1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-22 08:04:49 -05:00

LimeSDR Windows build: upgraded to LimeSuite 17.06.0

This commit is contained in:
f4exb 2017-08-10 13:12:11 +02:00
parent 22900b868a
commit f546af58e9
12 changed files with 394 additions and 434 deletions

View File

@ -35,6 +35,7 @@ INCLUDEPATH += $$LIBLIMESUITESRC/external/cpp-feather-ini-parser
SOURCES = $$LIBLIMESUITESRC/src/ADF4002/ADF4002.cpp\
$$LIBLIMESUITESRC/src/API/lms7_api.cpp\
$$LIBLIMESUITESRC/src/API/lms7_device.cpp\
$$LIBLIMESUITESRC/src/API/qLimeSDR.cpp\
src/BuiltinConnections.cpp\
$$LIBLIMESUITESRC/src/ConnectionRegistry/ConnectionHandle.cpp\
$$LIBLIMESUITESRC/src/ConnectionRegistry/ConnectionRegistry.cpp\
@ -44,8 +45,8 @@ SOURCES = $$LIBLIMESUITESRC/src/ADF4002/ADF4002.cpp\
srcmw/ConnectionSTREAM/ConnectionSTREAMing.cpp\
srcmw/ConnectionSTREAM/ConnectionSTREAMEntry.cpp\
srcmw/Connection_uLimeSDR/Connection_uLimeSDR.cpp\
srcmw/Connection_uLimeSDR/Connection_uLimeSDREntry.cpp\
srcmw/Connection_uLimeSDR/Connection_uLimeSDRing.cpp\
srcmw/Connection_uLimeSDR/Connection_uLimeSDREntry.cpp\
$$LIBLIMESUITESRC/src/ConnectionXillybus/ConnectionXillybus.cpp\
$$LIBLIMESUITESRC/src/ConnectionXillybus/ConnectionXillybusEntry.cpp\
$$LIBLIMESUITESRC/src/ConnectionXillybus/ConnectionXillybusing.cpp\
@ -77,6 +78,7 @@ SOURCES = $$LIBLIMESUITESRC/src/ADF4002/ADF4002.cpp\
HEADERS = $$LIBLIMESUITESRC/src/ADF4002/ADF4002.h\
$$LIBLIMESUITESRC/src/API/lms7_device.h\
$$LIBLIMESUITESRC/src/API/qLimeSDR.h\
$$LIBLIMESUITESRC/src/ConnectionRegistry/ConnectionHandle.h\
$$LIBLIMESUITESRC/src/ConnectionRegistry/ConnectionRegistry.h\
$$LIBLIMESUITESRC/src/ConnectionRegistry/IConnection.h\

View File

@ -28,8 +28,6 @@ using namespace std;
using namespace lime;
const uint8_t ConnectionSTREAM::streamBulkOutAddr = 0x01;
const uint8_t ConnectionSTREAM::streamBulkInAddr = 0x81;
const uint8_t ConnectionSTREAM::ctrlBulkOutAddr = 0x0F;
const uint8_t ConnectionSTREAM::ctrlBulkInAddr = 0x8F;
@ -70,6 +68,9 @@ ConnectionSTREAM::ConnectionSTREAM(void *arg, const std::string &vidpid, const s
OutCtrlEndPt3 = nullptr;
InCtrlBulkEndPt = nullptr;
OutCtrlBulkEndPt = nullptr;
for (int i = 0; i < MAX_EP_CNT; i++)
InEndPt[i] = OutEndPt[i] = nullptr;
#else
dev_handle = nullptr;
ctx = (libusb_context *)arg;
@ -178,15 +179,6 @@ double ConnectionSTREAM::DetectRefClk(void)
*/
ConnectionSTREAM::~ConnectionSTREAM()
{
for(auto i : mTxStreams)
ControlStream((size_t)i, false);
for(auto i : mRxStreams)
ControlStream((size_t)i, false);
for(auto i : mTxStreams)
CloseStream((size_t)i);
for(auto i : mRxStreams)
CloseStream((size_t)i);
UpdateThreads();
Close();
#ifndef __unix__
delete USBDevicePrimary;
@ -230,22 +222,23 @@ int ConnectionSTREAM::Open(const std::string &vidpid, const std::string &serial,
OutCtrlEndPt3->Index = CTR_W_INDEX;
OutCtrlEndPt3->TimeOut = 3000;
for (int i=0; i<USBDevicePrimary->EndPointCount(); i++)
if(USBDevicePrimary->EndPoints[i]->Address == streamBulkOutAddr)
for (int i = 0; i < USBDevicePrimary->EndPointCount(); i++)
{
auto adr = USBDevicePrimary->EndPoints[i]->Address;
if (adr < ctrlBulkOutAddr)
{
OutEndPt = USBDevicePrimary->EndPoints[i];
long len = OutEndPt->MaxPktSize * 64;
OutEndPt->SetXferSize(len);
break;
OutEndPt[adr] = USBDevicePrimary->EndPoints[i];
long len = OutEndPt[adr]->MaxPktSize * 64;
OutEndPt[adr]->SetXferSize(len);
}
for (int i=0; i<USBDevicePrimary->EndPointCount(); i++)
if(USBDevicePrimary->EndPoints[i]->Address == streamBulkInAddr)
else if (adr < ctrlBulkInAddr)
{
InEndPt = USBDevicePrimary->EndPoints[i];
long len = InEndPt->MaxPktSize * 64;
InEndPt->SetXferSize(len);
break;
adr &= 0xF;
InEndPt[adr] = USBDevicePrimary->EndPoints[i];
long len = InEndPt[adr]->MaxPktSize * 64;
InEndPt[adr]->SetXferSize(len);
}
}
InCtrlBulkEndPt = nullptr;
for (int i=0; i<USBDevicePrimary->EndPointCount(); i++)
@ -356,21 +349,21 @@ int ConnectionSTREAM::Open(const std::string &vidpid, const std::string &serial,
void ConnectionSTREAM::Close()
{
#ifndef __unix__
USBDevicePrimary->Close();
InEndPt = nullptr;
OutEndPt = nullptr;
InCtrlBulkEndPt = nullptr;
OutCtrlBulkEndPt = nullptr;
if (InCtrlEndPt3)
{
delete InCtrlEndPt3;
InCtrlEndPt3 = nullptr;
}
if (OutCtrlEndPt3)
{
delete OutCtrlEndPt3;
OutCtrlEndPt3 = nullptr;
}
USBDevicePrimary->Close();
for (int i = 0; i < MAX_EP_CNT; i++)
InEndPt[i] = OutEndPt[i] = nullptr;
InCtrlBulkEndPt = nullptr;
OutCtrlBulkEndPt = nullptr;
if (InCtrlEndPt3)
{
delete InCtrlEndPt3;
InCtrlEndPt3 = nullptr;
}
if (OutCtrlEndPt3)
{
delete OutCtrlEndPt3;
OutCtrlEndPt3 = nullptr;
}
#else
if(dev_handle != 0)
{
@ -532,9 +525,10 @@ void callback_libusbtransfer(libusb_transfer *trans)
@brief Starts asynchronous data reading from board
@param *buffer buffer where to store received data
@param length number of bytes to read
@param streamBulkInAddr endpoint index?
@return handle of transfer context
*/
int ConnectionSTREAM::BeginDataReading(char *buffer, uint32_t length)
int ConnectionSTREAM::BeginDataReading(char *buffer, uint32_t length, const uint8_t streamBulkInAddr)
{
int i = 0;
bool contextFound = false;
@ -554,8 +548,11 @@ int ConnectionSTREAM::BeginDataReading(char *buffer, uint32_t length)
}
contexts[i].used = true;
#ifndef __unix__
if(InEndPt)
contexts[i].context = InEndPt->BeginDataXfer((unsigned char*)buffer, length, contexts[i].inOvLap);
if (InEndPt[streamBulkInAddr & 0xF])
{
contexts[i].EndPt = InEndPt[streamBulkInAddr & 0xF];
contexts[i].context = contexts[i].EndPt->BeginDataXfer((unsigned char*)buffer, length, contexts[i].inOvLap);
}
return i;
#else
unsigned int Timeout = 500;
@ -587,8 +584,7 @@ int ConnectionSTREAM::WaitForReading(int contextHandle, unsigned int timeout_ms)
{
#ifndef __unix__
int status = 0;
if(InEndPt)
status = InEndPt->WaitForXfer(contexts[contextHandle].inOvLap, timeout_ms);
status = contexts[contextHandle].EndPt->WaitForXfer(contexts[contextHandle].inOvLap, timeout_ms);
return status;
#else
auto t1 = chrono::high_resolution_clock::now();
@ -622,8 +618,7 @@ int ConnectionSTREAM::FinishDataReading(char *buffer, uint32_t length, int conte
#ifndef __unix__
int status = 0;
long len = length;
if(InEndPt)
status = InEndPt->FinishDataXfer((unsigned char*)buffer, len, contexts[contextHandle].inOvLap, contexts[contextHandle].context);
status = contexts[contextHandle].EndPt->FinishDataXfer((unsigned char*)buffer, len, contexts[contextHandle].inOvLap, contexts[contextHandle].context);
contexts[contextHandle].used = false;
contexts[contextHandle].reset();
return len;
@ -641,14 +636,16 @@ int ConnectionSTREAM::FinishDataReading(char *buffer, uint32_t length, int conte
/**
@brief Aborts reading operations
*/
void ConnectionSTREAM::AbortReading()
void ConnectionSTREAM::AbortReading(int ep)
{
#ifndef __unix__
InEndPt->Abort();
for (int i = 0; i < MAX_EP_CNT; i++)
if (InEndPt[i] && InEndPt[i]->Address == ep)
InEndPt[i]->Abort();
#else
for(int i=0; i<USB_MAX_CONTEXTS; ++i)
{
if(contexts[i].used)
if(contexts[i].used && contexts[i].transfer->endpoint == ep)
libusb_cancel_transfer( contexts[i].transfer );
}
#endif
@ -658,9 +655,10 @@ void ConnectionSTREAM::AbortReading()
@brief Starts asynchronous data Sending to board
@param *buffer buffer to send
@param length number of bytes to send
@param streamBulkOutAddr endpoint index?
@return handle of transfer context
*/
int ConnectionSTREAM::BeginDataSending(const char *buffer, uint32_t length)
int ConnectionSTREAM::BeginDataSending(const char *buffer, uint32_t length, const uint8_t streamBulkOutAddr)
{
int i = 0;
//find not used context
@ -677,8 +675,11 @@ int ConnectionSTREAM::BeginDataSending(const char *buffer, uint32_t length)
return -1;
contextsToSend[i].used = true;
#ifndef __unix__
if(OutEndPt)
contextsToSend[i].context = OutEndPt->BeginDataXfer((unsigned char*)buffer, length, contextsToSend[i].inOvLap);
if (OutEndPt[streamBulkOutAddr])
{
contextsToSend[i].EndPt = OutEndPt[streamBulkOutAddr];
contextsToSend[i].context = contextsToSend[i].EndPt->BeginDataXfer((unsigned char*)buffer, length, contextsToSend[i].inOvLap);
}
return i;
#else
unsigned int Timeout = 500;
@ -708,12 +709,11 @@ int ConnectionSTREAM::WaitForSending(int contextHandle, unsigned int timeout_ms)
{
if( contextsToSend[contextHandle].used == true )
{
#ifndef __unix__
# ifndef __unix__
int status = 0;
if(OutEndPt)
status = OutEndPt->WaitForXfer(contextsToSend[contextHandle].inOvLap, timeout_ms);
status = contextsToSend[contextHandle].EndPt->WaitForXfer(contextsToSend[contextHandle].inOvLap, timeout_ms);
return status;
#else
# else
auto t1 = chrono::high_resolution_clock::now();
auto t2 = chrono::high_resolution_clock::now();
@ -725,7 +725,7 @@ int ConnectionSTREAM::WaitForSending(int contextHandle, unsigned int timeout_ms)
t2 = chrono::high_resolution_clock::now();
}
return contextsToSend[contextHandle].done == true;
#endif
# endif
}
else
return 0;
@ -744,8 +744,7 @@ int ConnectionSTREAM::FinishDataSending(const char *buffer, uint32_t length, int
{
#ifndef __unix__
long len = length;
if(OutEndPt)
OutEndPt->FinishDataXfer((unsigned char*)buffer, len, contextsToSend[contextHandle].inOvLap, contextsToSend[contextHandle].context);
contextsToSend[contextHandle].EndPt->FinishDataXfer((unsigned char*)buffer, len, contextsToSend[contextHandle].inOvLap, contextsToSend[contextHandle].context);
contextsToSend[contextHandle].used = false;
contextsToSend[contextHandle].reset();
return len;
@ -763,19 +762,39 @@ int ConnectionSTREAM::FinishDataSending(const char *buffer, uint32_t length, int
/**
@brief Aborts sending operations
*/
void ConnectionSTREAM::AbortSending()
void ConnectionSTREAM::AbortSending(int ep)
{
#ifndef __unix__
OutEndPt->Abort();
for (int i = 0; i < MAX_EP_CNT; i++)
if (OutEndPt[i] && OutEndPt[i]->Address == ep)
OutEndPt[i]->Abort();
#else
for (int i = 0; i<USB_MAX_CONTEXTS; ++i)
{
if(contextsToSend[i].used)
if(contextsToSend[i].used && contextsToSend[i].transfer->endpoint == ep)
libusb_cancel_transfer(contextsToSend[i].transfer);
}
#endif
}
int ConnectionSTREAM::SendData(const char* buffer, int length, int epIndex, int timeout)
{
const unsigned char ep = 0x01;
int context = BeginDataSending((char*)buffer, length, ep);
if (WaitForSending(context, timeout)==false)
AbortSending(ep);
return FinishDataSending((char*)buffer, length , context);
}
int ConnectionSTREAM::ReceiveData(char* buffer, int length, int epIndex, int timeout)
{
const unsigned char ep = 0x81;
int context = BeginDataReading(buffer, length, ep);
if (WaitForReading(context, timeout) == false)
AbortReading(ep);
return FinishDataReading(buffer, length, context);
}
int ConnectionSTREAM::ProgramWrite(const char *buffer, const size_t length, const int programmingMode, const int device, ProgrammingCallback callback)
{
if (device == LMS64CProtocol::FX3 && programmingMode == 1)

View File

@ -48,6 +48,7 @@ public:
memset(inOvLap, 0, sizeof(OVERLAPPED));
inOvLap->hEvent = CreateEvent(NULL, false, false, NULL);
context = NULL;
EndPt = nullptr;
#else
transfer = libusb_alloc_transfer(0);
bytesXfered = 0;
@ -80,6 +81,7 @@ public:
static int idCounter;
#ifndef __unix__
PUCHAR context;
CCyUSBEndPoint* EndPt;
OVERLAPPED* inOvLap;
#else
libusb_transfer* transfer;
@ -106,27 +108,27 @@ public:
virtual int Write(const unsigned char* buffer, int length, int timeout_ms = 100) override;
virtual int Read(unsigned char* buffer, int length, int timeout_ms = 100) override;
virtual int UploadWFM(const void* const* samples, uint8_t chCount, size_t sample_count, StreamConfig::StreamDataFormat format) override;
//hooks to update FPGA plls when baseband interface data rate is changed
virtual int UpdateExternalDataRate(const size_t channel, const double txRate, const double rxRate) override;
virtual int UpdateExternalDataRate(const size_t channel, const double txRate, const double rxRate, const double txPhase, const double rxPhase) override;
virtual int ProgramWrite(const char *buffer, const size_t length, const int programmingMode, const int device, ProgrammingCallback callback) override;
int ProgramUpdate(const bool download, ProgrammingCallback callback);
int ReadRawStreamData(char* buffer, unsigned length, int timeout_ms = 100)override;
int ReadRawStreamData(char* buffer, unsigned length, int epIndex, int timeout_ms = 100)override;
protected:
virtual void ReceivePacketsLoop(const ThreadData args) override;
virtual void TransmitPacketsLoop(const ThreadData args) override;
virtual void ReceivePacketsLoop(Streamer* args) override;
virtual void TransmitPacketsLoop(Streamer* args) override;
int SendData(const char* buffer, int length, int epIndex = 0, int timeout = 100)override;
int ReceiveData(char* buffer, int length, int epIndex = 0, int timeout = 100)override;
virtual int BeginDataReading(char* buffer, uint32_t length);
virtual int BeginDataReading(char* buffer, uint32_t length, const uint8_t streamBulkInAddr = 0x81);
virtual int WaitForReading(int contextHandle, unsigned int timeout_ms);
virtual int FinishDataReading(char* buffer, uint32_t length, int contextHandle);
virtual void AbortReading();
virtual void AbortReading(int ep);
virtual int BeginDataSending(const char* buffer, uint32_t length);
virtual int BeginDataSending(const char* buffer, uint32_t length, const uint8_t streamBulkOutAddr = 0x01);
virtual int WaitForSending(int contextHandle, uint32_t timeout_ms);
virtual int FinishDataSending(const char* buffer, uint32_t length, int contextHandle);
virtual void AbortSending();
virtual void AbortSending(int ep);
int ResetStreamBuffers() override;
eConnectionType GetType(void) {return USB_PORT;}
@ -139,14 +141,15 @@ protected:
bool isConnected;
#ifndef __unix__
static const int MAX_EP_CNT = 16;
CCyFX3Device* USBDevicePrimary;
//control endpoints
CCyControlEndPoint* InCtrlEndPt3;
CCyControlEndPoint* OutCtrlEndPt3;
//end points for samples reading and writing
CCyUSBEndPoint* InEndPt;
CCyUSBEndPoint* OutEndPt;
CCyUSBEndPoint* InEndPt[MAX_EP_CNT];
CCyUSBEndPoint* OutEndPt[MAX_EP_CNT];
CCyUSBEndPoint* InCtrlBulkEndPt;
CCyUSBEndPoint* OutCtrlBulkEndPt;
@ -157,8 +160,6 @@ protected:
int fx3_usbboot_download(unsigned char *buf, int len);
int ram_write(unsigned char *buf, unsigned int ramAddress, int len);
#endif
static const uint8_t streamBulkOutAddr;
static const uint8_t streamBulkInAddr;
static const uint8_t ctrlBulkOutAddr;
static const uint8_t ctrlBulkInAddr;
static const std::set<uint8_t> commandsToBulkCtrlHw1;

View File

@ -1,4 +1,4 @@
/**
/**
@file ConnectionSTREAMing.cpp
@author Lime Microsystems
@brief Implementation of STREAM board connection (streaming API)
@ -20,93 +20,40 @@
using namespace lime;
using namespace std;
int ConnectionSTREAM::UploadWFM(const void* const* samples, uint8_t chCount, size_t sample_count, StreamConfig::StreamDataFormat format)
{
WriteRegister(0x000C, 0x3); //channels 0,1
WriteRegister(0x000E, 0x2); //12bit samples
WriteRegister(0x000D, 0x0004); //WFM_LOAD
lime::FPGA_DataPacket pkt;
size_t samplesUsed = 0;
const complex16_t* const* src = (const complex16_t* const*)samples;
int cnt = sample_count;
const lime::complex16_t** batch = new const lime::complex16_t*[chCount];
while(cnt > 0)
{
pkt.counter = 0;
pkt.reserved[0] = 0;
int samplesToSend = cnt > 1360/chCount ? 1360/chCount : cnt;
cnt -= samplesToSend;
for(uint8_t i=0; i<chCount; ++i)
batch[i] = &src[i][samplesUsed];
samplesUsed += samplesToSend;
size_t bufPos = 0;
lime::fpga::Samples2FPGAPacketPayload(batch, samplesToSend, chCount, format, pkt.data, &bufPos);
int payloadSize = (bufPos / 4) * 4;
if(bufPos % 4 != 0)
lime::error("Packet samples count not multiple of 4");
pkt.reserved[2] = (payloadSize >> 8) & 0xFF; //WFM loading
pkt.reserved[1] = payloadSize & 0xFF; //WFM loading
pkt.reserved[0] = 0x1 << 5; //WFM loading
long bToSend = 16+payloadSize;
int context = BeginDataSending((char*)&pkt, bToSend );
if(WaitForSending(context, 250) == false)
{
FinishDataSending((char*)&pkt, bToSend , context);
break;
}
FinishDataSending((char*)&pkt, bToSend , context);
}
delete[] batch;
/*Give FX3 some time to load samples to FPGA*/
std::this_thread::sleep_for(std::chrono::milliseconds(30));
if(cnt == 0)
return 0;
else
return ReportError(-1, "Failed to upload waveform");
}
/** @brief Configures FPGA PLLs to LimeLight interface frequency
*/
int ConnectionSTREAM::UpdateExternalDataRate(const size_t channel, const double txRate_Hz, const double rxRate_Hz, const double txPhase, const double rxPhase)
{
#ifndef NDEBUG
lime::debug("ConnectionSTREAM::ConfigureFPGA_PLL(tx=%gMHz, rx=%gMHz)", txRate_Hz/1e6, rxRate_Hz/1e6);
#endif
lime::fpga::FPGA_PLL_clock clocks[2];
if (channel == 2)
{
clocks[0].index = 0;
clocks[0].outFrequency = rxRate_Hz;
clocks[1].index = 1;
clocks[1].outFrequency = txRate_Hz;
return lime::fpga::SetPllFrequency(this, 4, 30.72e6, clocks, 2);
}
const float txInterfaceClk = 2 * txRate_Hz;
const float rxInterfaceClk = 2 * rxRate_Hz;
mExpectedSampleRate = rxRate_Hz;
const int pll_ind = (channel == 1) ? 2 : 0;
lime::fpga::FPGA_PLL_clock clocks[2];
clocks[0].bypass = false;
clocks[0].index = 0;
clocks[0].outFrequency = rxInterfaceClk;
clocks[0].phaseShift_deg = 0;
clocks[0].findPhase = false;
clocks[1].bypass = false;
clocks[1].index = 1;
clocks[1].outFrequency = rxInterfaceClk;
clocks[1].phaseShift_deg = rxPhase;
clocks[1].findPhase = false;
if (lime::fpga::SetPllFrequency(this, 1, rxInterfaceClk, clocks, 2)!=0)
if (lime::fpga::SetPllFrequency(this, pll_ind+1, rxInterfaceClk, clocks, 2)!=0)
return -1;
clocks[0].bypass = false;
clocks[0].index = 0;
clocks[0].outFrequency = txInterfaceClk;
clocks[0].phaseShift_deg = 0;
clocks[0].findPhase = false;
clocks[1].bypass = false;
clocks[1].index = 1;
clocks[1].outFrequency = txInterfaceClk;
clocks[1].phaseShift_deg = txPhase;
clocks[1].findPhase = false;
if (lime::fpga::SetPllFrequency(this, 0, txInterfaceClk, clocks, 2)!=0)
if (lime::fpga::SetPllFrequency(this, pll_ind, txInterfaceClk, clocks, 2)!=0)
return -1;
return 0;
@ -116,11 +63,9 @@ int ConnectionSTREAM::UpdateExternalDataRate(const size_t channel, const double
*/
int ConnectionSTREAM::UpdateExternalDataRate(const size_t channel, const double txRate_Hz, const double rxRate_Hz)
{
#ifndef NDEBUG
lime::debug("ConnectionSTREAM::ConfigureFPGA_PLL(tx=%gMHz, rx=%gMHz)", txRate_Hz/1e6, rxRate_Hz/1e6);
#endif
const float txInterfaceClk = 2 * txRate_Hz;
const float rxInterfaceClk = 2 * rxRate_Hz;
const int pll_ind = (channel == 1) ? 2 : 0;
int status = 0;
uint32_t reg20;
const double rxPhC1[] = { 91.08, 89.46 };
@ -128,18 +73,17 @@ int ConnectionSTREAM::UpdateExternalDataRate(const size_t channel, const double
const double txPhC1[] = { 89.75, 89.61 };
const double txPhC2[] = { -3.0e-7, 2.71e-7 };
const std::vector<uint32_t> spiAddr = {0x0021, 0x0022, 0x0023, 0x0024,
0x0027, 0x002A, 0x0400, 0x040C,
0x040B, 0x0400, 0x040B, 0x0400};
const std::vector<uint32_t> spiAddr = { 0x021, 0x022, 0x023, 0x024, 0x027, 0x02A,
0x400, 0x40C, 0x40B, 0x400, 0x40B, 0x400};
const int bakRegCnt = spiAddr.size() - 4;
auto info = GetDeviceInfo();
const int addrLMS7002M = info.addrsLMS7002M.at(0);
bool phaseSearch = false;
if (this->chipVersion == 0x3841 && stoi(info.gatewareRevision) >= 7 && stoi(info.gatewareVersion) >= 2) //0x3840 LMS7002Mr2, 0x3841 LMS7002Mr3
if(rxInterfaceClk >= 5e6 || txInterfaceClk >= 5e6)
phaseSearch = true;
mExpectedSampleRate = rxRate_Hz;
if (!(mStreamers.size() > channel && (mStreamers[channel]->rxRunning || mStreamers[channel]->txRunning)))
if (this->chipVersion == 0x3841 && stoi(info.gatewareRevision) >= 7 && stoi(info.gatewareVersion) >= 2) //0x3840 LMS7002Mr2, 0x3841 LMS7002Mr3
if(rxInterfaceClk >= 5e6 || txInterfaceClk >= 5e6)
phaseSearch = true;
mExpectedSampleRate = rxRate_Hz;
std::vector<uint32_t> dataWr;
std::vector<uint32_t> dataRd;
@ -149,78 +93,61 @@ int ConnectionSTREAM::UpdateExternalDataRate(const size_t channel, const double
dataRd.resize(spiAddr.size());
//backup registers
dataWr[0] = (uint32_t(0x0020) << 16);
TransactSPI(addrLMS7002M, dataWr.data(), &reg20, 1);
ReadLMS7002MSPI(dataWr.data(), &reg20, 1, channel);
dataWr[0] = (1 << 31) | (uint32_t(0x0020) << 16) | 0xFFFD; //msbit 1=SPI write
TransactSPI(addrLMS7002M, dataWr.data(), nullptr, 1);
WriteLMS7002MSPI(dataWr.data(), 1, channel);
for (int i = 0; i < bakRegCnt; ++i)
dataWr[i] = (spiAddr[i] << 16);
TransactSPI(addrLMS7002M, dataWr.data(), dataRd.data(), bakRegCnt);
UpdateThreads(true);
ReadLMS7002MSPI(dataWr.data(),dataRd.data(), bakRegCnt, channel);
}
if(rxInterfaceClk >= 5e6)
{
if (phaseSearch)
{
const std::vector<uint32_t> spiData = { 0x0E9F, 0x07FF, 0x5550, 0xE4E4,
0xE4E4, 0x0086, 0x028D, 0x00FF,
0x5555, 0x02CD, 0xAAAA, 0x02ED};
const std::vector<uint32_t> spiData = { 0x0E9F, 0x07FF, 0x5550, 0xE4E4, 0xE4E4, 0x0086,
0x028D, 0x00FF, 0x5555, 0x02CD, 0xAAAA, 0x02ED};
//Load test config
const int setRegCnt = spiData.size();
for (int i = 0; i < setRegCnt; ++i)
dataWr[i] = (1 << 31) | (uint32_t(spiAddr[i]) << 16) | spiData[i]; //msbit 1=SPI write
TransactSPI(addrLMS7002M, dataWr.data(), nullptr, setRegCnt);
WriteLMS7002MSPI(dataWr.data(), setRegCnt, channel);
}
lime::fpga::FPGA_PLL_clock clocks[2];
clocks[0].bypass = false;
clocks[0].index = 0;
clocks[0].outFrequency = rxInterfaceClk;
clocks[0].phaseShift_deg = 0;
clocks[0].findPhase = false;
clocks[1].bypass = false;
clocks[1].index = 1;
clocks[1].outFrequency = rxInterfaceClk;
if (this->chipVersion == 0x3841)
clocks[1].phaseShift_deg = rxPhC1[1] + rxPhC2[1] * rxInterfaceClk;
else
clocks[1].phaseShift_deg = rxPhC1[0] + rxPhC2[0] * rxInterfaceClk;
if (phaseSearch)
{
clocks[1].findPhase = true;
}
else
{
clocks[1].findPhase = false;
}
status = lime::fpga::SetPllFrequency(this, 1, rxInterfaceClk, clocks, 2);
status = lime::fpga::SetPllFrequency(this, pll_ind+1, rxInterfaceClk, clocks, 2);
}
else
status = lime::fpga::SetDirectClocking(this, 1, rxInterfaceClk, 90);
status = lime::fpga::SetDirectClocking(this, pll_ind+1, rxInterfaceClk, 90);
if(txInterfaceClk >= 5e6)
{
if (phaseSearch)
{
const std::vector<uint32_t> spiData = {0x0E9F, 0x07FF, 0x5550, 0xE4E4,
0xE4E4, 0x0484};
const std::vector<uint32_t> spiData = {0x0E9F, 0x07FF, 0x5550, 0xE4E4, 0xE4E4, 0x0484};
WriteRegister(0x000A, 0x0000);
//Load test config
const int setRegCnt = spiData.size();
for (int i = 0; i < setRegCnt; ++i)
dataWr[i] = (1 << 31) | (uint32_t(spiAddr[i]) << 16) | spiData[i]; //msbit 1=SPI write
TransactSPI(addrLMS7002M, dataWr.data(), nullptr, setRegCnt);
WriteLMS7002MSPI(dataWr.data(), setRegCnt, channel);
}
lime::fpga::FPGA_PLL_clock clocks[2];
clocks[0].bypass = false;
clocks[0].index = 0;
clocks[0].outFrequency = txInterfaceClk;
clocks[0].phaseShift_deg = 0;
clocks[0].findPhase = false;
clocks[1].bypass = false;
clocks[1].index = 1;
clocks[1].outFrequency = txInterfaceClk;
if (this->chipVersion == 0x3841)
@ -233,27 +160,21 @@ int ConnectionSTREAM::UpdateExternalDataRate(const size_t channel, const double
clocks[1].findPhase = true;
WriteRegister(0x000A, 0x0200);
}
else
{
clocks[1].findPhase = false;
}
status = lime::fpga::SetPllFrequency(this, 0, txInterfaceClk, clocks, 2);
status = lime::fpga::SetPllFrequency(this, pll_ind, txInterfaceClk, clocks, 2);
}
else
status = lime::fpga::SetDirectClocking(this, 0, txInterfaceClk, 90);
status = lime::fpga::SetDirectClocking(this, pll_ind, txInterfaceClk, 90);
if (phaseSearch)
{
//Restore registers
for (int i = 0; i < bakRegCnt; ++i)
dataWr[i] = (1 << 31) | (uint32_t(spiAddr[i]) << 16) | dataRd[i]; //msbit 1=SPI write
TransactSPI(addrLMS7002M, dataWr.data(), nullptr, bakRegCnt);
WriteLMS7002MSPI(dataWr.data(), bakRegCnt, channel);
dataWr[0] = (1 << 31) | (uint32_t(0x0020) << 16) | reg20; //msbit 1=SPI write
TransactSPI(addrLMS7002M, dataWr.data(), nullptr, 1);
WriteLMS7002MSPI(dataWr.data(), 1, channel);
WriteRegister(0x000A, 0);
UpdateThreads();
}
return status;
}
@ -266,57 +187,44 @@ int ConnectionSTREAM::ResetStreamBuffers()
return TransferPacket(ctrPkt);
}
int ConnectionSTREAM::ReadRawStreamData(char* buffer, unsigned length, int timeout_ms)
int ConnectionSTREAM::ReadRawStreamData(char* buffer, unsigned length, int epIndex, int timeout_ms)
{
fpga::StopStreaming(this);
const unsigned char ep = 0x81;
fpga::StopStreaming(this, epIndex);
ResetStreamBuffers();
WriteRegister(0x0008, 0x0100 | 0x2);
WriteRegister(0x0007, 1);
ResetStreamBuffers();
WriteRegister(0x0008, 0x0100 | 0x2);
WriteRegister(0x0007, 1);
fpga::StartStreaming(this, epIndex);
fpga::StartStreaming(this);
int totalBytesReceived = ReceiveData(buffer,length, epIndex, timeout_ms);
fpga::StopStreaming(this, epIndex);
AbortReading(ep);
int handle = BeginDataReading(buffer, length);
if (WaitForReading(handle, timeout_ms) == false)
{
AbortReading();
}
fpga::StopStreaming(this);
int totalBytesReceived = FinishDataReading(buffer, length, handle);
return totalBytesReceived;
return totalBytesReceived;
}
/** @brief Function dedicated for receiving data samples from board
@param rxFIFO FIFO to store received data
@param terminate periodically pooled flag to terminate thread
@param dataRate_Bps (optional) if not NULL periodically returns data rate in bytes per second
@param stream a pointer to an active receiver stream
*/
void ConnectionSTREAM::ReceivePacketsLoop(const ThreadData args)
void ConnectionSTREAM::ReceivePacketsLoop(Streamer* stream)
{
//auto dataPort = args.dataPort;
auto terminate = args.terminate;
auto dataRate_Bps = args.dataRate_Bps;
auto generateData = args.generateData;
auto safeToConfigInterface = args.safeToConfigInterface;
//at this point FPGA has to be already configured to output samples
const uint8_t chCount = args.channels.size();
const auto link = args.channels[0]->config.linkFormat;
const uint8_t chCount = stream->mRxStreams.size();
const auto link = stream->mRxStreams[0]->config.linkFormat;
const uint32_t samplesInPacket = (link == StreamConfig::STREAM_12_BIT_COMPRESSED ? 1360 : 1020)/chCount;
const unsigned char ep = 0x81;
const int chipID = stream->mChipID;
double latency=0;
float latency=0;
for (int i = 0; i < chCount; i++)
{
latency += args.channels[i]->config.performanceLatency/chCount;
}
latency += stream->mRxStreams[i]->config.performanceLatency/chCount;
const unsigned tmp_cnt = (latency * 6)+0.5;
const uint8_t packetsToBatch = (1<<tmp_cnt);
const uint32_t bufferSize = packetsToBatch*sizeof(FPGA_DataPacket);
const uint8_t buffersCount = (tmp_cnt < 3) ? 32 : 16; // must be power of 2
const uint8_t buffersCount = 16;
vector<int> handles(buffersCount, 0);
vector<char>buffers(buffersCount*bufferSize, 0);
vector<StreamChannel::Frame> chFrames;
@ -330,24 +238,18 @@ void ConnectionSTREAM::ReceivePacketsLoop(const ThreadData args)
return;
}
uint8_t activeTransfers = 0;
int activeTransfers = 0;
for (int i = 0; i<buffersCount; ++i)
{
handles[i] = this->BeginDataReading(&buffers[i*bufferSize], bufferSize);
handles[i] = this->BeginDataReading(&buffers[i*bufferSize], bufferSize, ep);
++activeTransfers;
}
int bi = 0;
unsigned long totalBytesReceived = 0; //for data rate calculation
int m_bufferFailures = 0;
int32_t droppedSamples = 0;
int32_t packetLoss = 0;
vector<uint32_t> samplesCollected(chCount, 0);
vector<uint32_t> samplesReceived(chCount, 0);
auto t1 = chrono::high_resolution_clock::now();
auto t2 = chrono::high_resolution_clock::now();
auto t2 = t1;
std::mutex txFlagsLock;
condition_variable resetTxFlags;
@ -360,24 +262,24 @@ void ConnectionSTREAM::ReceivePacketsLoop(const ThreadData args)
uint32_t reg9;
port->ReadRegister(0x0009, reg9);
const uint32_t addr[] = {0x0009, 0x0009};
const uint32_t data[] = {reg9 | (1 << 1), reg9 & ~(1 << 1)};
const uint32_t data[] = {reg9 | (5 << 1), reg9 & ~(5 << 1)};
while (not terminate->load())
{
std::unique_lock<std::mutex> lck(*spiLock);
doWork->wait(lck);
port->WriteRegisters(addr, data, 2);
}
}, this, terminate, &txFlagsLock, &resetTxFlags);
}, this, &stream->terminateRx, &txFlagsLock, &resetTxFlags);
int resetFlagsDelay = 128;
uint64_t prevTs = 0;
while (terminate->load() == false)
while (stream->terminateRx.load() == false)
{
if(generateData->load())
if(stream->generateData.load())
{
if(activeTransfers == 0) //stop FPGA when last transfer completes
fpga::StopStreaming(this);
safeToConfigInterface->notify_all(); //notify that it's safe to change chip config
fpga::StopStreaming(this, chipID);
stream->safeToConfigInterface.notify_all(); //notify that it's safe to change chip config
const int batchSize = (this->mExpectedSampleRate/chFrames[0].samplesCount)/10;
IStreamChannel::Metadata meta;
for(int i=0; i<batchSize; ++i)
@ -390,8 +292,7 @@ void ConnectionSTREAM::ReceivePacketsLoop(const ThreadData args)
chFrames[ch].samples[j].i = 0;
chFrames[ch].samples[j].q = 0;
}
uint32_t samplesPushed = args.channels[ch]->Write((const void*)chFrames[ch].samples, chFrames[ch].samplesCount, &meta);
samplesReceived[ch] += chFrames[ch].samplesCount;
uint32_t samplesPushed = stream->mRxStreams[ch]->Write((const void*)chFrames[ch].samples, chFrames[ch].samplesCount, &meta);
if(samplesPushed != chFrames[ch].samplesCount)
lime::warning("Rx samples pushed %i/%i", samplesPushed, chFrames[ch].samplesCount);
}
@ -401,13 +302,13 @@ void ConnectionSTREAM::ReceivePacketsLoop(const ThreadData args)
int32_t bytesReceived = 0;
if(handles[bi] >= 0)
{
if (this->WaitForReading(handles[bi], 1000) == false)
++m_bufferFailures;
bytesReceived = this->FinishDataReading(&buffers[bi*bufferSize], bufferSize, handles[bi]);
if (this->WaitForReading(handles[bi], 1000) == true)
bytesReceived = this->FinishDataReading(&buffers[bi*bufferSize], bufferSize, handles[bi]);
--activeTransfers;
totalBytesReceived += bytesReceived;
if (bytesReceived != int32_t(bufferSize)) //data should come in full sized packets
++m_bufferFailures;
for(auto value: stream->mRxStreams)
value->underflow++;
}
bool txLate=false;
for (uint8_t pktIndex = 0; pktIndex < bytesReceived / sizeof(FPGA_DataPacket); ++pktIndex)
@ -424,20 +325,23 @@ void ConnectionSTREAM::ReceivePacketsLoop(const ThreadData args)
lime::info("L %llu", (unsigned long long)pkt[pktIndex].counter);
resetTxFlags.notify_one();
resetFlagsDelay = packetsToBatch*buffersCount;
if (args.reportLateTx) args.reportLateTx(pkt[pktIndex].counter);
stream->txLastLateTime.store(pkt[pktIndex].counter);
for(auto value: stream->mTxStreams)
value->pktLost++;
}
}
uint8_t* pktStart = (uint8_t*)pkt[pktIndex].data;
if(pkt[pktIndex].counter - prevTs != samplesInPacket && pkt[pktIndex].counter != prevTs)
{
int packetLoss = ((pkt[pktIndex].counter - prevTs)/samplesInPacket)-1;
#ifndef NDEBUG
lime::debug("\tRx pktLoss@%i - ts diff: %li pktLoss: %.1f", pktIndex, pkt[pktIndex].counter - prevTs, float(pkt[pktIndex].counter - prevTs)/samplesInPacket);
printf("\tRx pktLoss: ts diff: %li pktLoss: %i\n", pkt[pktIndex].counter - prevTs, packetLoss);
#endif
packetLoss += (pkt[pktIndex].counter - prevTs)/samplesInPacket;
for(auto value: stream->mRxStreams)
value->pktLost += packetLoss;
}
prevTs = pkt[pktIndex].counter;
if(args.lastTimestamp)
args.lastTimestamp->store(pkt[pktIndex].counter);
stream->rxLastTimestamp.store(prevTs);
//parse samples
vector<complex16_t*> dest(chCount);
for(uint8_t c=0; c<chCount; ++c)
@ -450,19 +354,19 @@ void ConnectionSTREAM::ReceivePacketsLoop(const ThreadData args)
IStreamChannel::Metadata meta;
meta.timestamp = pkt[pktIndex].counter;
meta.flags = RingFIFO::OVERWRITE_OLD;
uint32_t samplesPushed = args.channels[ch]->Write((const void*)chFrames[ch].samples, samplesCount, &meta, 100);
uint32_t samplesPushed = stream->mRxStreams[ch]->Write((const void*)chFrames[ch].samples, samplesCount, &meta, 100);
if(samplesPushed != samplesCount)
droppedSamples += samplesCount-samplesPushed;
stream->mRxStreams[ch]->overflow++;
}
}
// Re-submit this request to keep the queue full
if(not generateData->load())
if(not stream->generateData.load())
{
if(activeTransfers == 0) //reactivate FPGA and USB transfers
fpga::StartStreaming(this);
fpga::StartStreaming(this, chipID);
for(int i=0; i<buffersCount-activeTransfers; ++i)
{
handles[bi] = this->BeginDataReading(&buffers[bi*bufferSize], bufferSize);
handles[bi] = this->BeginDataReading(&buffers[bi*bufferSize], bufferSize, ep);
bi = (bi + 1) & (buffersCount-1);
++activeTransfers;
}
@ -480,21 +384,13 @@ void ConnectionSTREAM::ReceivePacketsLoop(const ThreadData args)
//total number of bytes sent per second
double dataRate = 1000.0*totalBytesReceived / timePeriod;
#ifndef NDEBUG
//each channel sample rate
float samplingRate = 1000.0*samplesReceived[0] / timePeriod;
lime::debug("Rx: %.3f MB/s, Fs: %.3f MHz, overrun: %i, loss: %i", dataRate / 1000000.0, samplingRate / 1000000.0, droppedSamples, packetLoss);
printf("Rx: %.3f MB/s\n", dataRate / 1000000.0);
#endif
samplesReceived[0] = 0;
totalBytesReceived = 0;
m_bufferFailures = 0;
droppedSamples = 0;
packetLoss = 0;
if (dataRate_Bps)
dataRate_Bps->store((uint32_t)dataRate);
stream->rxDataRate_Bps.store((uint32_t)dataRate);
}
}
this->AbortReading();
AbortReading(ep);
for (int j = 0; j<buffersCount; j++)
{
if(handles[bi] >= 0)
@ -506,35 +402,27 @@ void ConnectionSTREAM::ReceivePacketsLoop(const ThreadData args)
}
resetTxFlags.notify_one();
txReset.join();
if (dataRate_Bps)
dataRate_Bps->store(0);
stream->rxDataRate_Bps.store(0);
}
/** @brief Functions dedicated for transmitting packets to board
@param txFIFO data source FIFO
@param terminate periodically pooled flag to terminate thread
@param dataRate_Bps (optional) if not NULL periodically returns data rate in bytes per second
@param stream an active transmit stream
*/
void ConnectionSTREAM::TransmitPacketsLoop(const ThreadData args)
void ConnectionSTREAM::TransmitPacketsLoop(Streamer* stream)
{
//auto dataPort = args.dataPort;
auto terminate = args.terminate;
auto dataRate_Bps = args.dataRate_Bps;
//at this point FPGA has to be already configured to output samples
const uint8_t maxChannelCount = 2;
const uint8_t chCount = args.channels.size();
const auto link = args.channels[0]->config.linkFormat;
const uint8_t chCount = stream->mTxStreams.size();
const auto link = stream->mTxStreams[0]->config.linkFormat;
const unsigned char ep = 0x01;
double latency=0;
for (int i = 0; i < chCount; i++)
{
latency += args.channels[i]->config.performanceLatency/chCount;
}
latency += stream->mTxStreams[i]->config.performanceLatency/chCount;
const unsigned tmp_cnt = (latency * 6)+0.5;
const uint8_t buffersCount = 16; // must be power of 2
assert(buffersCount % 2 == 0);
const uint8_t packetsToBatch = (1<<tmp_cnt); //packets in single USB transfer
const uint32_t bufferSize = packetsToBatch*4096;
const uint32_t popTimeout_ms = 100;
@ -542,7 +430,6 @@ void ConnectionSTREAM::TransmitPacketsLoop(const ThreadData args)
const int maxSamplesBatch = (link==StreamConfig::STREAM_12_BIT_COMPRESSED?1360:1020)/chCount;
vector<int> handles(buffersCount, 0);
vector<bool> bufferUsed(buffersCount, 0);
vector<uint32_t> bytesToSend(buffersCount, 0);
vector<complex16_t> samples[maxChannelCount];
vector<char> buffers;
try
@ -553,49 +440,57 @@ void ConnectionSTREAM::TransmitPacketsLoop(const ThreadData args)
}
catch (const std::bad_alloc& ex) //not enough memory for buffers
{
lime::error("Error allocating Tx buffers, not enough memory");
return;
return lime::error("Error allocating Tx buffers, not enough memory");
}
int m_bufferFailures = 0;
long totalBytesSent = 0;
uint32_t samplesSent = 0;
auto t1 = chrono::high_resolution_clock::now();
auto t2 = chrono::high_resolution_clock::now();
auto t2 = t1;
uint8_t bi = 0; //buffer index
while (terminate->load() != true)
while (stream->terminateTx.load() != true)
{
if (bufferUsed[bi])
{
if (this->WaitForSending(handles[bi], 1000) == false)
++m_bufferFailures;
uint32_t bytesSent = this->FinishDataSending(&buffers[bi*bufferSize], bytesToSend[bi], handles[bi]);
totalBytesSent += bytesSent;
if (bytesSent != bytesToSend[bi])
++m_bufferFailures;
unsigned bytesSent = 0;
if (this->WaitForSending(handles[bi], 1000) == true) {
bytesSent = this->FinishDataSending(&buffers[bi*bufferSize], bufferSize, handles[bi]);
}
if (bytesSent != bufferSize) {
for (auto value : stream->mTxStreams) {
value->overflow++;
}
}
else {
totalBytesSent += bytesSent;
}
bufferUsed[bi] = false;
}
int i=0;
while(i<packetsToBatch && terminate->load() != true)
while(i<packetsToBatch && stream->terminateTx.load() != true)
{
IStreamChannel::Metadata meta;
FPGA_DataPacket* pkt = reinterpret_cast<FPGA_DataPacket*>(&buffers[bi*bufferSize]);
bool badSamples = false;
for(int ch=0; ch<chCount; ++ch)
{
int samplesPopped = args.channels[ch]->Read(samples[ch].data(), maxSamplesBatch, &meta, popTimeout_ms);
int samplesPopped = stream->mTxStreams[ch]->Read(samples[ch].data(), maxSamplesBatch, &meta, popTimeout_ms);
if (samplesPopped != maxSamplesBatch)
{
#ifndef NDEBUG
lime::warning("popping from TX, samples popped %i/%i", samplesPopped, maxSamplesBatch);
#endif
badSamples = true;
stream->mTxStreams[ch]->underflow++;
stream->txDataRate_Bps.store(0);
#ifndef NDEBUG
printf("popping from TX, samples popped %i/%i\n", samplesPopped, maxSamplesBatch);
#endif
break;
}
}
if(terminate->load() == true) //early termination
if (badSamples)
continue;
if(stream->terminateTx.load() == true) //early termination
break;
pkt[i].counter = meta.timestamp;
pkt[i].reserved[0] = 0;
@ -608,12 +503,10 @@ void ConnectionSTREAM::TransmitPacketsLoop(const ThreadData args)
src[c] = (samples[c].data());
uint8_t* const dataStart = (uint8_t*)pkt[i].data;
fpga::Samples2FPGAPacketPayload(src.data(), maxSamplesBatch, chCount, link, dataStart, nullptr);
samplesSent += maxSamplesBatch;
++i;
}
bytesToSend[bi] = bufferSize;
handles[bi] = this->BeginDataSending(&buffers[bi*bufferSize], bytesToSend[bi]);
handles[bi] = this->BeginDataSending(&buffers[bi*bufferSize], bufferSize, ep);
bufferUsed[bi] = true;
t2 = chrono::high_resolution_clock::now();
@ -622,23 +515,18 @@ void ConnectionSTREAM::TransmitPacketsLoop(const ThreadData args)
{
//total number of bytes sent per second
float dataRate = 1000.0*totalBytesSent / timePeriod;
if(dataRate_Bps)
dataRate_Bps->store(dataRate);
m_bufferFailures = 0;
samplesSent = 0;
stream->txDataRate_Bps.store(dataRate);
totalBytesSent = 0;
t1 = t2;
#ifndef NDEBUG
//total number of samples from all channels per second
float sampleRate = 1000.0*samplesSent / timePeriod;
lime::debug("Tx: %.3f MB/s, Fs: %.3f MHz, failures: %i", dataRate / 1000000.0, sampleRate / 1000000.0, m_bufferFailures);
printf("Tx: %.3f MB/s\n", dataRate / 1000000.0);
#endif
}
bi = (bi + 1) & (buffersCount-1);
}
// Wait for all the queued requests to be cancelled
this->AbortSending();
AbortSending(ep);
for (int j = 0; j<buffersCount; j++)
{
if (bufferUsed[bi])
@ -648,7 +536,6 @@ void ConnectionSTREAM::TransmitPacketsLoop(const ThreadData args)
}
bi = (bi + 1) & (buffersCount-1);
}
if (dataRate_Bps)
dataRate_Bps->store(0);
stream->txDataRate_Bps.store(0);
}

View File

@ -48,17 +48,8 @@ Connection_uLimeSDR::Connection_uLimeSDR(void *arg, const unsigned index, const
{
RxLoopFunction = bind(&Connection_uLimeSDR::ReceivePacketsLoop, this, std::placeholders::_1);
TxLoopFunction = bind(&Connection_uLimeSDR::TransmitPacketsLoop, this, std::placeholders::_1);
mTimestampOffset = 0;
rxLastTimestamp.store(0);
mExpectedSampleRate = 0;
generateData.store(false);
rxRunning.store(false);
txRunning.store(false);
isConnected = false;
terminateRx.store(false);
terminateTx.store(false);
rxDataRate_Bps.store(0);
txDataRate_Bps.store(0);
mStreamWrEndPtAddr = 0x03;
mStreamRdEndPtAddr = 0x83;
@ -83,15 +74,6 @@ Connection_uLimeSDR::Connection_uLimeSDR(void *arg, const unsigned index, const
*/
Connection_uLimeSDR::~Connection_uLimeSDR()
{
for(auto i : mTxStreams)
ControlStream((size_t)i, false);
for(auto i : mRxStreams)
ControlStream((size_t)i, false);
for(auto i : mTxStreams)
CloseStream((size_t)i);
for(auto i : mRxStreams)
CloseStream((size_t)i);
UpdateThreads();
Close();
}
#ifdef __unix__

View File

@ -96,10 +96,10 @@ public:
//hooks to update FPGA plls when baseband interface data rate is changed
virtual int UpdateExternalDataRate(const size_t channel, const double txRate, const double rxRate, const double txPhase, const double rxPhase)override;
virtual int UpdateExternalDataRate(const size_t channel, const double txRate, const double rxRate) override;
int ReadRawStreamData(char* buffer, unsigned length, int timeout_ms = 100)override;
int ReadRawStreamData(char* buffer, unsigned length, int epIndex, int timeout_ms = 100)override;
protected:
virtual void ReceivePacketsLoop(const ThreadData args) override;
virtual void TransmitPacketsLoop(const ThreadData args) override;
virtual void ReceivePacketsLoop(Streamer* args) override;
virtual void TransmitPacketsLoop(Streamer* args) override;
virtual int BeginDataReading(char* buffer, uint32_t length);
virtual int WaitForReading(int contextHandle, unsigned int timeout_ms);

View File

@ -101,7 +101,6 @@ int Connection_uLimeSDR::UpdateExternalDataRate(const size_t channel, const doub
for (int i = 0; i < bakRegCnt; ++i)
dataWr[i] = (spiAddr[i] << 16);
TransactSPI(addrLMS7002M, dataWr.data(), dataRd.data(), bakRegCnt);
//UpdateThreads(true);
}
if ((txInterfaceClk >= 5e6) && (rxInterfaceClk >= 5e6))
@ -186,29 +185,28 @@ int Connection_uLimeSDR::UpdateExternalDataRate(const size_t channel, const doub
dataWr[0] = (1 << 31) | (uint32_t(0x0020) << 16) | reg20; //msbit 1=SPI write
TransactSPI(addrLMS7002M, dataWr.data(), nullptr, 1);
WriteRegister(0x000A, 0);
UpdateThreads();
}
return status;
}
int Connection_uLimeSDR::ReadRawStreamData(char* buffer, unsigned length, int timeout_ms)
int Connection_uLimeSDR::ReadRawStreamData(char* buffer, unsigned length, int epIndex, int timeout_ms)
{
int totalBytesReceived = 0;
fpga::StopStreaming(this);
fpga::StopStreaming(this, epIndex);
//ResetStreamBuffers();
WriteRegister(0x0008, 0x0100 | 0x2);
WriteRegister(0x0007, 1);
fpga::StartStreaming(this);
fpga::StartStreaming(this, epIndex);
int handle = BeginDataReading(buffer, length);
if (WaitForReading(handle, timeout_ms))
totalBytesReceived = FinishDataReading(buffer, length, handle);
AbortReading();
fpga::StopStreaming(this);
fpga::StopStreaming(this, epIndex);
return totalBytesReceived;
}
@ -235,23 +233,18 @@ int Connection_uLimeSDR::ResetStreamBuffers()
@param terminate periodically pooled flag to terminate thread
@param dataRate_Bps (optional) if not NULL periodically returns data rate in bytes per second
*/
void Connection_uLimeSDR::ReceivePacketsLoop(const Connection_uLimeSDR::ThreadData args)
void Connection_uLimeSDR::ReceivePacketsLoop(Connection_uLimeSDR::Streamer* stream)
{
//auto dataPort = args.dataPort;
auto terminate = args.terminate;
auto dataRate_Bps = args.dataRate_Bps;
auto generateData = args.generateData;
auto safeToConfigInterface = args.safeToConfigInterface;
//at this point FPGA has to be already configured to output samples
const uint8_t chCount = args.channels.size();
const auto link = args.channels[0]->config.linkFormat;
const uint8_t chCount = stream->mRxStreams.size();
const auto link =stream->mRxStreams[0]->config.linkFormat;
const uint32_t samplesInPacket = (link == StreamConfig::STREAM_12_BIT_COMPRESSED ? 1360 : 1020)/chCount;
const int chipID = stream->mChipID;
double latency=0;
for (int i = 0; i < chCount; i++)
{
latency += args.channels[i]->config.performanceLatency/chCount;
latency += stream->mRxStreams[i]->config.performanceLatency/chCount;
}
const unsigned tmp_cnt = (latency * 4)+0.5;
@ -308,17 +301,17 @@ void Connection_uLimeSDR::ReceivePacketsLoop(const Connection_uLimeSDR::ThreadDa
doWork->wait(lck);
port->WriteRegisters(addr, data, 2);
}
}, this, terminate, &txFlagsLock, &resetTxFlags);
}, this, &stream->terminateRx, &txFlagsLock, &resetTxFlags);
int resetFlagsDelay = 128;
uint64_t prevTs = 0;
while (terminate->load() == false)
while (stream->terminateRx.load() == false)
{
if(generateData->load())
if(stream->generateData.load())
{
if(activeTransfers == 0) //stop FPGA when last transfer completes
fpga::StopStreaming(this);
safeToConfigInterface->notify_all(); //notify that it's safe to change chip config
fpga::StopStreaming(this, chipID);
stream->safeToConfigInterface.notify_all(); //notify that it's safe to change chip config
const int batchSize = (this->mExpectedSampleRate/chFrames[0].samplesCount)/10;
IStreamChannel::Metadata meta;
for(int i=0; i<batchSize; ++i)
@ -331,7 +324,7 @@ void Connection_uLimeSDR::ReceivePacketsLoop(const Connection_uLimeSDR::ThreadDa
chFrames[ch].samples[j].i = 0;
chFrames[ch].samples[j].q = 0;
}
uint32_t samplesPushed = args.channels[ch]->Write((const void*)chFrames[ch].samples, chFrames[ch].samplesCount, &meta);
uint32_t samplesPushed = stream->mRxStreams[ch]->Write((const void*)chFrames[ch].samples, chFrames[ch].samplesCount, &meta);
samplesReceived[ch] += chFrames[ch].samplesCount;
if(samplesPushed != chFrames[ch].samplesCount)
printf("Rx samples pushed %i/%i\n", samplesPushed, chFrames[ch].samplesCount);
@ -365,7 +358,7 @@ void Connection_uLimeSDR::ReceivePacketsLoop(const Connection_uLimeSDR::ThreadDa
printf("L");
resetTxFlags.notify_one();
resetFlagsDelay = packetsToBatch*buffersCount;
if (args.reportLateTx) args.reportLateTx(pkt[pktIndex].counter);
stream->txLastLateTime.store(pkt[pktIndex].counter);
}
}
uint8_t* pktStart = (uint8_t*)pkt[pktIndex].data;
@ -377,8 +370,7 @@ void Connection_uLimeSDR::ReceivePacketsLoop(const Connection_uLimeSDR::ThreadDa
packetLoss += (pkt[pktIndex].counter - prevTs)/samplesInPacket;
}
prevTs = pkt[pktIndex].counter;
if(args.lastTimestamp)
args.lastTimestamp->store(pkt[pktIndex].counter);
stream->rxLastTimestamp.store(pkt[pktIndex].counter);
//parse samples
vector<complex16_t*> dest(chCount);
for(uint8_t c=0; c<chCount; ++c)
@ -391,16 +383,16 @@ void Connection_uLimeSDR::ReceivePacketsLoop(const Connection_uLimeSDR::ThreadDa
IStreamChannel::Metadata meta;
meta.timestamp = pkt[pktIndex].counter;
meta.flags = RingFIFO::OVERWRITE_OLD;
uint32_t samplesPushed = args.channels[ch]->Write((const void*)chFrames[ch].samples, samplesCount, &meta, 100);
uint32_t samplesPushed = stream->mRxStreams[ch]->Write((const void*)chFrames[ch].samples, samplesCount, &meta, 100);
if(samplesPushed != samplesCount)
droppedSamples += samplesCount-samplesPushed;
}
}
// Re-submit this request to keep the queue full
if(not generateData->load())
if(not stream->generateData.load())
{
if(activeTransfers == 0) //reactivate FPGA and USB transfers
fpga::StartStreaming(this);
fpga::StartStreaming(this, chipID);
for(int i=0; i<buffersCount-activeTransfers; ++i)
{
handles[bi] = this->BeginDataReading(&buffers[bi*bufferSize], bufferSize);
@ -430,9 +422,7 @@ void Connection_uLimeSDR::ReceivePacketsLoop(const Connection_uLimeSDR::ThreadDa
m_bufferFailures = 0;
droppedSamples = 0;
packetLoss = 0;
if (dataRate_Bps)
dataRate_Bps->store((uint32_t)dataRate);
stream->rxDataRate_Bps.store((uint32_t)dataRate);
}
}
this->AbortReading();
@ -447,8 +437,7 @@ void Connection_uLimeSDR::ReceivePacketsLoop(const Connection_uLimeSDR::ThreadDa
}
resetTxFlags.notify_one();
txReset.join();
if (dataRate_Bps)
dataRate_Bps->store(0);
stream->rxDataRate_Bps.store(0);
}
/** @brief Functions dedicated for transmitting packets to board
@ -456,21 +445,17 @@ void Connection_uLimeSDR::ReceivePacketsLoop(const Connection_uLimeSDR::ThreadDa
@param terminate periodically pooled flag to terminate thread
@param dataRate_Bps (optional) if not NULL periodically returns data rate in bytes per second
*/
void Connection_uLimeSDR::TransmitPacketsLoop(const Connection_uLimeSDR::ThreadData args)
void Connection_uLimeSDR::TransmitPacketsLoop(Streamer* stream)
{
//auto dataPort = args.dataPort;
auto terminate = args.terminate;
auto dataRate_Bps = args.dataRate_Bps;
//at this point FPGA has to be already configured to output samples
const uint8_t maxChannelCount = 2;
const uint8_t chCount = args.channels.size();
const auto link = args.channels[0]->config.linkFormat;
const uint8_t chCount = stream->mTxStreams.size();
const auto link = stream->mTxStreams[0]->config.linkFormat;
double latency=0;
for (int i = 0; i < chCount; i++)
{
latency += args.channels[i]->config.performanceLatency/chCount;
latency += stream->mTxStreams[i]->config.performanceLatency/chCount;
}
const unsigned tmp_cnt = (latency * 4)+0.5;
@ -507,7 +492,7 @@ void Connection_uLimeSDR::TransmitPacketsLoop(const Connection_uLimeSDR::ThreadD
auto t2 = chrono::high_resolution_clock::now();
uint8_t bi = 0; //buffer index
while (terminate->load() != true)
while (stream->terminateTx.load() != true)
{
if (bufferUsed[bi])
{
@ -521,13 +506,13 @@ void Connection_uLimeSDR::TransmitPacketsLoop(const Connection_uLimeSDR::ThreadD
}
int i=0;
while(i<packetsToBatch && terminate->load() != true)
while(i<packetsToBatch && stream->terminateTx.load() != true)
{
IStreamChannel::Metadata meta;
FPGA_DataPacket* pkt = reinterpret_cast<FPGA_DataPacket*>(&buffers[bi*bufferSize]);
for(int ch=0; ch<chCount; ++ch)
{
int samplesPopped = args.channels[ch]->Read(samples[ch].data(), maxSamplesBatch, &meta, popTimeout_ms);
int samplesPopped = stream->mTxStreams[ch]->Read(samples[ch].data(), maxSamplesBatch, &meta, popTimeout_ms);
if (samplesPopped != maxSamplesBatch)
{
#ifndef NDEBUG
@ -536,7 +521,7 @@ void Connection_uLimeSDR::TransmitPacketsLoop(const Connection_uLimeSDR::ThreadD
}
}
if(terminate->load() == true) //early termination
if(stream->terminateTx.load() == true) //early termination
break;
pkt[i].counter = meta.timestamp;
pkt[i].reserved[0] = 0;
@ -563,8 +548,7 @@ void Connection_uLimeSDR::TransmitPacketsLoop(const Connection_uLimeSDR::ThreadD
{
//total number of bytes sent per second
float dataRate = 1000.0*totalBytesSent / timePeriod;
if(dataRate_Bps)
dataRate_Bps->store(dataRate);
stream->txDataRate_Bps.store(dataRate);
m_bufferFailures = 0;
samplesSent = 0;
totalBytesSent = 0;
@ -589,6 +573,5 @@ void Connection_uLimeSDR::TransmitPacketsLoop(const Connection_uLimeSDR::ThreadD
}
bi = (bi + 1) & (buffersCount-1);
}
if (dataRate_Bps)
dataRate_Bps->store(0);
stream->txDataRate_Bps.store(0);
}

View File

@ -33,7 +33,7 @@ static const char *errToStr(const int errnum)
strerror_r(errnum, buff, sizeof(buff));
#else
//this version may decide to use its own internal string
//return strerror_r(errnum, buff, sizeof(buff)); MinGW
//return strerror_r(errnum, buff, sizeof(buff));
return buff;
#endif
return buff;

View File

@ -103,7 +103,7 @@ void LMS7002M::Log(LogType type, const char *format, va_list argList)
/** @brief Sets connection which is used for data communication with chip
*/
void LMS7002M::SetConnection(IConnection* port, const size_t devIndex, IConnection* samplesPort)
void LMS7002M::SetConnection(IConnection* port, const size_t devIndex)
{
controlPort = port;
mdevIndex = devIndex;
@ -111,7 +111,6 @@ void LMS7002M::SetConnection(IConnection* port, const size_t devIndex, IConnecti
if (controlPort != nullptr)
{
unsigned byte_array_size = 0;
addrLMS7002M = controlPort->GetDeviceInfo().addrsLMS7002M.at(devIndex);
if (controlPort->IsOpen())
{
unsigned chipRev = this->Get_SPI_Reg_bits(LMS7_MASK, true);
@ -120,12 +119,8 @@ void LMS7002M::SetConnection(IConnection* port, const size_t devIndex, IConnecti
else
byte_array_size = 1024 * 8;
}
mcuControl->Initialize(port, byte_array_size);
mcuControl->Initialize(port, mdevIndex, byte_array_size);
}
if(samplesPort == nullptr)
dataPort = controlPort;
else
dataPort = samplesPort;
}
/** @brief Creates LMS7002M main control object.
@ -136,8 +131,6 @@ LMS7002M::LMS7002M() :
mValueCache(new CalibrationCache()),
mRegistersMap(new LMS7002M_RegistersMap()),
controlPort(nullptr),
dataPort(nullptr),
addrLMS7002M(-1),
mdevIndex(0),
mSelfCalDepth(0)
{
@ -205,7 +198,7 @@ LMS7002M::LMS7002M() :
mRegistersMap->InitializeDefaultValues(LMS7parameterList);
mcuControl = new MCU_BD();
mcuControl->Initialize(controlPort);
mcuControl->Initialize(nullptr);
}
LMS7002M::~LMS7002M()
@ -253,8 +246,6 @@ int LMS7002M::EnableChannel(const bool isTx, const bool enable)
//--- ADC/DAC ---
this->Modify_SPI_Reg_bits(LMS7param(EN_DIR_AFE), 1);
this->Modify_SPI_Reg_bits(LMS7param(EN_G_AFE), enable?1:0);
this->Modify_SPI_Reg_bits(LMS7param(PD_AFE), enable?0:1);
if (ch == ChA)
{
if (isTx) this->Modify_SPI_Reg_bits(LMS7param(PD_TX_AFE1), enable?0:1);
@ -266,26 +257,43 @@ int LMS7002M::EnableChannel(const bool isTx, const bool enable)
else this->Modify_SPI_Reg_bits(LMS7param(PD_RX_AFE2), enable?0:1);
}
int disabledChannels = (Get_SPI_Reg_bits(LMS7_PD_AFE.address,4,1)&0xF);//check if all channels are disabled
Modify_SPI_Reg_bits(LMS7param(EN_G_AFE),disabledChannels==0xF ? 0 : 1);
Modify_SPI_Reg_bits(LMS7param(PD_AFE), disabledChannels==0xF ? 1 : 0);
//--- digital ---
if (isTx)
{
this->Modify_SPI_Reg_bits(LMS7param(EN_TXTSP), enable?1:0);
this->Modify_SPI_Reg_bits(LMS7param(ISINC_BYP_TXTSP), enable?0:1);
this->Modify_SPI_Reg_bits(LMS7param(GFIR3_BYP_TXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(GFIR2_BYP_TXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(GFIR1_BYP_TXTSP), 1);
if (!enable)
{
this->Modify_SPI_Reg_bits(LMS7param(CMIX_BYP_TXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(DC_BYP_TXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(GC_BYP_TXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(PH_BYP_TXTSP), 1);
}
}
else
{
this->Modify_SPI_Reg_bits(LMS7param(EN_RXTSP), enable?1:0);
this->Modify_SPI_Reg_bits(LMS7param(DC_BYP_RXTSP), enable?0:1);
this->Modify_SPI_Reg_bits(LMS7param(DCLOOP_STOP), enable?0:1);
this->Modify_SPI_Reg_bits(LMS7param(AGC_MODE_RXTSP), 2); //bypass
this->Modify_SPI_Reg_bits(LMS7param(CMIX_BYP_RXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(AGC_BYP_RXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(GFIR3_BYP_RXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(GFIR2_BYP_RXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(GFIR1_BYP_RXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(DC_BYP_RXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(GC_BYP_RXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(PH_BYP_RXTSP), 1);
if (!enable)
{
this->Modify_SPI_Reg_bits(LMS7param(CMIX_BYP_RXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(GC_BYP_RXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(PH_BYP_RXTSP), 1);
}
}
//--- baseband ---
@ -324,7 +332,7 @@ int LMS7002M::EnableChannel(const bool isTx, const bool enable)
{
this->SetActiveChannel(ChSXT);
this->Modify_SPI_Reg_bits(LMS7param(EN_DIR_SXRSXT), 1);
this->Modify_SPI_Reg_bits(LMS7param(EN_G), enable?1:0);
this->Modify_SPI_Reg_bits(LMS7param(EN_G), (disabledChannels&3) == 3?0:1);
if (ch == ChB) //enable LO to channel B
{
this->SetActiveChannel(ChA);
@ -335,7 +343,7 @@ int LMS7002M::EnableChannel(const bool isTx, const bool enable)
{
this->SetActiveChannel(ChSXR);
this->Modify_SPI_Reg_bits(LMS7param(EN_DIR_SXRSXT), 1);
this->Modify_SPI_Reg_bits(LMS7param(EN_G), enable?1:0);
this->Modify_SPI_Reg_bits(LMS7param(EN_G), (disabledChannels&0xC)==0xC?0:1);
if (ch == ChB) //enable LO to channel B
{
this->SetActiveChannel(ChA);
@ -695,9 +703,10 @@ int LMS7002M::SaveConfig(const char* filename)
fout << "[lms7002_registers_b]" << endl;
addrToRead.clear(); //add only B channel addresses
for (uint8_t i = 0; i < MEMORY_SECTIONS_COUNT; ++i)
for (uint16_t addr = MemorySectionAddresses[i][0]; addr <= MemorySectionAddresses[i][1]; ++addr)
if (addr >= 0x0100)
addrToRead.push_back(addr);
if (i != RSSI_DC_CALIBRATION)
for (uint16_t addr = MemorySectionAddresses[i][0]; addr <= MemorySectionAddresses[i][1]; ++addr)
if (addr >= 0x0100)
addrToRead.push_back(addr);
this->SetActiveChannel(ChB);
for (uint16_t i = 0; i < addrToRead.size(); ++i)
@ -1876,8 +1885,7 @@ int LMS7002M::SPI_write_batch(const uint16_t* spiAddr, const uint16_t* spiData,
}
checkConnection();
return controlPort->TransactSPI(addrLMS7002M, data.data(), nullptr, cnt);
return controlPort->WriteLMS7002MSPI(data.data(), cnt,mdevIndex);
}
/** @brief Batches multiple register reads into least amount of transactions
@ -1897,7 +1905,8 @@ int LMS7002M::SPI_read_batch(const uint16_t* spiAddr, uint16_t* spiData, uint16_
dataWr[i] = (uint32_t(spiAddr[i]) << 16);
}
int status = controlPort->TransactSPI(addrLMS7002M, dataWr.data(), dataRd.data(), cnt);
int status = controlPort->ReadLMS7002MSPI(dataWr.data(), dataRd.data(), cnt,mdevIndex);
if (status != 0) return status;
int mac = mRegistersMap->GetValue(0, LMS7param(MAC).address) & 0x0003;
@ -1990,9 +1999,10 @@ int LMS7002M::RegistersTest(const char* fileName)
ss << moduleNames[i] << " [" << chex << ":";
sprintf(chex, "0x%04X", endAddr);
ss << chex << "]";
if (startAddr >= 0x0100)
if (startAddr >= 0x0100) {
ss << " Ch." << (cc == 1 ? "A" : "B");
ss << endl;
}
ss << endl;
for (uint8_t p = 0; p < patternsCount; ++p)
moduleTestsSuccess &= RegistersTestInterval(startAddr, endAddr, patterns[p], ss) == 0;
}
@ -2140,7 +2150,8 @@ bool LMS7002M::IsSynced()
std::vector<uint32_t> dataRd(addrToRead.size());
for(size_t i = 0; i < addrToRead.size(); ++i)
dataWr[i] = (uint32_t(addrToRead[i]) << 16);
status = controlPort->TransactSPI(addrLMS7002M, dataWr.data(), dataRd.data(), dataWr.size());
status = controlPort->ReadLMS7002MSPI(dataWr.data(), dataRd.data(), dataWr.size(),mdevIndex);
for(size_t i=0; i<addrToRead.size(); ++i)
dataReceived[i] = dataRd[i] & 0xFFFF;
if (status != 0)
@ -2178,7 +2189,7 @@ bool LMS7002M::IsSynced()
dataRd.resize(addrToRead.size());
for(size_t i = 0; i < addrToRead.size(); ++i)
dataWr[i] = (uint32_t(addrToRead[i]) << 16);
status = controlPort->TransactSPI(addrLMS7002M, dataWr.data(), dataRd.data(), dataWr.size());
status = controlPort->ReadLMS7002MSPI(dataWr.data(), dataRd.data(), dataWr.size(),mdevIndex);
for(size_t i=0; i<addrToRead.size(); ++i)
dataReceived[i] = dataRd[i] & 0xFFFF;
if (status != 0)
@ -2461,7 +2472,7 @@ bool LMS7002M::GetRxDCRemoval(void)
int LMS7002M::SetTxDCOffset(const float_type I, const float_type Q)
{
const bool bypass = I == 0.0 and Q == 0.0;
this->Modify_SPI_Reg_bits(LMS7param(DC_BYP_RXTSP), bypass?1:0);
this->Modify_SPI_Reg_bits(LMS7param(DC_BYP_TXTSP), bypass?1:0);
this->Modify_SPI_Reg_bits(LMS7param(DCCORRI_TXTSP), std::lrint(I*128));
this->Modify_SPI_Reg_bits(LMS7param(DCCORRQ_TXTSP), std::lrint(Q*128));
return 0;

View File

@ -28,6 +28,7 @@ MCU_BD::MCU_BD()
stepsDone = 0;
aborted = false;
callback = nullptr;
mChipID =0;
//ctor
int i=0;
m_serPort=NULL;
@ -50,9 +51,10 @@ MCU_BD::~MCU_BD()
//dtor
}
void MCU_BD::Initialize(IConnection* pSerPort, unsigned size)
void MCU_BD::Initialize(IConnection* pSerPort, unsigned chipID, unsigned size)
{
m_serPort = pSerPort;
mChipID = chipID;
if (size > 0)
byte_array_size = size;
}
@ -119,7 +121,7 @@ void MCU_BD:: mSPI_write(
if(m_serPort == nullptr)
return;
uint32_t wrdata = addr_reg << 16 | data_reg;
m_serPort->TransactSPI(0x10, &wrdata, nullptr, 1);
m_serPort->WriteLMS7002MSPI(&wrdata, 1, mChipID);
}
@ -130,8 +132,9 @@ unsigned short MCU_BD:: mSPI_read(
return 0;
uint32_t wrdata = addr_reg << 16;
uint32_t rddata = 0;
if(m_serPort->TransactSPI(0x10, &wrdata, &rddata, 1) != 0)
if(m_serPort->ReadLMS7002MSPI(&wrdata, &rddata, 1, mChipID)!=0)
return 0;
return rddata & 0xFFFF;
}
@ -572,18 +575,90 @@ int MCU_BD::Program_MCU(int m_iMode1, int m_iMode0)
case 3: mode = IConnection::MCU_PROG_MODE::BOOT_SRAM_FROM_EEPROM; break;
default: mode = IConnection::MCU_PROG_MODE::RESET; break;
}
if(m_serPort)
return m_serPort->ProgramMCU(byte_array, byte_array_size, mode, callback);
else
return ReportError(ENOLINK, "Device not connected");
return Program_MCU(byte_array,mode);
}
int MCU_BD::Program_MCU(const uint8_t* binArray, const IConnection::MCU_PROG_MODE mode)
int MCU_BD::Program_MCU(const uint8_t* buffer, const IConnection::MCU_PROG_MODE mode)
{
if(m_serPort)
return m_serPort->ProgramMCU(binArray, byte_array_size, mode, callback);
else
if(!m_serPort)
return ReportError(ENOLINK, "Device not connected");
if (byte_array_size <= 8192)
return m_serPort->ProgramMCU(buffer, byte_array_size, mode, callback);
#ifndef NDEBUG
auto timeStart = std::chrono::high_resolution_clock::now();
#endif
const auto timeout = std::chrono::milliseconds(100);
const uint32_t controlAddr = 0x0002 << 16;
const uint32_t statusReg = 0x0003 << 16;
const uint32_t addrDTM = 0x0004 << 16; //data to MCU
const uint16_t EMTPY_WRITE_BUFF = 1 << 0;
const uint16_t PROGRAMMED = 1 << 6;
const uint8_t fifoLen = 64;
uint32_t wrdata[fifoLen];
uint32_t rddata = 0;
int status;
bool abort = false;
//reset MCU, set mode
wrdata[0] = controlAddr | 0;
wrdata[1] = controlAddr | (mode & 0x3);
if((status = m_serPort->WriteLMS7002MSPI(wrdata, 2, mChipID))!=0)
return status;
if(callback)
abort = callback(0, byte_array_size, "");
for(uint16_t i=0; i<byte_array_size && !abort; i+=fifoLen)
{
//wait till EMPTY_WRITE_BUFF = 1
bool fifoEmpty = false;
wrdata[0] = statusReg;
auto t1 = std::chrono::high_resolution_clock::now();
auto t2 = t1;
do{
if((status = m_serPort->ReadLMS7002MSPI(wrdata, &rddata, 1, mChipID))!=0)
return status;
fifoEmpty = rddata & EMTPY_WRITE_BUFF;
t2 = std::chrono::high_resolution_clock::now();
}while( (!fifoEmpty) && (t2-t1)<timeout);
if(!fifoEmpty)
return ReportError(ETIMEDOUT, "MCU FIFO full");
//write 32 bytes into FIFO
for(uint8_t j=0; j<fifoLen; ++j)
wrdata[j] = addrDTM | buffer[i+j];
if((status = m_serPort->WriteLMS7002MSPI(wrdata,fifoLen, mChipID))!=0)
return status;
if(callback)
abort = callback(i+fifoLen, byte_array_size, "");
#ifndef NDEBUG
printf("MCU programming : %4i/%4li\r", i+fifoLen, long(byte_array_size));
#endif
};
if(abort)
return ReportError(-1, "operation aborted by user");
//wait until programmed flag
wrdata[0] = statusReg;
bool programmed = false;
auto t1 = std::chrono::high_resolution_clock::now();
auto t2 = t1;
do{
if((status = m_serPort->ReadLMS7002MSPI(wrdata, &rddata, 1, mChipID))!=0)
return status;
programmed = rddata & PROGRAMMED;
t2 = std::chrono::high_resolution_clock::now();
}while( (!programmed) && (t2-t1)<timeout);
#ifndef NDEBUG
auto timeEnd = std::chrono::high_resolution_clock::now();
printf("\nMCU Programming finished, %li ms\n",
std::chrono::duration_cast<std::chrono::milliseconds>
(timeEnd-timeStart).count());
#endif
if(!programmed)
return ReportError(ETIMEDOUT, "MCU not programmed");
return 0;
}
void MCU_BD::Reset_MCU()

View File

@ -452,7 +452,7 @@ public:
m_top = 0;
for (vi = m_chunks.begin(); vi < m_chunks.end(); vi++)
{
//m_top = m_top > vi->m_startAddress + vi->m_bytes.size() - 1 ? m_top : vi->m_startAddress + vi->m_bytes.size() - 1;
//m_top = max(m_top, vi->m_startAddress + vi->m_bytes.size() - 1);
m_top = MYMAX(m_top, vi->m_startAddress + vi->m_bytes.size() - 1);
}
}

View File

@ -25,8 +25,8 @@ copy libhackrf\%1\libhackrf.dll %2
copy librtlsdr\%1\librtlsdr.dll %2
copy libairspy\%1\libairspy.dll %2
copy libbladerf\%1\libbladerf.dll %2
REM copy libsqlite3\%1\libsqlite3.dll %2
REM copy liblimesuite\%1\liblimesuite.dll %2
copy libsqlite3\%1\libsqlite3.dll %2
copy liblimesuite\%1\liblimesuite.dll %2
copy %libusbdir%\dll\libusb-1.0.dll %2
copy %opencvdir%\opencv_ffmpeg2413_64.dll %2
copy %opencvdir%\libopencv_imgproc2413.dll %2
@ -60,8 +60,8 @@ copy plugins\samplesource\rtlsdr\%1\inputrtlsdr.dll %2\plugins\samplesource
copy plugins\samplesource\hackrfinput\%1\inputhackrf.dll %2\plugins\samplesource
copy plugins\samplesource\airspy\%1\inputairspy.dll %2\plugins\samplesource
copy plugins\samplesource\bladerfinput\%1\inputbladerf.dll %2\plugins\samplesource
REM copy plugins\samplesource\limesdrinput\%1\inputlimesdr.dll %2\plugins\samplesource
copy plugins\samplesource\limesdrinput\%1\inputlimesdr.dll %2\plugins\samplesource
copy plugins\samplesink\filesink\%1\outputfilesink.dll %2\plugins\samplesink
copy plugins\samplesink\bladerfoutput\%1\outputbladerf.dll %2\plugins\samplesink
copy plugins\samplesink\hackrfoutput\%1\outputhackrf.dll %2\plugins\samplesink
REM copy plugins\samplesink\limesdroutput\%1\outputlimesdr.dll %2\plugins\samplesink
copy plugins\samplesink\limesdroutput\%1\outputlimesdr.dll %2\plugins\samplesink