1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-26 01:39:05 -05:00

Reformat rational interpolator code

This commit is contained in:
f4exb 2018-12-09 22:11:39 +01:00
parent c546e40191
commit f2e3059099
2 changed files with 96 additions and 38 deletions

View File

@ -28,31 +28,43 @@ void Interpolator::createPolyphaseLowPass(
{ {
int ntaps = (int)(nbTapsPerPhase * phaseSteps); int ntaps = (int)(nbTapsPerPhase * phaseSteps);
qDebug("Interpolator::createPolyphaseLowPass: ntaps: %d", ntaps); qDebug("Interpolator::createPolyphaseLowPass: ntaps: %d", ntaps);
if((ntaps % 2) != 0)
ntaps++; if ((ntaps % 2) != 0) {
ntaps++;
}
ntaps *= phaseSteps; ntaps *= phaseSteps;
taps.resize(ntaps); taps.resize(ntaps);
std::vector<float> window(ntaps); std::vector<float> window(ntaps);
for(int n = 0; n < ntaps; n++) for (int n = 0; n < ntaps; n++) {
window[n] = 0.54 - 0.46 * cos ((2 * M_PI * n) / (ntaps - 1)); window[n] = 0.54 - 0.46 * cos ((2 * M_PI * n) / (ntaps - 1));
}
int M = (ntaps - 1) / 2; int M = (ntaps - 1) / 2;
double fwT0 = 2 * M_PI * cutoffFreqHz / sampleRateHz; double fwT0 = 2 * M_PI * cutoffFreqHz / sampleRateHz;
for(int n = -M; n <= M; n++) {
if(n == 0) taps[n + M] = fwT0 / M_PI * window[n + M]; for (int n = -M; n <= M; n++)
else taps[n + M] = sin (n * fwT0) / (n * M_PI) * window[n + M]; {
if (n == 0) {
taps[n + M] = fwT0 / M_PI * window[n + M];
} else {
taps[n + M] = sin (n * fwT0) / (n * M_PI) * window[n + M];
}
} }
double max = taps[0 + M]; double max = taps[0 + M];
for(int n = 1; n <= M; n++)
max += 2.0 * taps[n + M]; for (int n = 1; n <= M; n++) {
max += 2.0 * taps[n + M];
}
gain /= max; gain /= max;
for(int i = 0; i < ntaps; i++) for (int i = 0; i < ntaps; i++) {
taps[i] *= gain; taps[i] *= gain;
}
} }
Interpolator::Interpolator() : Interpolator::Interpolator() :
@ -90,39 +102,60 @@ void Interpolator::create(int phaseSteps, double sampleRate, double cutoff, doub
m_nTaps = taps.size() / phaseSteps; m_nTaps = taps.size() / phaseSteps;
m_phaseSteps = phaseSteps; m_phaseSteps = phaseSteps;
m_samples.resize(m_nTaps + 2); m_samples.resize(m_nTaps + 2);
for(int i = 0; i < m_nTaps + 2; i++)
m_samples[i] = 0; for (int i = 0; i < m_nTaps + 2; i++) {
m_samples[i] = 0;
}
// reorder into polyphase // reorder into polyphase
std::vector<Real> polyphase(taps.size()); std::vector<Real> polyphase(taps.size());
for(int phase = 0; phase < phaseSteps; phase++) {
for(int i = 0; i < m_nTaps; i++) for (int phase = 0; phase < phaseSteps; phase++)
polyphase[phase * m_nTaps + i] = taps[i * phaseSteps + phase]; {
for (int i = 0; i < m_nTaps; i++) {
polyphase[phase * m_nTaps + i] = taps[i * phaseSteps + phase];
}
} }
// normalize phase filters // normalize phase filters
for(int phase = 0; phase < phaseSteps; phase++) { for (int phase = 0; phase < phaseSteps; phase++)
{
Real sum = 0; Real sum = 0;
for(int i = phase * m_nTaps; i < phase * m_nTaps + m_nTaps; i++)
sum += polyphase[i]; for (int i = phase * m_nTaps; i < phase * m_nTaps + m_nTaps; i++) {
for(int i = phase * m_nTaps; i < phase * m_nTaps + m_nTaps; i++) sum += polyphase[i];
polyphase[i] /= sum; }
for (int i = phase * m_nTaps; i < phase * m_nTaps + m_nTaps; i++) {
polyphase[i] /= sum;
}
} }
// move taps around to match sse storage requirements // move taps around to match sse storage requirements
m_taps = new float[2 * taps.size() + 8]; m_taps = new float[2 * taps.size() + 8];
for(uint i = 0; i < 2 * taps.size() + 8; ++i)
m_taps[i] = 0; for (uint i = 0; i < 2 * taps.size() + 8; ++i) {
m_taps[i] = 0;
}
m_alignedTaps = (float*)((((quint64)m_taps) + 15) & ~15); m_alignedTaps = (float*)((((quint64)m_taps) + 15) & ~15);
for(uint i = 0; i < taps.size(); ++i) {
for (uint i = 0; i < taps.size(); ++i)
{
m_alignedTaps[2 * i + 0] = polyphase[i]; m_alignedTaps[2 * i + 0] = polyphase[i];
m_alignedTaps[2 * i + 1] = polyphase[i]; m_alignedTaps[2 * i + 1] = polyphase[i];
} }
m_taps2 = new float[2 * taps.size() + 8]; m_taps2 = new float[2 * taps.size() + 8];
for(uint i = 0; i < 2 * taps.size() + 8; ++i)
m_taps2[i] = 0; for (uint i = 0; i < 2 * taps.size() + 8; ++i) {
m_taps2[i] = 0;
}
m_alignedTaps2 = (float*)((((quint64)m_taps2) + 15) & ~15); m_alignedTaps2 = (float*)((((quint64)m_taps2) + 15) & ~15);
for(uint i = 1; i < taps.size(); ++i) {
for (uint i = 1; i < taps.size(); ++i)
{
m_alignedTaps2[2 * (i - 1) + 0] = polyphase[i]; m_alignedTaps2[2 * (i - 1) + 0] = polyphase[i];
m_alignedTaps2[2 * (i - 1) + 1] = polyphase[i]; m_alignedTaps2[2 * (i - 1) + 1] = polyphase[i];
} }
@ -130,7 +163,8 @@ void Interpolator::create(int phaseSteps, double sampleRate, double cutoff, doub
void Interpolator::free() void Interpolator::free()
{ {
if(m_taps != NULL) { if (m_taps != NULL)
{
delete[] m_taps; delete[] m_taps;
m_taps = NULL; m_taps = NULL;
m_alignedTaps = NULL; m_alignedTaps = NULL;

View File

@ -1,3 +1,19 @@
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2015 Edouard Griffiths, F4EXB. //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef INCLUDE_INTERPOLATOR_H #ifndef INCLUDE_INTERPOLATOR_H
#define INCLUDE_INTERPOLATOR_H #define INCLUDE_INTERPOLATOR_H
@ -17,13 +33,13 @@ public:
void free(); void free();
// Original code allowed for upsampling, but was never used that way // Original code allowed for upsampling, but was never used that way
// The decimation factor should always be lower than 2 for proper work
bool decimate(Real *distance, const Complex& next, Complex* result) bool decimate(Real *distance, const Complex& next, Complex* result)
{ {
advanceFilter(next); advanceFilter(next);
*distance -= 1.0; *distance -= 1.0;
if (*distance >= 1.0) if (*distance >= 1.0) {
{
return false; return false;
} }
@ -53,9 +69,9 @@ public:
// sampling frequency must be the highest of the two // sampling frequency must be the highest of the two
bool resample(Real* distance, const Complex& next, bool* consumed, Complex* result) bool resample(Real* distance, const Complex& next, bool* consumed, Complex* result)
{ {
while(*distance >= 1.0) while (*distance >= 1.0)
{ {
if(!(*consumed)) if (!(*consumed))
{ {
advanceFilter(next); advanceFilter(next);
*distance -= 1.0; *distance -= 1.0;
@ -104,24 +120,31 @@ private:
void advanceFilter(const Complex& next) void advanceFilter(const Complex& next)
{ {
m_ptr--; m_ptr--;
if(m_ptr < 0)
m_ptr = m_nTaps - 1; if (m_ptr < 0) {
m_ptr = m_nTaps - 1;
}
m_samples[m_ptr] = next; m_samples[m_ptr] = next;
} }
void advanceFilter() void advanceFilter()
{ {
m_ptr--; m_ptr--;
if(m_ptr < 0)
if (m_ptr < 0) {
m_ptr = m_nTaps - 1; m_ptr = m_nTaps - 1;
}
m_samples[m_ptr].real(0.0); m_samples[m_ptr].real(0.0);
m_samples[m_ptr].imag(0.0); m_samples[m_ptr].imag(0.0);
} }
void doInterpolate(int phase, Complex* result) void doInterpolate(int phase, Complex* result)
{ {
if (phase < 0) if (phase < 0) {
phase = 0; phase = 0;
}
#if USE_SSE2 #if USE_SSE2
// beware of the ringbuffer // beware of the ringbuffer
if(m_ptr == 0) { if(m_ptr == 0) {
@ -182,12 +205,13 @@ private:
Real rAcc = 0; Real rAcc = 0;
Real iAcc = 0; Real iAcc = 0;
for(int i = 0; i < m_nTaps; i++) { for (int i = 0; i < m_nTaps; i++) {
rAcc += *coeff * m_samples[sample].real(); rAcc += *coeff * m_samples[sample].real();
iAcc += *coeff * m_samples[sample].imag(); iAcc += *coeff * m_samples[sample].imag();
sample = (sample + 1) % m_nTaps; sample = (sample + 1) % m_nTaps;
coeff += 2; coeff += 2;
} }
*result = Complex(rAcc, iAcc); *result = Complex(rAcc, iAcc);
#endif #endif