampleRate/(1<<m_settings.m_streams[istream].m_log2Decim) << "Hz"
<< " f shift: " << settings.m_streams[istream].m_frequencyShift;
}
}
if ((m_settings.m_streams[istream].m_amplitudeBits != settings.m_streams[istream].m_amplitudeBits) || force)
{
reverseAPIKeys.append("amplitudeBits");
if ((istream < m_testSourceThreads.size()) && (m_testSourceThreads[istream])) {
m_testSourceThreads[istream]->setAmplitudeBits(settings.m_streams[istream].m_amplitudeBits);
}
}
if ((m_settings.m_streams[istream].m_dcFactor != settings.m_streams[istream].m_dcFactor) || force)
{
reverseAPIKeys.append("dcFactor");
if ((istream < m_testSourceThreads.size()) && (m_testSourceThreads[istream])) {
m_testSourceThreads[istream]->setDCFactor(settings.m_streams[istream].m_dcFactor);
}
}
if ((m_settings.m_streams[istream].m_iFactor != settings.m_streams[istream].m_iFactor) || force)
{
reverseAPIKeys.append("iFactor");
if ((istream < m_testSourceThreads.size()) && (m_testSourceThreads[istream])) {
m_testSourceThreads[istream]->setIFactor(settings.m_streams[istream].m_iFactor);
}
}
if ((m_settings.m_streams[istream].m_qFactor != settings.m_streams[istream].m_qFactor) || force)
{
reverseAPIKeys.append("qFactor");
if ((istream < m_testSourceThreads.size()) && (m_testSourceThreads[istream])) {
m_testSourceThreads[istream]->setQFactor(settings.m_streams[istream].m_qFactor);
}
}
if ((m_settings.m_streams[istream].m_phaseImbalance != settings.m_streams[istream].m_phaseImbalance) || force)
{
reverseAPIKeys.append("phaseImbalance");
if ((istream < m_testSourceThreads.size()) && (m_testSourceThreads[istream])) {
m_testSourceThreads[istream]->setPhaseImbalance(settings.m_streams[istream].m_phaseImbalance);
}
}
if ((m_settings.m_streams[istream].m_sampleSizeIndex != settings.m_streams[istream].m_sampleSizeIndex) || force)
{
reverseAPIKeys.append("sampleSizeIndex");
if ((istream < m_testSourceThreads.size()) && (m_testSourceThreads[istream])) {
m_testSourceThreads[istream]->setBitSize(settings.m_streams[istream].m_sampleSizeIndex);
}
}
if ((m_settings.m_streams[istream].m_sampleRate != settings.m_streams[istream].m_sampleRate)
|| (m_settings.m_streams[istream].m_centerFrequency != settings.m_streams[istream].m_centerFrequency)
|| (m_settings.m_streams[istream].m_log2Decim != settings.m_streams[istream].m_log2Decim)
|| (m_settings.m_streams[istream].m_fcPos != settings.m_streams[istream].m_fcPos) || force)
{
int sampleRate = settings.m_streams[istream].m_sampleRate/(1<<settings.m_streams[istream].m_log2Decim);
DSPSignalNotification *notif = new DSPSignalNotification(sampleRate, settings.m_streams[istream].m_centerFrequency);
m_fileSink->handleMessage(*notif); // forward to file sink
DSPDeviceMIMOEngine::SignalNotification *engineNotif = new DSPDeviceMIMOEngine::SignalNotification(
sampleRate, settings.m_streams[istream].m_centerFrequency, true, 0);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(engineNotif);
}
if ((m_settings.m_streams[istream].m_modulationTone != settings.m_streams[istream].m_modulationTone) || force)
{
reverseAPIKeys.append("modulationTone");
if ((istream < m_testSourceThreads.size()) && (m_testSourceThreads[istream])) {
m_testSourceThreads[istream]->setToneFrequency(settings.m_streams[istream].m_modulationTone * 10);
}
}
if ((m_settings.m_streams[istream].m_modulation != settings.m_streams[istream].m_modulation) || force)
{
reverseAPIKeys.append("modulation");
if ((istream < m_testSourceThreads.size()) && (m_testSourceThreads[istream]))
{
m_testSourceThreads[istream]->setModulation(settings.m_streams[istream].m_modulation);
if (settings.m_streams[istream].m_modulation == TestMIStreamSettings::ModulationPattern0) {
m_testSourceThreads[istream]->setPattern0();
} else if (settings.m_streams[istream].m_modulation == TestMIStreamSettings::ModulationPattern1) {
m_testSourceThreads[istream]->setPattern1();
} else if (settings.m_streams[istream].m_modulation == TestMIStreamSettings::ModulationPattern2) {
m_testSourceThreads[istream]->setPattern2();
}
}
}
if ((m_settings.m_streams[istream].m_amModulation != settings.m_streams[istream].m_amModulation) || force)
{
reverseAPIKeys.append("amModulation");
if ((istream < m_testSourceThreads.size()) && (m_testSourceThreads[istream])) {
m_testSourceThreads[istream]->setAMModulation(settings.m_streams[istream].m_amModulation / 100.0f);
}
}
if ((m_settings.m_streams[istream].m_fmDeviation != settings.m_streams[istream].m_fmDeviation) || force)
{
reverseAPIKeys.append("fmDeviation");
if ((istream < m_testSourceThreads.size()) && (m_testSourceThreads[istream])) {
m_testSourceThreads[istream]->setFMDeviation(settings.m_streams[istream].m_fmDeviation * 100.0f);
}
}
} // for each stream index
if (settings.m_useReverseAPI)
{
@ -449,7 +476,7 @@ bool TestMI::applySettings(const TestMISettings& settings, bool force)
(m_settings.m_reverseAPIAddress != settings.m_reverseAPIAddress) ||
(m_settings.m_reverseAPIPort != settings.m_reverseAPIPort) ||
(m_settings.m_reverseAPIDeviceIndex != settings.m_reverseAPIDeviceIndex);
webapiReverseSendSettings(reverseAPIKeys, settings, fullUpdate || force);
webapiReverseSendSettings(deviceSettingsKeys, settings, fullUpdate || force);
}
m_settings = settings;
@ -504,62 +531,75 @@ int TestMI::webapiSettingsPutPatch(
(void) errorMessage;
TestMISettings settings = m_settings;
if (deviceSettingsKeys.contains("centerFrequency")) {
settings.m_centerFrequency = response.getTestMiSettings()->getCenterFrequency();
if (deviceSettingsKeys.contains("streams"))
{
QList<SWGSDRangel::SWGTestMiStreamSettings*> *streamsSettings = response.getTestMiSettings()->getStreams();
QList<SWGSDRangel::SWGTestMiStreamSettings*>::const_iterator it = streamsSettings->begin();
for (; it != streamsSettings->end(); ++it)
{
int istream = (*it)->getStreamIndex();
if (deviceSettingsKeys.contains(tr("streams[%1].centerFrequency").arg(istream))) {
settings.m_streams[istream].m_centerFrequency = (*it)->getCenterFrequency();
}
if (deviceSettingsKeys.contains(tr("streams[%1].frequencyShift").arg(istream))) {
settings.m_streams[istream].m_frequencyShift = (*it)->getFrequencyShift();
}
if (deviceSettingsKeys.contains(tr("streams[%1].sampleRate").arg(istream))) {
settings.m_streams[istream].m_sampleRate = (*it)->getSampleRate();
}
if (deviceSettingsKeys.contains(tr("streams[%1].log2Decim").arg(istream))) {
settings.m_streams[istream].m_log2Decim = (*it)->getLog2Decim();
}
if (deviceSettingsKeys.contains(tr("streams[%1].fcPos").arg(istream))) {
int fcPos = (*it)->getFcPos();
fcPos = fcPos < 0 ? 0 : fcPos > 2 ? 2 : fcPos;
settings.m_streams[istream].m_fcPos = (TestMIStreamSettings::fcPos_t) fcPos;
}
if (deviceSettingsKeys.contains(tr("streams[%1].sampleSizeIndex").arg(istream))) {
int sampleSizeIndex = (*it)->getSampleSizeIndex();
sampleSizeIndex = sampleSizeIndex < 0 ? 0 : sampleSizeIndex > 1 ? 2 : sampleSizeIndex;
settings.m_streams[istream].m_sampleSizeIndex = sampleSizeIndex;
}
if (deviceSettingsKeys.contains(tr("streams[%1].amplitudeBits").arg(istream))) {
settings.m_streams[istream].m_amplitudeBits = (*it)->getAmplitudeBits();
}
if (deviceSettingsKeys.contains(tr("streams[%1].autoCorrOptions").arg(istream))) {
int autoCorrOptions = (*it)->getAutoCorrOptions();
autoCorrOptions = autoCorrOptions < 0 ? 0 : autoCorrOptions >= TestMIStreamSettings::AutoCorrLast ? TestMIStreamSettings::AutoCorrLast-1 : autoCorrOptions;
settings.m_streams[istream].m_sampleSizeIndex = (TestMIStreamSettings::AutoCorrOptions) autoCorrOptions;
}
if (deviceSettingsKeys.contains(tr("streams[%1].modulation").arg(istream))) {
int modulation = (*it)->getModulation();
modulation = modulation < 0 ? 0 : modulation >= TestMIStreamSettings::ModulationLast ? TestMIStreamSettings::ModulationLast-1 : modulation;
settings.m_streams[istream].m_modulation = (TestMIStreamSettings::Modulation) modulation;
}
if (deviceSettingsKeys.contains(tr("streams[%1].modulationTone").arg(istream))) {
settings.m_streams[istream].m_modulationTone = (*it)->getModulationTone();
}
if (deviceSettingsKeys.contains(tr("streams[%1].amModulation").arg(istream))) {
settings.m_streams[istream].m_amModulation = (*it)->getAmModulation();
};
if (deviceSettingsKeys.contains(tr("streams[%1].fmDeviation").arg(istream))) {
settings.m_streams[istream].m_fmDeviation = (*it)->getFmDeviation();
};
if (deviceSettingsKeys.contains(tr("streams[%1].dcFactor").arg(istream))) {
settings.m_streams[istream].m_dcFactor = (*it)->getDcFactor();
};
if (deviceSettingsKeys.contains(tr("streams[%1].iFactor").arg(istream))) {
settings.m_streams[istream].m_iFactor = (*it)->getIFactor();
};
if (deviceSettingsKeys.contains(tr("streams[%1].qFactor").arg(istream))) {
settings.m_streams[istream].m_qFactor = (*it)->getQFactor();
};
if (deviceSettingsKeys.contains(tr("streams[%1].phaseImbalance").arg(istream))) {
settings.m_streams[istream].m_phaseImbalance = (*it)->getPhaseImbalance();
};
}
}
if (deviceSettingsKeys.contains("frequencyShift")) {
settings.m_frequencyShift = response.getTestMiSettings()->getFrequencyShift();
}
if (deviceSettingsKeys.contains("sampleRate")) {
settings.m_sampleRate = response.getTestMiSettings()->getSampleRate();
}
if (deviceSettingsKeys.contains("log2Decim")) {
settings.m_log2Decim = response.getTestMiSettings()->getLog2Decim();
}
if (deviceSettingsKeys.contains("fcPos")) {
int fcPos = response.getTestMiSettings()->getFcPos();
fcPos = fcPos < 0 ? 0 : fcPos > 2 ? 2 : fcPos;
settings.m_fcPos = (TestMISettings::fcPos_t) fcPos;
}
if (deviceSettingsKeys.contains("sampleSizeIndex")) {
int sampleSizeIndex = response.getTestMiSettings()->getSampleSizeIndex();
sampleSizeIndex = sampleSizeIndex < 0 ? 0 : sampleSizeIndex > 1 ? 2 : sampleSizeIndex;
settings.m_sampleSizeIndex = sampleSizeIndex;
}
if (deviceSettingsKeys.contains("amplitudeBits")) {
settings.m_amplitudeBits = response.getTestMiSettings()->getAmplitudeBits();
}
if (deviceSettingsKeys.contains("autoCorrOptions")) {
int autoCorrOptions = response.getTestMiSettings()->getAutoCorrOptions();
autoCorrOptions = autoCorrOptions < 0 ? 0 : autoCorrOptions >= TestMISettings::AutoCorrLast ? TestMISettings::AutoCorrLast-1 : autoCorrOptions;
settings.m_sampleSizeIndex = (TestMISettings::AutoCorrOptions) autoCorrOptions;
}
if (deviceSettingsKeys.contains("modulation")) {
int modulation = response.getTestMiSettings()->getModulation();
modulation = modulation < 0 ? 0 : modulation >= TestMISettings::ModulationLast ? TestMISettings::ModulationLast-1 : modulation;
settings.m_modulation = (TestMISettings::Modulation) modulation;
}
if (deviceSettingsKeys.contains("modulationTone")) {
settings.m_modulationTone = response.getTestMiSettings()->getModulationTone();
}
if (deviceSettingsKeys.contains("amModulation")) {
settings.m_amModulation = response.getTestMiSettings()->getAmModulation();
};
if (deviceSettingsKeys.contains("fmDeviation")) {
settings.m_fmDeviation = response.getTestMiSettings()->getFmDeviation();
};
if (deviceSettingsKeys.contains("dcFactor")) {
settings.m_dcFactor = response.getTestMiSettings()->getDcFactor();
};
if (deviceSettingsKeys.contains("iFactor")) {
settings.m_iFactor = response.getTestMiSettings()->getIFactor();
};
if (deviceSettingsKeys.contains("qFactor")) {
settings.m_qFactor = response.getTestMiSettings()->getQFactor();
};
if (deviceSettingsKeys.contains("phaseImbalance")) {
settings.m_phaseImbalance = response.getTestMiSettings()->getPhaseImbalance();
};
if (deviceSettingsKeys.contains("fileRecordName")) {
settings.m_fileRecordName = *response.getTestMiSettings()->getFileRecordName();
}
@ -591,22 +631,32 @@ int TestMI::webapiSettingsPutPatch(
void TestMI::webapiFormatDeviceSettings(SWGSDRangel::SWGDeviceSettings& response, const TestMISettings& settings)
{
response.getTestMiSettings()->setCenterFrequency(settings.m_centerFrequency);
response.getTestMiSettings()->setFrequencyShift(settings.m_frequencyShift);
response.getTestMiSettings()->setSampleRate(settings.m_sampleRate);
response.getTestMiSettings()->setLog2Decim(settings.m_log2Decim);
response.getTestMiSettings()->setFcPos((int) settings.m_fcPos);
response.getTestMiSettings()->setSampleSizeIndex((int) settings.m_sampleSizeIndex);
response.getTestMiSettings()->setAmplitudeBits(settings.m_amplitudeBits);
response.getTestMiSettings()->setAutoCorrOptions((int) settings.m_autoCorrOptions);
response.getTestMiSettings()->setModulation((int) settings.m_modulation);
response.getTestMiSettings()->setModulationTone(settings.m_modulationTone);
response.getTestMiSettings()->setAmModulation(settings.m_amModulation);
response.getTestMiSettings()->setFmDeviation(settings.m_fmDeviation);
response.getTestMiSettings()->setDcFactor(settings.m_dcFactor);
response.getTestMiSettings()->setIFactor(settings.m_iFactor);
response.getTestMiSettings()->setQFactor(settings.m_qFactor);
response.getTestMiSettings()->setPhaseImbalance(settings.m_phaseImbalance);
std::vector<TestMIStreamSettings>::const_iterator it = settings.m_streams.begin();
int istream = 0;
for (; it != settings.m_streams.end(); ++it, istream++)
{
QList<SWGSDRangel::SWGTestMiStreamSettings*> *streams = response.getTestMiSettings()->getStreams();
streams->append(new SWGSDRangel::SWGTestMiStreamSettings);
streams->back()->init();
streams->back()->setStreamIndex(istream);
streams->back()->setCenterFrequency(it->m_centerFrequency);
streams->back()->setFrequencyShift(it->m_frequencyShift);
streams->back()->setSampleRate(it->m_sampleRate);
streams->back()->setLog2Decim(it->m_log2Decim);
streams->back()->setFcPos((int) it->m_fcPos);
streams->back()->setSampleSizeIndex((int) it->m_sampleSizeIndex);
streams->back()->setAmplitudeBits(it->m_amplitudeBits);
streams->back()->setAutoCorrOptions((int) it->m_autoCorrOptions);
streams->back()->setModulation((int) it->m_modulation);
streams->back()->setModulationTone(it->m_modulationTone);
streams->back()->setAmModulation(it->m_amModulation);
streams->back()->setFmDeviation(it->m_fmDeviation);
streams->back()->setDcFactor(it->m_dcFactor);
streams->back()->setIFactor(it->m_iFactor);
streams->back()->setQFactor(it->m_qFactor);
streams->back()->setPhaseImbalance(it->m_phaseImbalance);
}
if (response.getTestMiSettings()->getFileRecordName()) {
*response.getTestMiSettings()->getFileRecordName() = settings.m_fileRecordName;
@ -626,7 +676,7 @@ void TestMI::webapiFormatDeviceSettings(SWGSDRangel::SWGDeviceSettings& response
response.getTestMiSettings()->setReverseApiDeviceIndex(settings.m_reverseAPIDeviceIndex);
}
void TestMI::webapiReverseSendSettings(QList<QString>& deviceSettingsKeys, const TestMISettings& settings, bool force)
void TestMI::webapiReverseSendSettings(const DeviceSettingsKeys& deviceSettingsKeys, const TestMISettings& settings, bool force)
{
SWGSDRangel::SWGDeviceSettings *swgDeviceSettings = new SWGSDRangel::SWGDeviceSettings();
swgDeviceSettings->setDirection(0); // single Rx
@ -637,55 +687,71 @@ void TestMI::webapiReverseSendSettings(QList<QString>& deviceSettingsKeys, const
// transfer data that has been modified. When force is on transfer all data except reverse API data
if (deviceSettingsKeys.contains("centerFrequency") || force) {
swgTestMISettings->setCenterFrequency(settings.m_centerFrequency);
QList<QList<QString>>::const_iterator it = deviceSettingsKeys.m_streamsSettingsKeys.begin();
int istream = 0;
for (; it != deviceSettingsKeys.m_streamsSettingsKeys.end(); ++it, istream++)
{
if ((it->size() > 0) || force)
{
QList<SWGSDRangel::SWGTestMiStreamSettings*> *streams = swgTestMISettings->getStreams();
streams->append(new SWGSDRangel::SWGTestMiStreamSettings);
streams->back()->init();
streams->back()->setStreamIndex(istream);
const QList<QString>& streamSettingsKeys = *it;
if (streamSettingsKeys.contains("centerFrequency") || force) {
streams->back()->setCenterFrequency(settings.m_streams[istream].m_centerFrequency);
}
if (streamSettingsKeys.contains("frequencyShift") || force) {
streams->back()->setFrequencyShift(settings.m_streams[istream].m_frequencyShift);
}
if (streamSettingsKeys.contains("sampleRate") || force) {
streams->back()->setSampleRate(settings.m_streams[istream].m_sampleRate);
}
if (streamSettingsKeys.contains("log2Decim") || force) {
streams->back()->setLog2Decim(settings.m_streams[istream].m_log2Decim);
}
if (streamSettingsKeys.contains("fcPos") || force) {
streams->back()->setFcPos((int) settings.m_streams[istream].m_fcPos);
}
if (streamSettingsKeys.contains("sampleSizeIndex") || force) {
streams->back()->setSampleSizeIndex(settings.m_streams[istream].m_sampleSizeIndex);
}
if (streamSettingsKeys.contains("amplitudeBits") || force) {
streams->back()->setAmplitudeBits(settings.m_streams[istream].m_amplitudeBits);
}
if (streamSettingsKeys.contains("autoCorrOptions") || force) {
streams->back()->setAutoCorrOptions((int) settings.m_streams[istream].m_sampleSizeIndex);
}
if (streamSettingsKeys.contains("modulation") || force) {
streams->back()->setModulation((int) settings.m_streams[istream].m_modulation);
}
if (streamSettingsKeys.contains("modulationTone")) {
streams->back()->setModulationTone(settings.m_streams[istream].m_modulationTone);
}
if (streamSettingsKeys.contains("amModulation") || force) {
streams->back()->setAmModulation(settings.m_streams[istream].m_amModulation);
};
if (streamSettingsKeys.contains("fmDeviation") || force) {
streams->back()->setFmDeviation(settings.m_streams[istream].m_fmDeviation);
};
if (streamSettingsKeys.contains("dcFactor") || force) {
streams->back()->setDcFactor(settings.m_streams[istream].m_dcFactor);
};
if (streamSettingsKeys.contains("iFactor") || force) {
streams->back()->setIFactor(settings.m_streams[istream].m_iFactor);
};
if (streamSettingsKeys.contains("qFactor") || force) {
streams->back()->setQFactor(settings.m_streams[istream].m_qFactor);
};
if (streamSettingsKeys.contains("phaseImbalance") || force) {
streams->back()->setPhaseImbalance(settings.m_streams[istream].m_phaseImbalance);
};
}
}
if (deviceSettingsKeys.contains("frequencyShift") || force) {
swgTestMISettings->setFrequencyShift(settings.m_frequencyShift);
}
if (deviceSettingsKeys.contains("sampleRate") || force) {
swgTestMISettings->setSampleRate(settings.m_sampleRate);
}
if (deviceSettingsKeys.contains("log2Decim") || force) {
swgTestMISettings->setLog2Decim(settings.m_log2Decim);
}
if (deviceSettingsKeys.contains("fcPos") || force) {
swgTestMISettings->setFcPos((int) settings.m_fcPos);
}
if (deviceSettingsKeys.contains("sampleSizeIndex") || force) {
swgTestMISettings->setSampleSizeIndex(settings.m_sampleSizeIndex);
}
if (deviceSettingsKeys.contains("amplitudeBits") || force) {
swgTestMISettings->setAmplitudeBits(settings.m_amplitudeBits);
}
if (deviceSettingsKeys.contains("autoCorrOptions") || force) {
swgTestMISettings->setAutoCorrOptions((int) settings.m_sampleSizeIndex);
}
if (deviceSettingsKeys.contains("modulation") || force) {
swgTestMISettings->setModulation((int) settings.m_modulation);
}
if (deviceSettingsKeys.contains("modulationTone")) {
swgTestMISettings->setModulationTone(settings.m_modulationTone);
}
if (deviceSettingsKeys.contains("amModulation") || force) {
swgTestMISettings->setAmModulation(settings.m_amModulation);
};
if (deviceSettingsKeys.contains("fmDeviation") || force) {
swgTestMISettings->setFmDeviation(settings.m_fmDeviation);
};
if (deviceSettingsKeys.contains("dcFactor") || force) {
swgTestMISettings->setDcFactor(settings.m_dcFactor);
};
if (deviceSettingsKeys.contains("iFactor") || force) {
swgTestMISettings->setIFactor(settings.m_iFactor);
};
if (deviceSettingsKeys.contains("qFactor") || force) {
swgTestMISettings->setQFactor(settings.m_qFactor);
};
if (deviceSettingsKeys.contains("phaseImbalance") || force) {
swgTestMISettings->setPhaseImbalance(settings.m_phaseImbalance);
};
if (deviceSettingsKeys.contains("fileRecordName") || force) {
if (deviceSettingsKeys.m_commonSettingsKeys.contains("fileRecordName") || force) {
swgTestMISettings->setFileRecordName(new QString(settings.m_fileRecordName));
}
@ -700,8 +766,6 @@ void TestMI::webapiReverseSendSettings(QList<QString>& deviceSettingsKeys, const
buffer->open((QBuffer::ReadWrite));
buffer->write(swgDeviceSettings->asJson().toUtf8());
buffer->seek(0);
// qDebug("TestMI::webapiReverseSendSettings: %s", channelSettingsURL.toStdString().c_str());
// qDebug("TestMI::webapiReverseSendSettings: query:\n%s", swgDeviceSettings->asJson().toStdString().c_str());
// Always use PATCH to avoid passing reverse API settings
m_networkManager->sendCustomRequest(m_networkRequest, "PATCH", buffer);

View File

@ -142,11 +142,17 @@ public:
QString& errorMessage);
private:
struct DeviceSettingsKeys
{
QList<QString> m_commonSettingsKeys;
QList<QList<QString>> m_streamsSettingsKeys;
};
DeviceAPI *m_deviceAPI;
FileRecord *m_fileSink; //!< File sink to record device I/Q output
QMutex m_mutex;
TestMISettings m_settings;
TestMIThread* m_testSourceThread;
std::vector<TestMIThread*> m_testSourceThreads;
QString m_deviceDescription;
bool m_running;
const QTimer& m_masterTimer;
@ -155,7 +161,7 @@ private:
bool applySettings(const TestMISettings& settings, bool force);
void webapiFormatDeviceSettings(SWGSDRangel::SWGDeviceSettings& response, const TestMISettings& settings);
void webapiReverseSendSettings(QList<QString>& deviceSettingsKeys, const TestMISettings& settings, bool force);
void webapiReverseSendSettings(const DeviceSettingsKeys& deviceSettingsKeys, const TestMISettings& settings, bool force);
void webapiReverseSendStartStop(bool start);
private slots:

View File

@ -52,6 +52,7 @@ TestMIGui::TestMIGui(DeviceUISet *deviceUISet, QWidget* parent) :
{
qDebug("TestMIGui::TestMIGui");
m_sampleMIMO = m_deviceUISet->m_deviceAPI->getSampleMIMO();
m_streamIndex = 0;
ui->setupUi(this);
ui->centerFrequency->setColorMapper(ColorMapper(ColorMapper::GrayGold));
@ -104,12 +105,12 @@ void TestMIGui::resetToDefaults()
qint64 TestMIGui::getCenterFrequency() const
{
return m_settings.m_centerFrequency;
return m_settings.m_streams[m_streamIndex].m_centerFrequency;
}
void TestMIGui::setCenterFrequency(qint64 centerFrequency)
{
m_settings.m_centerFrequency = centerFrequency;
m_settings.m_streams[m_streamIndex].m_centerFrequency = centerFrequency;
displaySettings();
sendSettings();
}
@ -141,25 +142,31 @@ void TestMIGui::on_startStop_toggled(bool checked)
}
}
void TestMIGui::on_streamIndex_currentIndexChanged(int index)
{
m_streamIndex = index;
displaySettings();
}
void TestMIGui::on_centerFrequency_changed(quint64 value)
{
m_settings.m_centerFrequency = value * 1000;
m_settings.m_streams[m_streamIndex].m_centerFrequency = value * 1000;
sendSettings();
}
void TestMIGui::on_autoCorr_currentIndexChanged(int index)
{
if ((index < 0) || (index > TestMISettings::AutoCorrLast)) {
if ((index < 0) || (index > TestMIStreamSettings::AutoCorrLast)) {
return;
}
m_settings.m_autoCorrOptions = (TestMISettings::AutoCorrOptions) index;
m_settings.m_streams[m_streamIndex].m_autoCorrOptions = (TestMIStreamSettings::AutoCorrOptions) index;
sendSettings();
}
void TestMIGui::on_frequencyShift_changed(qint64 value)
{
m_settings.m_frequencyShift = value;
m_settings.m_streams[m_streamIndex].m_frequencyShift = value;
sendSettings();
}
@ -169,7 +176,7 @@ void TestMIGui::on_decimation_currentIndexChanged(int index)
return;
}
m_settings.m_log2Decim = index;
m_settings.m_streams[m_streamIndex].m_log2Decim = index;
sendSettings();
}
@ -179,15 +186,15 @@ void TestMIGui::on_fcPos_currentIndexChanged(int index)
return;
}
m_settings.m_fcPos = (TestMISettings::fcPos_t) index;
m_settings.m_streams[m_streamIndex].m_fcPos = (TestMIStreamSettings::fcPos_t) index;
sendSettings();
}
void TestMIGui::on_sampleRate_changed(quint64 value)
{
updateFrequencyShiftLimit();
m_settings.m_frequencyShift = ui->frequencyShift->getValueNew();
m_settings.m_sampleRate = value;
m_settings.m_streams[m_streamIndex].m_frequencyShift = ui->frequencyShift->getValueNew();
m_settings.m_streams[m_streamIndex].m_sampleRate = value;
sendSettings();
}
@ -200,8 +207,8 @@ void TestMIGui::on_sampleSize_currentIndexChanged(int index)
updateAmpCoarseLimit();
updateAmpFineLimit();
displayAmplitude();
m_settings.m_amplitudeBits = ui->amplitudeCoarse->value() * 100 + ui->amplitudeFine->value();
m_settings.m_sampleSizeIndex = index;
m_settings.m_streams[m_streamIndex].m_amplitudeBits = ui->amplitudeCoarse->value() * 100 + ui->amplitudeFine->value();
m_settings.m_streams[m_streamIndex].m_sampleSizeIndex = index;
sendSettings();
}
@ -210,7 +217,7 @@ void TestMIGui::on_amplitudeCoarse_valueChanged(int value)
(void) value;
updateAmpFineLimit();
displayAmplitude();
m_settings.m_amplitudeBits = ui->amplitudeCoarse->value() * 100 + ui->amplitudeFine->value();
m_settings.m_streams[m_streamIndex].m_amplitudeBits = ui->amplitudeCoarse->value() * 100 + ui->amplitudeFine->value();
sendSettings();
}
@ -218,66 +225,66 @@ void TestMIGui::on_amplitudeFine_valueChanged(int value)
{
(void) value;
displayAmplitude();
m_settings.m_amplitudeBits = ui->amplitudeCoarse->value() * 100 + ui->amplitudeFine->value();
m_settings.m_streams[m_streamIndex].m_amplitudeBits = ui->amplitudeCoarse->value() * 100 + ui->amplitudeFine->value();
sendSettings();
}
void TestMIGui::on_modulation_currentIndexChanged(int index)
{
if ((index < 0) || (index > TestMISettings::ModulationLast)) {
if ((index < 0) || (index > TestMIStreamSettings::ModulationLast)) {
return;
}
m_settings.m_modulation = (TestMISettings::Modulation) index;
m_settings.m_streams[m_streamIndex].m_modulation = (TestMIStreamSettings::Modulation) index;
sendSettings();
}
void TestMIGui::on_modulationFrequency_valueChanged(int value)
{
m_settings.m_modulationTone = value;
ui->modulationFrequencyText->setText(QString("%1").arg(m_settings.m_modulationTone / 100.0, 0, 'f', 2));
m_settings.m_streams[m_streamIndex].m_modulationTone = value;
ui->modulationFrequencyText->setText(QString("%1").arg(m_settings.m_streams[m_streamIndex].m_modulationTone / 100.0, 0, 'f', 2));
sendSettings();
}
void TestMIGui::on_amModulation_valueChanged(int value)
{
m_settings.m_amModulation = value;
ui->amModulationText->setText(QString("%1").arg(m_settings.m_amModulation));
m_settings.m_streams[m_streamIndex].m_amModulation = value;
ui->amModulationText->setText(QString("%1").arg(m_settings.m_streams[m_streamIndex].m_amModulation));
sendSettings();
}
void TestMIGui::on_fmDeviation_valueChanged(int value)
{
m_settings.m_fmDeviation = value;
ui->fmDeviationText->setText(QString("%1").arg(m_settings.m_fmDeviation / 10.0, 0, 'f', 1));
m_settings.m_streams[m_streamIndex].m_fmDeviation = value;
ui->fmDeviationText->setText(QString("%1").arg(m_settings.m_streams[m_streamIndex].m_fmDeviation / 10.0, 0, 'f', 1));
sendSettings();
}
void TestMIGui::on_dcBias_valueChanged(int value)
{
ui->dcBiasText->setText(QString(tr("%1 %").arg(value)));
m_settings.m_dcFactor = value / 100.0f;
m_settings.m_streams[m_streamIndex].m_dcFactor = value / 100.0f;
sendSettings();
}
void TestMIGui::on_iBias_valueChanged(int value)
{
ui->iBiasText->setText(QString(tr("%1 %").arg(value)));
m_settings.m_iFactor = value / 100.0f;
m_settings.m_streams[m_streamIndex].m_iFactor = value / 100.0f;
sendSettings();
}
void TestMIGui::on_qBias_valueChanged(int value)
{
ui->qBiasText->setText(QString(tr("%1 %").arg(value)));
m_settings.m_qFactor = value / 100.0f;
m_settings.m_streams[m_streamIndex].m_qFactor = value / 100.0f;
sendSettings();
}
void TestMIGui::on_phaseImbalance_valueChanged(int value)
{
ui->phaseImbalanceText->setText(QString(tr("%1 %").arg(value)));
m_settings.m_phaseImbalance = value / 100.0f;
m_settings.m_streams[m_streamIndex].m_phaseImbalance = value / 100.0f;
sendSettings();
}
@ -374,40 +381,41 @@ void TestMIGui::displaySettings()
blockApplySettings(true);
ui->sampleSize->blockSignals(true);
ui->centerFrequency->setValue(m_settings.m_centerFrequency / 1000);
ui->decimation->setCurrentIndex(m_settings.m_log2Decim);
ui->fcPos->setCurrentIndex((int) m_settings.m_fcPos);
ui->sampleRate->setValue(m_settings.m_sampleRate);
ui->streamIndex->setCurrentIndex(m_streamIndex);
ui->centerFrequency->setValue(m_settings.m_streams[m_streamIndex].m_centerFrequency / 1000);
ui->decimation->setCurrentIndex(m_settings.m_streams[m_streamIndex].m_log2Decim);
ui->fcPos->setCurrentIndex((int) m_settings.m_streams[m_streamIndex].m_fcPos);
ui->sampleRate->setValue(m_settings.m_streams[m_streamIndex].m_sampleRate);
updateFrequencyShiftLimit();
ui->frequencyShift->setValue(m_settings.m_frequencyShift);
ui->sampleSize->setCurrentIndex(m_settings.m_sampleSizeIndex);
ui->frequencyShift->setValue(m_settings.m_streams[m_streamIndex].m_frequencyShift);
ui->sampleSize->setCurrentIndex(m_settings.m_streams[m_streamIndex].m_sampleSizeIndex);
updateAmpCoarseLimit();
int amplitudeBits = m_settings.m_amplitudeBits;
int amplitudeBits = m_settings.m_streams[m_streamIndex].m_amplitudeBits;
ui->amplitudeCoarse->setValue(amplitudeBits/100);
updateAmpFineLimit();
ui->amplitudeFine->setValue(amplitudeBits%100);
displayAmplitude();
int dcBiasPercent = roundf(m_settings.m_dcFactor * 100.0f);
int dcBiasPercent = roundf(m_settings.m_streams[m_streamIndex].m_dcFactor * 100.0f);
ui->dcBias->setValue((int) dcBiasPercent);
ui->dcBiasText->setText(QString(tr("%1 %").arg(dcBiasPercent)));
int iBiasPercent = roundf(m_settings.m_iFactor * 100.0f);
int iBiasPercent = roundf(m_settings.m_streams[m_streamIndex].m_iFactor * 100.0f);
ui->iBias->setValue((int) iBiasPercent);
ui->iBiasText->setText(QString(tr("%1 %").arg(iBiasPercent)));
int qBiasPercent = roundf(m_settings.m_qFactor * 100.0f);
int qBiasPercent = roundf(m_settings.m_streams[m_streamIndex].m_qFactor * 100.0f);
ui->qBias->setValue((int) qBiasPercent);
ui->qBiasText->setText(QString(tr("%1 %").arg(qBiasPercent)));
int phaseImbalancePercent = roundf(m_settings.m_phaseImbalance * 100.0f);
int phaseImbalancePercent = roundf(m_settings.m_streams[m_streamIndex].m_phaseImbalance * 100.0f);
ui->phaseImbalance->setValue((int) phaseImbalancePercent);
ui->phaseImbalanceText->setText(QString(tr("%1 %").arg(phaseImbalancePercent)));
ui->autoCorr->setCurrentIndex(m_settings.m_autoCorrOptions);
ui->autoCorr->setCurrentIndex(m_settings.m_streams[m_streamIndex].m_autoCorrOptions);
ui->sampleSize->blockSignals(false);
ui->modulation->setCurrentIndex((int) m_settings.m_modulation);
ui->modulationFrequency->setValue(m_settings.m_modulationTone);
ui->modulationFrequencyText->setText(QString("%1").arg(m_settings.m_modulationTone / 100.0, 0, 'f', 2));
ui->amModulation->setValue(m_settings.m_amModulation);
ui->amModulationText->setText(QString("%1").arg(m_settings.m_amModulation));
ui->fmDeviation->setValue(m_settings.m_fmDeviation);
ui->fmDeviationText->setText(QString("%1").arg(m_settings.m_fmDeviation / 10.0, 0, 'f', 1));
ui->modulation->setCurrentIndex((int) m_settings.m_streams[m_streamIndex].m_modulation);
ui->modulationFrequency->setValue(m_settings.m_streams[m_streamIndex].m_modulationTone);
ui->modulationFrequencyText->setText(QString("%1").arg(m_settings.m_streams[m_streamIndex].m_modulationTone / 100.0, 0, 'f', 2));
ui->amModulation->setValue(m_settings.m_streams[m_streamIndex].m_amModulation);
ui->amModulationText->setText(QString("%1").arg(m_settings.m_streams[m_streamIndex].m_amModulation));
ui->fmDeviation->setValue(m_settings.m_streams[m_streamIndex].m_fmDeviation);
ui->fmDeviationText->setText(QString("%1").arg(m_settings.m_streams[m_streamIndex].m_fmDeviation / 10.0, 0, 'f', 1));
blockApplySettings(false);
}

View File

@ -57,6 +57,7 @@ private:
DeviceUISet* m_deviceUISet;
TestMISettings m_settings;
int m_streamIndex; //!< Current stream index being dealt with
QTimer m_updateTimer;
QTimer m_statusTimer;
bool m_doApplySettings;
@ -80,6 +81,7 @@ private:
private slots:
void handleInputMessages();
void on_startStop_toggled(bool checked);
void on_streamIndex_currentIndexChanged(int index);
void on_centerFrequency_changed(quint64 value);
void on_autoCorr_currentIndexChanged(int index);
void on_frequencyShift_changed(qint64 value);

View File

@ -1,7 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<ui version="4.0">
<class>TestMIGui</class>
<widget class="QWidget" name="TestSourceGui">
<widget class="QWidget" name="TestMIGui">
<property name="geometry">
<rect>
<x>0</x>
@ -188,6 +188,107 @@
</property>
</widget>
</item>
<item>
<layout class="QHBoxLayout" name="channelLayout">
<item>
<widget class="QLabel" name="label">
<property name="text">
<string>Stream</string>
</property>
</widget>
</item>
<item>
<widget class="QComboBox" name="streamIndex">
<property name="maximumSize">
<size>
<width>40</width>
<height>16777215</height>
</size>
</property>
<property name="toolTip">
<string>Stream index</string>
</property>
<item>
<property name="text">
<string>0</string>
</property>
</item>
<item>
<property name="text">
<string>1</string>
</property>
</item>
</widget>
</item>
<item>
<spacer name="horizontalSpacer_6">
<property name="orientation">
<enum>Qt::Horizontal</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>40</width>
<height>20</height>
</size>
</property>
</spacer>
</item>
<item>
<widget class="QLabel" name="samplerateLabel">
<property name="sizePolicy">
<sizepolicy hsizetype="Maximum" vsizetype="Preferred">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="minimumSize">
<size>
<width>16</width>
<height>0</height>
</size>
</property>
<property name="text">
<string>SR</string>
</property>
</widget>
</item>
<item>
<widget class="ValueDial" name="sampleRate" native="true">
<property name="sizePolicy">
<sizepolicy hsizetype="Maximum" vsizetype="Maximum">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="minimumSize">
<size>
<width>32</width>
<height>16</height>
</size>
</property>
<property name="font">
<font>
<family>Liberation Mono</family>
<pointsize>12</pointsize>
</font>
</property>
<property name="cursor">
<cursorShape>PointingHandCursor</cursorShape>
</property>
<property name="toolTip">
<string>Generator sample rate (S/s)</string>
</property>
</widget>
</item>
<item>
<widget class="QLabel" name="sampleRateUnit">
<property name="text">
<string>S/s</string>
</property>
</widget>
</item>
</layout>
</item>
<item>
<layout class="QHBoxLayout" name="autoCorrectionsLayout">
<item>
@ -380,60 +481,6 @@
<property name="bottomMargin">
<number>2</number>
</property>
<item>
<widget class="QLabel" name="samplerateLabel">
<property name="sizePolicy">
<sizepolicy hsizetype="Maximum" vsizetype="Preferred">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="minimumSize">
<size>
<width>16</width>
<height>0</height>
</size>
</property>
<property name="text">
<string>SR</string>
</property>
</widget>
</item>
<item>
<widget class="ValueDial" name="sampleRate" native="true">
<property name="sizePolicy">
<sizepolicy hsizetype="Maximum" vsizetype="Maximum">
<horstretch>0</horstretch>
<verstretch>0</verstretch>
</sizepolicy>
</property>
<property name="minimumSize">
<size>
<width>32</width>
<height>16</height>
</size>
</property>
<property name="font">
<font>
<family>Liberation Mono</family>
<pointsize>12</pointsize>
</font>
</property>
<property name="cursor">
<cursorShape>PointingHandCursor</cursorShape>
</property>
<property name="toolTip">
<string>Generator sample rate (S/s)</string>
</property>
</widget>
</item>
<item>
<widget class="QLabel" name="sampleRateUnit">
<property name="text">
<string>S/s</string>
</property>
</widget>
</item>
<item>
<spacer name="horizontalSpacer_5">
<property name="orientation">

View File

@ -19,12 +19,12 @@
#include "util/simpleserializer.h"
#include "testmisettings.h"
TestMISettings::TestMISettings()
TestMIStreamSettings::TestMIStreamSettings()
{
resetToDefaults();
}
void TestMISettings::resetToDefaults()
void TestMIStreamSettings::resetToDefaults()
{
m_centerFrequency = 435000*1000;
m_frequencyShift = 0;
@ -42,36 +42,64 @@ void TestMISettings::resetToDefaults()
m_iFactor = 0.0f;
m_qFactor = 0.0f;
m_phaseImbalance = 0.0f;
}
TestMISettings::TestMISettings()
{
m_fileRecordName = "";
m_useReverseAPI = false;
m_reverseAPIAddress = "127.0.0.1";
m_reverseAPIPort = 8888;
m_reverseAPIDeviceIndex = 0;
m_streams.push_back(TestMIStreamSettings());
m_streams.push_back(TestMIStreamSettings());
}
TestMISettings::TestMISettings(const TestMISettings& other) :
m_streams(other.m_streams)
{
m_fileRecordName = other.m_fileRecordName;
m_useReverseAPI = other.m_useReverseAPI;
m_reverseAPIAddress = other.m_reverseAPIAddress;
m_reverseAPIPort = other.m_reverseAPIPort;
m_reverseAPIDeviceIndex = other.m_reverseAPIDeviceIndex;
}
void TestMISettings::resetToDefaults()
{
for (unsigned int i = 0; i < m_streams.size(); i++) {
m_streams[i].resetToDefaults();
}
}
QByteArray TestMISettings::serialize() const
{
SimpleSerializer s(1);
s.writeS32(2, m_frequencyShift);
s.writeU32(3, m_sampleRate);
s.writeU32(4, m_log2Decim);
s.writeS32(5, (int) m_fcPos);
s.writeU32(6, m_sampleSizeIndex);
s.writeS32(7, m_amplitudeBits);
s.writeS32(8, (int) m_autoCorrOptions);
s.writeFloat(10, m_dcFactor);
s.writeFloat(11, m_iFactor);
s.writeFloat(12, m_qFactor);
s.writeFloat(13, m_phaseImbalance);
s.writeS32(14, (int) m_modulation);
s.writeS32(15, m_modulationTone);
s.writeS32(16, m_amModulation);
s.writeS32(17, m_fmDeviation);
s.writeBool(18, m_useReverseAPI);
s.writeString(19, m_reverseAPIAddress);
s.writeU32(20, m_reverseAPIPort);
s.writeU32(21, m_reverseAPIDeviceIndex);
s.writeBool(1, m_useReverseAPI);
s.writeString(2, m_reverseAPIAddress);
s.writeU32(3, m_reverseAPIPort);
s.writeU32(4, m_reverseAPIDeviceIndex);
for (unsigned int i = 0; i < m_streams.size(); i++)
{
s.writeS32(10 + 30*i, m_streams[i].m_frequencyShift);
s.writeU32(11 + 30*i, m_streams[i].m_sampleRate);
s.writeU32(12 + 30*i, m_streams[i].m_log2Decim);
s.writeS32(13 + 30*i, (int) m_streams[i].m_fcPos);
s.writeU32(14 + 30*i, m_streams[i].m_sampleSizeIndex);
s.writeS32(15 + 30*i, m_streams[i].m_amplitudeBits);
s.writeS32(16 + 30*i, (int) m_streams[i].m_autoCorrOptions);
s.writeFloat(17 + 30*i, m_streams[i].m_dcFactor);
s.writeFloat(18 + 30*i, m_streams[i].m_iFactor);
s.writeFloat(19 + 30*i, m_streams[i].m_qFactor);
s.writeFloat(20 + 30*i, m_streams[i].m_phaseImbalance);
s.writeS32(21 + 30*i, (int) m_streams[i].m_modulation);
s.writeS32(22 + 30*i, m_streams[i].m_modulationTone);
s.writeS32(23 + 30*i, m_streams[i].m_amModulation);
s.writeS32(24 + 30*i, m_streams[i].m_fmDeviation);
}
return s.final();
}
@ -90,40 +118,9 @@ bool TestMISettings::deserialize(const QByteArray& data)
int intval;
uint32_t utmp;
d.readS32(2, &m_frequencyShift, 0);
d.readU32(3, &m_sampleRate, 768*1000);
d.readU32(4, &m_log2Decim, 4);
d.readS32(5, &intval, 0);
m_fcPos = (fcPos_t) intval;
d.readU32(6, &m_sampleSizeIndex, 0);
d.readS32(7, &m_amplitudeBits, 128);
d.readS32(8, &intval, 0);
if (intval < 0 || intval > (int) AutoCorrLast) {
m_autoCorrOptions = AutoCorrNone;
} else {
m_autoCorrOptions = (AutoCorrOptions) intval;
}
d.readFloat(10, &m_dcFactor, 0.0f);
d.readFloat(11, &m_iFactor, 0.0f);
d.readFloat(12, &m_qFactor, 0.0f);
d.readFloat(13, &m_phaseImbalance, 0.0f);
d.readS32(14, &intval, 0);
if (intval < 0 || intval > (int) ModulationLast) {
m_modulation = ModulationNone;
} else {
m_modulation = (Modulation) intval;
}
d.readS32(15, &m_modulationTone, 44);
d.readS32(16, &m_amModulation, 50);
d.readS32(17, &m_fmDeviation, 50);
d.readBool(18, &m_useReverseAPI, false);
d.readString(19, &m_reverseAPIAddress, "127.0.0.1");
d.readU32(20, &utmp, 0);
d.readBool(1, &m_useReverseAPI, false);
d.readString(2, &m_reverseAPIAddress, "127.0.0.1");
d.readU32(3, &utmp, 0);
if ((utmp > 1023) && (utmp < 65535)) {
m_reverseAPIPort = utmp;
@ -131,9 +128,43 @@ bool TestMISettings::deserialize(const QByteArray& data)
m_reverseAPIPort = 8888;
}
d.readU32(21, &utmp, 0);
d.readU32(4, &utmp, 0);
m_reverseAPIDeviceIndex = utmp > 99 ? 99 : utmp;
for (unsigned int i = 0; i < m_streams.size(); i++)
{
d.readS32(10 + 30*i, &m_streams[i].m_frequencyShift, 0);
d.readU32(11 + 30*i, &m_streams[i].m_sampleRate, 768*1000);
d.readU32(12 + 30*i, &m_streams[i].m_log2Decim, 4);
d.readS32(13 + 30*i, &intval, 0);
m_streams[i].m_fcPos = (TestMIStreamSettings::fcPos_t) intval;
d.readU32(14 + 30*i, &m_streams[i].m_sampleSizeIndex, 0);
d.readS32(15 + 30*i, &m_streams[i].m_amplitudeBits, 128);
d.readS32(16 + 30*i, &intval, 0);
if (intval < 0 || intval > (int) TestMIStreamSettings::AutoCorrLast) {
m_streams[i].m_autoCorrOptions = TestMIStreamSettings::AutoCorrNone;
} else {
m_streams[i].m_autoCorrOptions = (TestMIStreamSettings::AutoCorrOptions) intval;
}
d.readFloat(17 + 30*i, &m_streams[i].m_dcFactor, 0.0f);
d.readFloat(18 + 30*i, &m_streams[i].m_iFactor, 0.0f);
d.readFloat(19 + 30*i, &m_streams[i].m_qFactor, 0.0f);
d.readFloat(20 + 30*i, &m_streams[i].m_phaseImbalance, 0.0f);
d.readS32(21 + 30*i, &intval, 0);
if (intval < 0 || intval > (int) TestMIStreamSettings::ModulationLast) {
m_streams[i].m_modulation = TestMIStreamSettings::ModulationNone;
} else {
m_streams[i].m_modulation = (TestMIStreamSettings::Modulation) intval;
}
d.readS32(22 + 30*i, &m_streams[i].m_modulationTone, 44);
d.readS32(23 + 30*i, &m_streams[i].m_amModulation, 50);
d.readS32(24 + 30*i, &m_streams[i].m_fmDeviation, 50);
}
return true;
}
else

View File

@ -20,7 +20,7 @@
#include <QString>
struct TestMISettings {
struct TestMIStreamSettings {
typedef enum {
FC_POS_INFRA = 0,
FC_POS_SUPRA,
@ -60,20 +60,25 @@ struct TestMISettings {
float m_iFactor; //!< -1.0 < x < 1.0
float m_qFactor; //!< -1.0 < x < 1.0
float m_phaseImbalance; //!< -1.0 < x < 1.0
TestMIStreamSettings();
void resetToDefaults();
};
struct TestMISettings {
QString m_fileRecordName;
bool m_useReverseAPI;
QString m_reverseAPIAddress;
uint16_t m_reverseAPIPort;
uint16_t m_reverseAPIDeviceIndex;
std::vector<TestMIStreamSettings> m_streams;
TestMISettings();
TestMISettings(const TestMISettings& other);
void resetToDefaults();
QByteArray serialize() const;
bool deserialize(const QByteArray& data);
};
#endif /* _TESTMI_TESTMISETTINGS_H_ */

View File

@ -38,7 +38,7 @@ TestMIThread::TestMIThread(SampleSinkFifo* sampleFifo, QObject* parent) :
m_sampleFifo(sampleFifo),
m_frequencyShift(0),
m_toneFrequency(440),
m_modulation(TestMISettings::ModulationNone),
m_modulation(TestMIStreamSettings::ModulationNone),
m_amModulation(0.5f),
m_fmDeviationUnit(0.0f),
m_fmPhasor(0.0f),
@ -176,7 +176,7 @@ void TestMIThread::setToneFrequency(int toneFrequency)
m_toneNco.setFreq(toneFrequency, m_samplerate);
}
void TestMIThread::setModulation(TestMISettings::Modulation modulation)
void TestMIThread::setModulation(TestMIStreamSettings::Modulation modulation)
{
m_modulation = modulation;
}
@ -247,7 +247,7 @@ void TestMIThread::generate(quint32 chunksize)
{
switch (m_modulation)
{
case TestMISettings::ModulationAM:
case TestMIStreamSettings::ModulationAM:
{
Complex c = m_nco.nextIQ();
Real t, re, im;
@ -259,7 +259,7 @@ void TestMIThread::generate(quint32 chunksize)
m_buf[i++] = (int16_t) (im * (float) m_amplitudeBitsQ);
}
break;
case TestMISettings::ModulationFM:
case TestMIStreamSettings::ModulationFM:
{
Complex c = m_nco.nextIQ();
Real t, re, im;
@ -272,7 +272,7 @@ void TestMIThread::generate(quint32 chunksize)
m_buf[i++] = (int16_t) (im * (float) m_amplitudeBitsQ);
}
break;
case TestMISettings::ModulationPattern0: // binary pattern
case TestMIStreamSettings::ModulationPattern0: // binary pattern
{
if (m_pulseSampleCount < m_pulseWidth) // sync pattern: 0
{
@ -314,7 +314,7 @@ void TestMIThread::generate(quint32 chunksize)
}
}
break;
case TestMISettings::ModulationPattern1: // sawtooth pattern
case TestMIStreamSettings::ModulationPattern1: // sawtooth pattern
{
Real re, im;
re = (float) (m_pulseWidth - m_pulseSampleCount) / (float) m_pulseWidth;
@ -329,7 +329,7 @@ void TestMIThread::generate(quint32 chunksize)
}
}
break;
case TestMISettings::ModulationPattern2: // 50% duty cycle square pattern
case TestMIStreamSettings::ModulationPattern2: // 50% duty cycle square pattern
{
if (m_pulseSampleCount < m_pulseWidth) // 1
{
@ -347,7 +347,7 @@ void TestMIThread::generate(quint32 chunksize)
}
}
break;
case TestMISettings::ModulationNone:
case TestMIStreamSettings::ModulationNone:
default:
{
Complex c = m_nco.nextIQ(m_phaseImbalance);

View File

@ -73,7 +73,7 @@ public:
void setPhaseImbalance(float phaseImbalance);
void setFrequencyShift(int shift);
void setToneFrequency(int toneFrequency);
void setModulation(TestMISettings::Modulation modulation);
void setModulation(TestMIStreamSettings::Modulation modulation);
void setAMModulation(float amModulation);
void setFMDeviation(float deviation);
void setPattern0();
@ -94,7 +94,7 @@ private:
NCOF m_toneNco;
int m_frequencyShift;
int m_toneFrequency;
TestMISettings::Modulation m_modulation;
TestMIStreamSettings::Modulation m_modulation;
float m_amModulation;
float m_fmDeviationUnit;
float m_fmPhasor;

View File

@ -5216,6 +5216,38 @@ margin-bottom: 20px;
};
defs.TestMISettings = {
"properties" : {
"fileRecordName" : {
"type" : "string"
},
"useReverseAPI" : {
"type" : "integer",
"description" : "Synchronize with reverse API (1 for yes, 0 for no)"
},
"reverseAPIAddress" : {
"type" : "string"
},
"reverseAPIPort" : {
"type" : "integer"
},
"reverseAPIDeviceIndex" : {
"type" : "integer"
},
"streams" : {
"type" : "array",
"description" : "Settings for each of the streams",
"items" : {
"$ref" : "#/definitions/TestMiStreamSettings"
}
}
},
"description" : "TestMISettings"
};
defs.TestMiStreamSettings = {
"properties" : {
"streamIndex" : {
"type" : "integer",
"description" : "Index of the stream to which the settings apply"
},
"centerFrequency" : {
"type" : "integer",
"format" : "uint64"
@ -5268,25 +5300,9 @@ margin-bottom: 20px;
"phaseImbalance" : {
"type" : "number",
"format" : "float"
},
"fileRecordName" : {
"type" : "string"
},
"useReverseAPI" : {
"type" : "integer",
"description" : "Synchronize with reverse API (1 for yes, 0 for no)"
},
"reverseAPIAddress" : {
"type" : "string"
},
"reverseAPIPort" : {
"type" : "integer"
},
"reverseAPIDeviceIndex" : {
"type" : "integer"
}
},
"description" : "TestSourceMI"
"description" : "TestMiStreamSettings"
};
defs.TestSourceSettings = {
"properties" : {
@ -25084,7 +25100,7 @@ except ApiException as e:
</div>
<div id="generator">
<div class="content">
Generated 2019-05-20T16:12:41.467+02:00
Generated 2019-05-25T21:27:31.978+02:00
</div>
</div>
</div>

View File

@ -1,43 +1,6 @@
TestMISettings:
description: TestSourceMI
description: TestMISettings
properties:
centerFrequency:
type: integer
format: uint64
frequencyShift:
type: integer
sampleRate:
type: integer
log2Decim:
type: integer
fcPos:
type: integer
sampleSizeIndex:
type: integer
amplitudeBits:
type: integer
autoCorrOptions:
type: integer
modulation:
type: integer
modulationTone:
type: integer
amModulation:
type: integer
fmDeviation:
type: integer
dcFactor:
type: number
format: float
iFactor:
type: number
format: float
qFactor:
type: number
format: float
phaseImbalance:
type: number
format: float
fileRecordName:
type: string
useReverseAPI:
@ -49,3 +12,53 @@ TestMISettings:
type: integer
reverseAPIDeviceIndex:
type: integer
streams:
description: Settings for each of the streams
type: array
items:
$ref: "#/definitions/TestMiStreamSettings"
definitions:
TestMiStreamSettings:
description: TestMiStreamSettings
properties:
streamIndex:
description: Index of the stream to which the settings apply
type: integer
centerFrequency:
type: integer
format: uint64
frequencyShift:
type: integer
sampleRate:
type: integer
log2Decim:
type: integer
fcPos:
type: integer
sampleSizeIndex:
type: integer
amplitudeBits:
type: integer
autoCorrOptions:
type: integer
modulation:
type: integer
modulationTone:
type: integer
amModulation:
type: integer
fmDeviation:
type: integer
dcFactor:
type: number
format: float
iFactor:
type: number
format: float
qFactor:
type: number
format: float
phaseImbalance:
type: number
format: float

View File

@ -2090,6 +2090,27 @@ bool WebAPIRequestMapper::validateDeviceSettings(
return false;
}
}
else if ((*deviceHwType == "TestMI") && (deviceSettings.getDirection() == 2))
{
if (jsonObject.contains("TestMISettings") && jsonObject["TestMISettings"].isObject())
{
QJsonObject testMISettingsJsonObject = jsonObject["TestMISettings"].toObject();
deviceSettingsKeys = testMISettingsJsonObject.keys();
if (deviceSettingsKeys.contains("streams") && testMISettingsJsonObject["streams"].isArray())
{
appendSettingsArrayKeys(testMISettingsJsonObject, "streams", deviceSettingsKeys);
}
deviceSettings.setTestMiSettings(new SWGSDRangel::SWGTestMISettings());
deviceSettings.getTestMiSettings()->fromJsonObject(testMISettingsJsonObject);
return true;
}
else
{
return false;
}
}
else if ((*deviceHwType == "XTRX") && (deviceSettings.getDirection() == 0))
{
if (jsonObject.contains("xtrxInputSettings") && jsonObject["xtrxInputSettings"].isObject())
@ -2595,6 +2616,30 @@ void WebAPIRequestMapper::appendSettingsSubKeys(
}
}
void WebAPIRequestMapper::appendSettingsArrayKeys(
const QJsonObject& parentSettingsJsonObject,
const QString& parentKey,
QStringList& keyList)
{
QJsonArray streams = parentSettingsJsonObject[parentKey].toArray();
for (int istream = 0; istream < streams.count(); istream++)
{
QJsonValue v = streams.takeAt(istream);
if (v.isObject())
{
QJsonObject streamSettingsJsonObject = v.toObject();
QStringList streamSettingsKeys = streamSettingsJsonObject.keys();
for (int i = 0; i < streamSettingsKeys.size(); i++) {
keyList.append(tr("streams[%1].%2").arg(istream).arg(streamSettingsKeys[i]));
}
}
}
}
void WebAPIRequestMapper::resetDeviceSettings(SWGSDRangel::SWGDeviceSettings& deviceSettings)
{
deviceSettings.cleanup();

View File

@ -92,6 +92,11 @@ private:
const QString& parentKey,
QStringList& keyList);
void appendSettingsArrayKeys(
const QJsonObject& parentSettingsJsonObject,
const QString& parentKey,
QStringList& keyList);
bool parseJsonBody(QString& jsonStr, QJsonObject& jsonObject, qtwebapp::HttpResponse& response);
void resetDeviceSettings(SWGSDRangel::SWGDeviceSettings& deviceSettings);

View File

@ -1,43 +1,6 @@
TestMISettings:
description: TestSourceMI
description: TestMISettings
properties:
centerFrequency:
type: integer
format: uint64
frequencyShift:
type: integer
sampleRate:
type: integer
log2Decim:
type: integer
fcPos:
type: integer
sampleSizeIndex:
type: integer
amplitudeBits:
type: integer
autoCorrOptions:
type: integer
modulation:
type: integer
modulationTone:
type: integer
amModulation:
type: integer
fmDeviation:
type: integer
dcFactor:
type: number
format: float
iFactor:
type: number
format: float
qFactor:
type: number
format: float
phaseImbalance:
type: number
format: float
fileRecordName:
type: string
useReverseAPI:
@ -49,3 +12,53 @@ TestMISettings:
type: integer
reverseAPIDeviceIndex:
type: integer
streams:
description: Settings for each of the streams
type: array
items:
$ref: "#/definitions/TestMiStreamSettings"
definitions:
TestMiStreamSettings:
description: TestMiStreamSettings
properties:
streamIndex:
description: Index of the stream to which the settings apply
type: integer
centerFrequency:
type: integer
format: uint64
frequencyShift:
type: integer
sampleRate:
type: integer
log2Decim:
type: integer
fcPos:
type: integer
sampleSizeIndex:
type: integer
amplitudeBits:
type: integer
autoCorrOptions:
type: integer
modulation:
type: integer
modulationTone:
type: integer
amModulation:
type: integer
fmDeviation:
type: integer
dcFactor:
type: number
format: float
iFactor:
type: number
format: float
qFactor:
type: number
format: float
phaseImbalance:
type: number
format: float

View File

@ -5216,6 +5216,38 @@ margin-bottom: 20px;
};
defs.TestMISettings = {
"properties" : {
"fileRecordName" : {
"type" : "string"
},
"useReverseAPI" : {
"type" : "integer",
"description" : "Synchronize with reverse API (1 for yes, 0 for no)"
},
"reverseAPIAddress" : {
"type" : "string"
},
"reverseAPIPort" : {
"type" : "integer"
},
"reverseAPIDeviceIndex" : {
"type" : "integer"
},
"streams" : {
"type" : "array",
"description" : "Settings for each of the streams",
"items" : {
"$ref" : "#/definitions/TestMiStreamSettings"
}
}
},
"description" : "TestMISettings"
};
defs.TestMiStreamSettings = {
"properties" : {
"streamIndex" : {
"type" : "integer",
"description" : "Index of the stream to which the settings apply"
},
"centerFrequency" : {
"type" : "integer",
"format" : "uint64"
@ -5268,25 +5300,9 @@ margin-bottom: 20px;
"phaseImbalance" : {
"type" : "number",
"format" : "float"
},
"fileRecordName" : {
"type" : "string"
},
"useReverseAPI" : {
"type" : "integer",
"description" : "Synchronize with reverse API (1 for yes, 0 for no)"
},
"reverseAPIAddress" : {
"type" : "string"
},
"reverseAPIPort" : {
"type" : "integer"
},
"reverseAPIDeviceIndex" : {
"type" : "integer"
}
},
"description" : "TestSourceMI"
"description" : "TestMiStreamSettings"
};
defs.TestSourceSettings = {
"properties" : {
@ -25084,7 +25100,7 @@ except ApiException as e:
</div>
<div id="generator">
<div class="content">
Generated 2019-05-20T16:12:41.467+02:00
Generated 2019-05-25T21:27:31.978+02:00
</div>
</div>
</div>

View File

@ -133,6 +133,7 @@
#include "SWGSoapySDRReport.h"
#include "SWGSuccessResponse.h"
#include "SWGTestMISettings.h"
#include "SWGTestMiStreamSettings.h"
#include "SWGTestSourceSettings.h"
#include "SWGUDPSinkReport.h"
#include "SWGUDPSinkSettings.h"
@ -507,6 +508,9 @@ namespace SWGSDRangel {
if(QString("SWGTestMISettings").compare(type) == 0) {
return new SWGTestMISettings();
}
if(QString("SWGTestMiStreamSettings").compare(type) == 0) {
return new SWGTestMiStreamSettings();
}
if(QString("SWGTestSourceSettings").compare(type) == 0) {
return new SWGTestSourceSettings();
}

View File

@ -28,38 +28,6 @@ SWGTestMISettings::SWGTestMISettings(QString* json) {
}
SWGTestMISettings::SWGTestMISettings() {
center_frequency = 0;
m_center_frequency_isSet = false;
frequency_shift = 0;
m_frequency_shift_isSet = false;
sample_rate = 0;
m_sample_rate_isSet = false;
log2_decim = 0;
m_log2_decim_isSet = false;
fc_pos = 0;
m_fc_pos_isSet = false;
sample_size_index = 0;
m_sample_size_index_isSet = false;
amplitude_bits = 0;
m_amplitude_bits_isSet = false;
auto_corr_options = 0;
m_auto_corr_options_isSet = false;
modulation = 0;
m_modulation_isSet = false;
modulation_tone = 0;
m_modulation_tone_isSet = false;
am_modulation = 0;
m_am_modulation_isSet = false;
fm_deviation = 0;
m_fm_deviation_isSet = false;
dc_factor = 0.0f;
m_dc_factor_isSet = false;
i_factor = 0.0f;
m_i_factor_isSet = false;
q_factor = 0.0f;
m_q_factor_isSet = false;
phase_imbalance = 0.0f;
m_phase_imbalance_isSet = false;
file_record_name = nullptr;
m_file_record_name_isSet = false;
use_reverse_api = 0;
@ -70,6 +38,8 @@ SWGTestMISettings::SWGTestMISettings() {
m_reverse_api_port_isSet = false;
reverse_api_device_index = 0;
m_reverse_api_device_index_isSet = false;
streams = nullptr;
m_streams_isSet = false;
}
SWGTestMISettings::~SWGTestMISettings() {
@ -78,38 +48,6 @@ SWGTestMISettings::~SWGTestMISettings() {
void
SWGTestMISettings::init() {
center_frequency = 0;
m_center_frequency_isSet = false;
frequency_shift = 0;
m_frequency_shift_isSet = false;
sample_rate = 0;
m_sample_rate_isSet = false;
log2_decim = 0;
m_log2_decim_isSet = false;
fc_pos = 0;
m_fc_pos_isSet = false;
sample_size_index = 0;
m_sample_size_index_isSet = false;
amplitude_bits = 0;
m_amplitude_bits_isSet = false;
auto_corr_options = 0;
m_auto_corr_options_isSet = false;
modulation = 0;
m_modulation_isSet = false;
modulation_tone = 0;
m_modulation_tone_isSet = false;
am_modulation = 0;
m_am_modulation_isSet = false;
fm_deviation = 0;
m_fm_deviation_isSet = false;
dc_factor = 0.0f;
m_dc_factor_isSet = false;
i_factor = 0.0f;
m_i_factor_isSet = false;
q_factor = 0.0f;
m_q_factor_isSet = false;
phase_imbalance = 0.0f;
m_phase_imbalance_isSet = false;
file_record_name = new QString("");
m_file_record_name_isSet = false;
use_reverse_api = 0;
@ -120,26 +58,12 @@ SWGTestMISettings::init() {
m_reverse_api_port_isSet = false;
reverse_api_device_index = 0;
m_reverse_api_device_index_isSet = false;
streams = new QList<SWGTestMiStreamSettings*>();
m_streams_isSet = false;
}
void
SWGTestMISettings::cleanup() {
if(file_record_name != nullptr) {
delete file_record_name;
}
@ -149,6 +73,13 @@ SWGTestMISettings::cleanup() {
}
if(streams != nullptr) {
auto arr = streams;
for(auto o: *arr) {
delete o;
}
delete streams;
}
}
SWGTestMISettings*
@ -162,38 +93,6 @@ SWGTestMISettings::fromJson(QString &json) {
void
SWGTestMISettings::fromJsonObject(QJsonObject &pJson) {
::SWGSDRangel::setValue(&center_frequency, pJson["centerFrequency"], "qint32", "");
::SWGSDRangel::setValue(&frequency_shift, pJson["frequencyShift"], "qint32", "");
::SWGSDRangel::setValue(&sample_rate, pJson["sampleRate"], "qint32", "");
::SWGSDRangel::setValue(&log2_decim, pJson["log2Decim"], "qint32", "");
::SWGSDRangel::setValue(&fc_pos, pJson["fcPos"], "qint32", "");
::SWGSDRangel::setValue(&sample_size_index, pJson["sampleSizeIndex"], "qint32", "");
::SWGSDRangel::setValue(&amplitude_bits, pJson["amplitudeBits"], "qint32", "");
::SWGSDRangel::setValue(&auto_corr_options, pJson["autoCorrOptions"], "qint32", "");
::SWGSDRangel::setValue(&modulation, pJson["modulation"], "qint32", "");
::SWGSDRangel::setValue(&modulation_tone, pJson["modulationTone"], "qint32", "");
::SWGSDRangel::setValue(&am_modulation, pJson["amModulation"], "qint32", "");
::SWGSDRangel::setValue(&fm_deviation, pJson["fmDeviation"], "qint32", "");
::SWGSDRangel::setValue(&dc_factor, pJson["dcFactor"], "float", "");
::SWGSDRangel::setValue(&i_factor, pJson["iFactor"], "float", "");
::SWGSDRangel::setValue(&q_factor, pJson["qFactor"], "float", "");
::SWGSDRangel::setValue(&phase_imbalance, pJson["phaseImbalance"], "float", "");
::SWGSDRangel::setValue(&file_record_name, pJson["fileRecordName"], "QString", "QString");
::SWGSDRangel::setValue(&use_reverse_api, pJson["useReverseAPI"], "qint32", "");
@ -204,6 +103,8 @@ SWGTestMISettings::fromJsonObject(QJsonObject &pJson) {
::SWGSDRangel::setValue(&reverse_api_device_index, pJson["reverseAPIDeviceIndex"], "qint32", "");
::SWGSDRangel::setValue(&streams, pJson["streams"], "QList", "SWGTestMiStreamSettings");
}
QString
@ -220,54 +121,6 @@ SWGTestMISettings::asJson ()
QJsonObject*
SWGTestMISettings::asJsonObject() {
QJsonObject* obj = new QJsonObject();
if(m_center_frequency_isSet){
obj->insert("centerFrequency", QJsonValue(center_frequency));
}
if(m_frequency_shift_isSet){
obj->insert("frequencyShift", QJsonValue(frequency_shift));
}
if(m_sample_rate_isSet){
obj->insert("sampleRate", QJsonValue(sample_rate));
}
if(m_log2_decim_isSet){
obj->insert("log2Decim", QJsonValue(log2_decim));
}
if(m_fc_pos_isSet){
obj->insert("fcPos", QJsonValue(fc_pos));
}
if(m_sample_size_index_isSet){
obj->insert("sampleSizeIndex", QJsonValue(sample_size_index));
}
if(m_amplitude_bits_isSet){
obj->insert("amplitudeBits", QJsonValue(amplitude_bits));
}
if(m_auto_corr_options_isSet){
obj->insert("autoCorrOptions", QJsonValue(auto_corr_options));
}
if(m_modulation_isSet){
obj->insert("modulation", QJsonValue(modulation));
}
if(m_modulation_tone_isSet){
obj->insert("modulationTone", QJsonValue(modulation_tone));
}
if(m_am_modulation_isSet){
obj->insert("amModulation", QJsonValue(am_modulation));
}
if(m_fm_deviation_isSet){
obj->insert("fmDeviation", QJsonValue(fm_deviation));
}
if(m_dc_factor_isSet){
obj->insert("dcFactor", QJsonValue(dc_factor));
}
if(m_i_factor_isSet){
obj->insert("iFactor", QJsonValue(i_factor));
}
if(m_q_factor_isSet){
obj->insert("qFactor", QJsonValue(q_factor));
}
if(m_phase_imbalance_isSet){
obj->insert("phaseImbalance", QJsonValue(phase_imbalance));
}
if(file_record_name != nullptr && *file_record_name != QString("")){
toJsonValue(QString("fileRecordName"), file_record_name, obj, QString("QString"));
}
@ -283,170 +136,13 @@ SWGTestMISettings::asJsonObject() {
if(m_reverse_api_device_index_isSet){
obj->insert("reverseAPIDeviceIndex", QJsonValue(reverse_api_device_index));
}
if(streams->size() > 0){
toJsonArray((QList<void*>*)streams, obj, "streams", "SWGTestMiStreamSettings");
}
return obj;
}
qint32
SWGTestMISettings::getCenterFrequency() {
return center_frequency;
}
void
SWGTestMISettings::setCenterFrequency(qint32 center_frequency) {
this->center_frequency = center_frequency;
this->m_center_frequency_isSet = true;
}
qint32
SWGTestMISettings::getFrequencyShift() {
return frequency_shift;
}
void
SWGTestMISettings::setFrequencyShift(qint32 frequency_shift) {
this->frequency_shift = frequency_shift;
this->m_frequency_shift_isSet = true;
}
qint32
SWGTestMISettings::getSampleRate() {
return sample_rate;
}
void
SWGTestMISettings::setSampleRate(qint32 sample_rate) {
this->sample_rate = sample_rate;
this->m_sample_rate_isSet = true;
}
qint32
SWGTestMISettings::getLog2Decim() {
return log2_decim;
}
void
SWGTestMISettings::setLog2Decim(qint32 log2_decim) {
this->log2_decim = log2_decim;
this->m_log2_decim_isSet = true;
}
qint32
SWGTestMISettings::getFcPos() {
return fc_pos;
}
void
SWGTestMISettings::setFcPos(qint32 fc_pos) {
this->fc_pos = fc_pos;
this->m_fc_pos_isSet = true;
}
qint32
SWGTestMISettings::getSampleSizeIndex() {
return sample_size_index;
}
void
SWGTestMISettings::setSampleSizeIndex(qint32 sample_size_index) {
this->sample_size_index = sample_size_index;
this->m_sample_size_index_isSet = true;
}
qint32
SWGTestMISettings::getAmplitudeBits() {
return amplitude_bits;
}
void
SWGTestMISettings::setAmplitudeBits(qint32 amplitude_bits) {
this->amplitude_bits = amplitude_bits;
this->m_amplitude_bits_isSet = true;
}
qint32
SWGTestMISettings::getAutoCorrOptions() {
return auto_corr_options;
}
void
SWGTestMISettings::setAutoCorrOptions(qint32 auto_corr_options) {
this->auto_corr_options = auto_corr_options;
this->m_auto_corr_options_isSet = true;
}
qint32
SWGTestMISettings::getModulation() {
return modulation;
}
void
SWGTestMISettings::setModulation(qint32 modulation) {
this->modulation = modulation;
this->m_modulation_isSet = true;
}
qint32
SWGTestMISettings::getModulationTone() {
return modulation_tone;
}
void
SWGTestMISettings::setModulationTone(qint32 modulation_tone) {
this->modulation_tone = modulation_tone;
this->m_modulation_tone_isSet = true;
}
qint32
SWGTestMISettings::getAmModulation() {
return am_modulation;
}
void
SWGTestMISettings::setAmModulation(qint32 am_modulation) {
this->am_modulation = am_modulation;
this->m_am_modulation_isSet = true;
}
qint32
SWGTestMISettings::getFmDeviation() {
return fm_deviation;
}
void
SWGTestMISettings::setFmDeviation(qint32 fm_deviation) {
this->fm_deviation = fm_deviation;
this->m_fm_deviation_isSet = true;
}
float
SWGTestMISettings::getDcFactor() {
return dc_factor;
}
void
SWGTestMISettings::setDcFactor(float dc_factor) {
this->dc_factor = dc_factor;
this->m_dc_factor_isSet = true;
}
float
SWGTestMISettings::getIFactor() {
return i_factor;
}
void
SWGTestMISettings::setIFactor(float i_factor) {
this->i_factor = i_factor;
this->m_i_factor_isSet = true;
}
float
SWGTestMISettings::getQFactor() {
return q_factor;
}
void
SWGTestMISettings::setQFactor(float q_factor) {
this->q_factor = q_factor;
this->m_q_factor_isSet = true;
}
float
SWGTestMISettings::getPhaseImbalance() {
return phase_imbalance;
}
void
SWGTestMISettings::setPhaseImbalance(float phase_imbalance) {
this->phase_imbalance = phase_imbalance;
this->m_phase_imbalance_isSet = true;
}
QString*
SWGTestMISettings::getFileRecordName() {
return file_record_name;
@ -497,32 +193,27 @@ SWGTestMISettings::setReverseApiDeviceIndex(qint32 reverse_api_device_index) {
this->m_reverse_api_device_index_isSet = true;
}
QList<SWGTestMiStreamSettings*>*
SWGTestMISettings::getStreams() {
return streams;
}
void
SWGTestMISettings::setStreams(QList<SWGTestMiStreamSettings*>* streams) {
this->streams = streams;
this->m_streams_isSet = true;
}
bool
SWGTestMISettings::isSet(){
bool isObjectUpdated = false;
do{
if(m_center_frequency_isSet){ isObjectUpdated = true; break;}
if(m_frequency_shift_isSet){ isObjectUpdated = true; break;}
if(m_sample_rate_isSet){ isObjectUpdated = true; break;}
if(m_log2_decim_isSet){ isObjectUpdated = true; break;}
if(m_fc_pos_isSet){ isObjectUpdated = true; break;}
if(m_sample_size_index_isSet){ isObjectUpdated = true; break;}
if(m_amplitude_bits_isSet){ isObjectUpdated = true; break;}
if(m_auto_corr_options_isSet){ isObjectUpdated = true; break;}
if(m_modulation_isSet){ isObjectUpdated = true; break;}
if(m_modulation_tone_isSet){ isObjectUpdated = true; break;}
if(m_am_modulation_isSet){ isObjectUpdated = true; break;}
if(m_fm_deviation_isSet){ isObjectUpdated = true; break;}
if(m_dc_factor_isSet){ isObjectUpdated = true; break;}
if(m_i_factor_isSet){ isObjectUpdated = true; break;}
if(m_q_factor_isSet){ isObjectUpdated = true; break;}
if(m_phase_imbalance_isSet){ isObjectUpdated = true; break;}
if(file_record_name != nullptr && *file_record_name != QString("")){ isObjectUpdated = true; break;}
if(m_use_reverse_api_isSet){ isObjectUpdated = true; break;}
if(reverse_api_address != nullptr && *reverse_api_address != QString("")){ isObjectUpdated = true; break;}
if(m_reverse_api_port_isSet){ isObjectUpdated = true; break;}
if(m_reverse_api_device_index_isSet){ isObjectUpdated = true; break;}
if(streams->size() > 0){ isObjectUpdated = true; break;}
}while(false);
return isObjectUpdated;
}

View File

@ -13,7 +13,7 @@
/*
* SWGTestMISettings.h
*
* TestSourceMI
* TestMISettings
*/
#ifndef SWGTestMISettings_H_
@ -22,6 +22,8 @@
#include <QJsonObject>
#include "SWGTestMiStreamSettings.h"
#include <QList>
#include <QString>
#include "SWGObject.h"
@ -42,54 +44,6 @@ public:
virtual void fromJsonObject(QJsonObject &json) override;
virtual SWGTestMISettings* fromJson(QString &jsonString) override;
qint32 getCenterFrequency();
void setCenterFrequency(qint32 center_frequency);
qint32 getFrequencyShift();
void setFrequencyShift(qint32 frequency_shift);
qint32 getSampleRate();
void setSampleRate(qint32 sample_rate);
qint32 getLog2Decim();
void setLog2Decim(qint32 log2_decim);
qint32 getFcPos();
void setFcPos(qint32 fc_pos);
qint32 getSampleSizeIndex();
void setSampleSizeIndex(qint32 sample_size_index);
qint32 getAmplitudeBits();
void setAmplitudeBits(qint32 amplitude_bits);
qint32 getAutoCorrOptions();
void setAutoCorrOptions(qint32 auto_corr_options);
qint32 getModulation();
void setModulation(qint32 modulation);
qint32 getModulationTone();
void setModulationTone(qint32 modulation_tone);
qint32 getAmModulation();
void setAmModulation(qint32 am_modulation);
qint32 getFmDeviation();
void setFmDeviation(qint32 fm_deviation);
float getDcFactor();
void setDcFactor(float dc_factor);
float getIFactor();
void setIFactor(float i_factor);
float getQFactor();
void setQFactor(float q_factor);
float getPhaseImbalance();
void setPhaseImbalance(float phase_imbalance);
QString* getFileRecordName();
void setFileRecordName(QString* file_record_name);
@ -105,58 +59,13 @@ public:
qint32 getReverseApiDeviceIndex();
void setReverseApiDeviceIndex(qint32 reverse_api_device_index);
QList<SWGTestMiStreamSettings*>* getStreams();
void setStreams(QList<SWGTestMiStreamSettings*>* streams);
virtual bool isSet() override;
private:
qint32 center_frequency;
bool m_center_frequency_isSet;
qint32 frequency_shift;
bool m_frequency_shift_isSet;
qint32 sample_rate;
bool m_sample_rate_isSet;
qint32 log2_decim;
bool m_log2_decim_isSet;
qint32 fc_pos;
bool m_fc_pos_isSet;
qint32 sample_size_index;
bool m_sample_size_index_isSet;
qint32 amplitude_bits;
bool m_amplitude_bits_isSet;
qint32 auto_corr_options;
bool m_auto_corr_options_isSet;
qint32 modulation;
bool m_modulation_isSet;
qint32 modulation_tone;
bool m_modulation_tone_isSet;
qint32 am_modulation;
bool m_am_modulation_isSet;
qint32 fm_deviation;
bool m_fm_deviation_isSet;
float dc_factor;
bool m_dc_factor_isSet;
float i_factor;
bool m_i_factor_isSet;
float q_factor;
bool m_q_factor_isSet;
float phase_imbalance;
bool m_phase_imbalance_isSet;
QString* file_record_name;
bool m_file_record_name_isSet;
@ -172,6 +81,9 @@ private:
qint32 reverse_api_device_index;
bool m_reverse_api_device_index_isSet;
QList<SWGTestMiStreamSettings*>* streams;
bool m_streams_isSet;
};
}

View File

@ -0,0 +1,442 @@
/**
* SDRangel
* This is the web REST/JSON API of SDRangel SDR software. SDRangel is an Open Source Qt5/OpenGL 3.0+ (4.3+ in Windows) GUI and server Software Defined Radio and signal analyzer in software. It supports Airspy, BladeRF, HackRF, LimeSDR, PlutoSDR, RTL-SDR, SDRplay RSP1 and FunCube --- Limitations and specifcities: * In SDRangel GUI the first Rx device set cannot be deleted. Conversely the server starts with no device sets and its number of device sets can be reduced to zero by as many calls as necessary to /sdrangel/deviceset with DELETE method. * Preset import and export from/to file is a server only feature. * Device set focus is a GUI only feature. * The following channels are not implemented (status 501 is returned): ATV and DATV demodulators, Channel Analyzer NG, LoRa demodulator * The device settings and report structures contains only the sub-structure corresponding to the device type. The DeviceSettings and DeviceReport structures documented here shows all of them but only one will be or should be present at a time * The channel settings and report structures contains only the sub-structure corresponding to the channel type. The ChannelSettings and ChannelReport structures documented here shows all of them but only one will be or should be present at a time ---
*
* OpenAPI spec version: 4.8.0
* Contact: f4exb06@gmail.com
*
* NOTE: This class is auto generated by the swagger code generator program.
* https://github.com/swagger-api/swagger-codegen.git
* Do not edit the class manually.
*/
#include "SWGTestMiStreamSettings.h"
#include "SWGHelpers.h"
#include <QJsonDocument>
#include <QJsonArray>
#include <QObject>
#include <QDebug>
namespace SWGSDRangel {
SWGTestMiStreamSettings::SWGTestMiStreamSettings(QString* json) {
init();
this->fromJson(*json);
}
SWGTestMiStreamSettings::SWGTestMiStreamSettings() {
stream_index = 0;
m_stream_index_isSet = false;
center_frequency = 0;
m_center_frequency_isSet = false;
frequency_shift = 0;
m_frequency_shift_isSet = false;
sample_rate = 0;
m_sample_rate_isSet = false;
log2_decim = 0;
m_log2_decim_isSet = false;
fc_pos = 0;
m_fc_pos_isSet = false;
sample_size_index = 0;
m_sample_size_index_isSet = false;
amplitude_bits = 0;
m_amplitude_bits_isSet = false;
auto_corr_options = 0;
m_auto_corr_options_isSet = false;
modulation = 0;
m_modulation_isSet = false;
modulation_tone = 0;
m_modulation_tone_isSet = false;
am_modulation = 0;
m_am_modulation_isSet = false;
fm_deviation = 0;
m_fm_deviation_isSet = false;
dc_factor = 0.0f;
m_dc_factor_isSet = false;
i_factor = 0.0f;
m_i_factor_isSet = false;
q_factor = 0.0f;
m_q_factor_isSet = false;
phase_imbalance = 0.0f;
m_phase_imbalance_isSet = false;
}
SWGTestMiStreamSettings::~SWGTestMiStreamSettings() {
this->cleanup();
}
void
SWGTestMiStreamSettings::init() {
stream_index = 0;
m_stream_index_isSet = false;
center_frequency = 0;
m_center_frequency_isSet = false;
frequency_shift = 0;
m_frequency_shift_isSet = false;
sample_rate = 0;
m_sample_rate_isSet = false;
log2_decim = 0;
m_log2_decim_isSet = false;
fc_pos = 0;
m_fc_pos_isSet = false;
sample_size_index = 0;
m_sample_size_index_isSet = false;
amplitude_bits = 0;
m_amplitude_bits_isSet = false;
auto_corr_options = 0;
m_auto_corr_options_isSet = false;
modulation = 0;
m_modulation_isSet = false;
modulation_tone = 0;
m_modulation_tone_isSet = false;
am_modulation = 0;
m_am_modulation_isSet = false;
fm_deviation = 0;
m_fm_deviation_isSet = false;
dc_factor = 0.0f;
m_dc_factor_isSet = false;
i_factor = 0.0f;
m_i_factor_isSet = false;
q_factor = 0.0f;
m_q_factor_isSet = false;
phase_imbalance = 0.0f;
m_phase_imbalance_isSet = false;
}
void
SWGTestMiStreamSettings::cleanup() {
}
SWGTestMiStreamSettings*
SWGTestMiStreamSettings::fromJson(QString &json) {
QByteArray array (json.toStdString().c_str());
QJsonDocument doc = QJsonDocument::fromJson(array);
QJsonObject jsonObject = doc.object();
this->fromJsonObject(jsonObject);
return this;
}
void
SWGTestMiStreamSettings::fromJsonObject(QJsonObject &pJson) {
::SWGSDRangel::setValue(&stream_index, pJson["streamIndex"], "qint32", "");
::SWGSDRangel::setValue(&center_frequency, pJson["centerFrequency"], "qint32", "");
::SWGSDRangel::setValue(&frequency_shift, pJson["frequencyShift"], "qint32", "");
::SWGSDRangel::setValue(&sample_rate, pJson["sampleRate"], "qint32", "");
::SWGSDRangel::setValue(&log2_decim, pJson["log2Decim"], "qint32", "");
::SWGSDRangel::setValue(&fc_pos, pJson["fcPos"], "qint32", "");
::SWGSDRangel::setValue(&sample_size_index, pJson["sampleSizeIndex"], "qint32", "");
::SWGSDRangel::setValue(&amplitude_bits, pJson["amplitudeBits"], "qint32", "");
::SWGSDRangel::setValue(&auto_corr_options, pJson["autoCorrOptions"], "qint32", "");
::SWGSDRangel::setValue(&modulation, pJson["modulation"], "qint32", "");
::SWGSDRangel::setValue(&modulation_tone, pJson["modulationTone"], "qint32", "");
::SWGSDRangel::setValue(&am_modulation, pJson["amModulation"], "qint32", "");
::SWGSDRangel::setValue(&fm_deviation, pJson["fmDeviation"], "qint32", "");
::SWGSDRangel::setValue(&dc_factor, pJson["dcFactor"], "float", "");
::SWGSDRangel::setValue(&i_factor, pJson["iFactor"], "float", "");
::SWGSDRangel::setValue(&q_factor, pJson["qFactor"], "float", "");
::SWGSDRangel::setValue(&phase_imbalance, pJson["phaseImbalance"], "float", "");
}
QString
SWGTestMiStreamSettings::asJson ()
{
QJsonObject* obj = this->asJsonObject();
QJsonDocument doc(*obj);
QByteArray bytes = doc.toJson();
delete obj;
return QString(bytes);
}
QJsonObject*
SWGTestMiStreamSettings::asJsonObject() {
QJsonObject* obj = new QJsonObject();
if(m_stream_index_isSet){
obj->insert("streamIndex", QJsonValue(stream_index));
}
if(m_center_frequency_isSet){
obj->insert("centerFrequency", QJsonValue(center_frequency));
}
if(m_frequency_shift_isSet){
obj->insert("frequencyShift", QJsonValue(frequency_shift));
}
if(m_sample_rate_isSet){
obj->insert("sampleRate", QJsonValue(sample_rate));
}
if(m_log2_decim_isSet){
obj->insert("log2Decim", QJsonValue(log2_decim));
}
if(m_fc_pos_isSet){
obj->insert("fcPos", QJsonValue(fc_pos));
}
if(m_sample_size_index_isSet){
obj->insert("sampleSizeIndex", QJsonValue(sample_size_index));
}
if(m_amplitude_bits_isSet){
obj->insert("amplitudeBits", QJsonValue(amplitude_bits));
}
if(m_auto_corr_options_isSet){
obj->insert("autoCorrOptions", QJsonValue(auto_corr_options));
}
if(m_modulation_isSet){
obj->insert("modulation", QJsonValue(modulation));
}
if(m_modulation_tone_isSet){
obj->insert("modulationTone", QJsonValue(modulation_tone));
}
if(m_am_modulation_isSet){
obj->insert("amModulation", QJsonValue(am_modulation));
}
if(m_fm_deviation_isSet){
obj->insert("fmDeviation", QJsonValue(fm_deviation));
}
if(m_dc_factor_isSet){
obj->insert("dcFactor", QJsonValue(dc_factor));
}
if(m_i_factor_isSet){
obj->insert("iFactor", QJsonValue(i_factor));
}
if(m_q_factor_isSet){
obj->insert("qFactor", QJsonValue(q_factor));
}
if(m_phase_imbalance_isSet){
obj->insert("phaseImbalance", QJsonValue(phase_imbalance));
}
return obj;
}
qint32
SWGTestMiStreamSettings::getStreamIndex() {
return stream_index;
}
void
SWGTestMiStreamSettings::setStreamIndex(qint32 stream_index) {
this->stream_index = stream_index;
this->m_stream_index_isSet = true;
}
qint32
SWGTestMiStreamSettings::getCenterFrequency() {
return center_frequency;
}
void
SWGTestMiStreamSettings::setCenterFrequency(qint32 center_frequency) {
this->center_frequency = center_frequency;
this->m_center_frequency_isSet = true;
}
qint32
SWGTestMiStreamSettings::getFrequencyShift() {
return frequency_shift;
}
void
SWGTestMiStreamSettings::setFrequencyShift(qint32 frequency_shift) {
this->frequency_shift = frequency_shift;
this->m_frequency_shift_isSet = true;
}
qint32
SWGTestMiStreamSettings::getSampleRate() {
return sample_rate;
}
void
SWGTestMiStreamSettings::setSampleRate(qint32 sample_rate) {
this->sample_rate = sample_rate;
this->m_sample_rate_isSet = true;
}
qint32
SWGTestMiStreamSettings::getLog2Decim() {
return log2_decim;
}
void
SWGTestMiStreamSettings::setLog2Decim(qint32 log2_decim) {
this->log2_decim = log2_decim;
this->m_log2_decim_isSet = true;
}
qint32
SWGTestMiStreamSettings::getFcPos() {
return fc_pos;
}
void
SWGTestMiStreamSettings::setFcPos(qint32 fc_pos) {
this->fc_pos = fc_pos;
this->m_fc_pos_isSet = true;
}
qint32
SWGTestMiStreamSettings::getSampleSizeIndex() {
return sample_size_index;
}
void
SWGTestMiStreamSettings::setSampleSizeIndex(qint32 sample_size_index) {
this->sample_size_index = sample_size_index;
this->m_sample_size_index_isSet = true;
}
qint32
SWGTestMiStreamSettings::getAmplitudeBits() {
return amplitude_bits;
}
void
SWGTestMiStreamSettings::setAmplitudeBits(qint32 amplitude_bits) {
this->amplitude_bits = amplitude_bits;
this->m_amplitude_bits_isSet = true;
}
qint32
SWGTestMiStreamSettings::getAutoCorrOptions() {
return auto_corr_options;
}
void
SWGTestMiStreamSettings::setAutoCorrOptions(qint32 auto_corr_options) {
this->auto_corr_options = auto_corr_options;
this->m_auto_corr_options_isSet = true;
}
qint32
SWGTestMiStreamSettings::getModulation() {
return modulation;
}
void
SWGTestMiStreamSettings::setModulation(qint32 modulation) {
this->modulation = modulation;
this->m_modulation_isSet = true;
}
qint32
SWGTestMiStreamSettings::getModulationTone() {
return modulation_tone;
}
void
SWGTestMiStreamSettings::setModulationTone(qint32 modulation_tone) {
this->modulation_tone = modulation_tone;
this->m_modulation_tone_isSet = true;
}
qint32
SWGTestMiStreamSettings::getAmModulation() {
return am_modulation;
}
void
SWGTestMiStreamSettings::setAmModulation(qint32 am_modulation) {
this->am_modulation = am_modulation;
this->m_am_modulation_isSet = true;
}
qint32
SWGTestMiStreamSettings::getFmDeviation() {
return fm_deviation;
}
void
SWGTestMiStreamSettings::setFmDeviation(qint32 fm_deviation) {
this->fm_deviation = fm_deviation;
this->m_fm_deviation_isSet = true;
}
float
SWGTestMiStreamSettings::getDcFactor() {
return dc_factor;
}
void
SWGTestMiStreamSettings::setDcFactor(float dc_factor) {
this->dc_factor = dc_factor;
this->m_dc_factor_isSet = true;
}
float
SWGTestMiStreamSettings::getIFactor() {
return i_factor;
}
void
SWGTestMiStreamSettings::setIFactor(float i_factor) {
this->i_factor = i_factor;
this->m_i_factor_isSet = true;
}
float
SWGTestMiStreamSettings::getQFactor() {
return q_factor;
}
void
SWGTestMiStreamSettings::setQFactor(float q_factor) {
this->q_factor = q_factor;
this->m_q_factor_isSet = true;
}
float
SWGTestMiStreamSettings::getPhaseImbalance() {
return phase_imbalance;
}
void
SWGTestMiStreamSettings::setPhaseImbalance(float phase_imbalance) {
this->phase_imbalance = phase_imbalance;
this->m_phase_imbalance_isSet = true;
}
bool
SWGTestMiStreamSettings::isSet(){
bool isObjectUpdated = false;
do{
if(m_stream_index_isSet){ isObjectUpdated = true; break;}
if(m_center_frequency_isSet){ isObjectUpdated = true; break;}
if(m_frequency_shift_isSet){ isObjectUpdated = true; break;}
if(m_sample_rate_isSet){ isObjectUpdated = true; break;}
if(m_log2_decim_isSet){ isObjectUpdated = true; break;}
if(m_fc_pos_isSet){ isObjectUpdated = true; break;}
if(m_sample_size_index_isSet){ isObjectUpdated = true; break;}
if(m_amplitude_bits_isSet){ isObjectUpdated = true; break;}
if(m_auto_corr_options_isSet){ isObjectUpdated = true; break;}
if(m_modulation_isSet){ isObjectUpdated = true; break;}
if(m_modulation_tone_isSet){ isObjectUpdated = true; break;}
if(m_am_modulation_isSet){ isObjectUpdated = true; break;}
if(m_fm_deviation_isSet){ isObjectUpdated = true; break;}
if(m_dc_factor_isSet){ isObjectUpdated = true; break;}
if(m_i_factor_isSet){ isObjectUpdated = true; break;}
if(m_q_factor_isSet){ isObjectUpdated = true; break;}
if(m_phase_imbalance_isSet){ isObjectUpdated = true; break;}
}while(false);
return isObjectUpdated;
}
}

View File

@ -0,0 +1,154 @@
/**
* SDRangel
* This is the web REST/JSON API of SDRangel SDR software. SDRangel is an Open Source Qt5/OpenGL 3.0+ (4.3+ in Windows) GUI and server Software Defined Radio and signal analyzer in software. It supports Airspy, BladeRF, HackRF, LimeSDR, PlutoSDR, RTL-SDR, SDRplay RSP1 and FunCube --- Limitations and specifcities: * In SDRangel GUI the first Rx device set cannot be deleted. Conversely the server starts with no device sets and its number of device sets can be reduced to zero by as many calls as necessary to /sdrangel/deviceset with DELETE method. * Preset import and export from/to file is a server only feature. * Device set focus is a GUI only feature. * The following channels are not implemented (status 501 is returned): ATV and DATV demodulators, Channel Analyzer NG, LoRa demodulator * The device settings and report structures contains only the sub-structure corresponding to the device type. The DeviceSettings and DeviceReport structures documented here shows all of them but only one will be or should be present at a time * The channel settings and report structures contains only the sub-structure corresponding to the channel type. The ChannelSettings and ChannelReport structures documented here shows all of them but only one will be or should be present at a time ---
*
* OpenAPI spec version: 4.8.0
* Contact: f4exb06@gmail.com
*
* NOTE: This class is auto generated by the swagger code generator program.
* https://github.com/swagger-api/swagger-codegen.git
* Do not edit the class manually.
*/
/*
* SWGTestMiStreamSettings.h
*
* TestMiStreamSettings
*/
#ifndef SWGTestMiStreamSettings_H_
#define SWGTestMiStreamSettings_H_
#include <QJsonObject>
#include "SWGObject.h"
#include "export.h"
namespace SWGSDRangel {
class SWG_API SWGTestMiStreamSettings: public SWGObject {
public:
SWGTestMiStreamSettings();
SWGTestMiStreamSettings(QString* json);
virtual ~SWGTestMiStreamSettings();
void init();
void cleanup();
virtual QString asJson () override;
virtual QJsonObject* asJsonObject() override;
virtual void fromJsonObject(QJsonObject &json) override;
virtual SWGTestMiStreamSettings* fromJson(QString &jsonString) override;
qint32 getStreamIndex();
void setStreamIndex(qint32 stream_index);
qint32 getCenterFrequency();
void setCenterFrequency(qint32 center_frequency);
qint32 getFrequencyShift();
void setFrequencyShift(qint32 frequency_shift);
qint32 getSampleRate();
void setSampleRate(qint32 sample_rate);
qint32 getLog2Decim();
void setLog2Decim(qint32 log2_decim);
qint32 getFcPos();
void setFcPos(qint32 fc_pos);
qint32 getSampleSizeIndex();
void setSampleSizeIndex(qint32 sample_size_index);
qint32 getAmplitudeBits();
void setAmplitudeBits(qint32 amplitude_bits);
qint32 getAutoCorrOptions();
void setAutoCorrOptions(qint32 auto_corr_options);
qint32 getModulation();
void setModulation(qint32 modulation);
qint32 getModulationTone();
void setModulationTone(qint32 modulation_tone);
qint32 getAmModulation();
void setAmModulation(qint32 am_modulation);
qint32 getFmDeviation();
void setFmDeviation(qint32 fm_deviation);
float getDcFactor();
void setDcFactor(float dc_factor);
float getIFactor();
void setIFactor(float i_factor);
float getQFactor();
void setQFactor(float q_factor);
float getPhaseImbalance();
void setPhaseImbalance(float phase_imbalance);
virtual bool isSet() override;
private:
qint32 stream_index;
bool m_stream_index_isSet;
qint32 center_frequency;
bool m_center_frequency_isSet;
qint32 frequency_shift;
bool m_frequency_shift_isSet;
qint32 sample_rate;
bool m_sample_rate_isSet;
qint32 log2_decim;
bool m_log2_decim_isSet;
qint32 fc_pos;
bool m_fc_pos_isSet;
qint32 sample_size_index;
bool m_sample_size_index_isSet;
qint32 amplitude_bits;
bool m_amplitude_bits_isSet;
qint32 auto_corr_options;
bool m_auto_corr_options_isSet;
qint32 modulation;
bool m_modulation_isSet;
qint32 modulation_tone;
bool m_modulation_tone_isSet;
qint32 am_modulation;
bool m_am_modulation_isSet;
qint32 fm_deviation;
bool m_fm_deviation_isSet;
float dc_factor;
bool m_dc_factor_isSet;
float i_factor;
bool m_i_factor_isSet;
float q_factor;
bool m_q_factor_isSet;
float phase_imbalance;
bool m_phase_imbalance_isSet;
};
}
#endif /* SWGTestMiStreamSettings_H_ */