AGC in .cpp

This commit is contained in:
f4exb 2015-09-07 23:31:34 +02:00
parent 15c050c360
commit f5809b95c0
3 changed files with 267 additions and 299 deletions

View File

@ -55,6 +55,7 @@ set(sdrbase_SOURCES
sdrbase/audio/audiofifo.cpp
sdrbase/audio/audiooutput.cpp
sdrbase/dsp/agc.cpp
sdrbase/dsp/afsquelch.cpp
sdrbase/dsp/channelizer.cpp
sdrbase/dsp/channelmarker.cpp

View File

@ -10,146 +10,22 @@
#include "movingaverage.h"
class SimpleAGC
class AGC
{
public:
SimpleAGC() :
m_squelchOpen(false),
m_fill(0),
m_cutoff(0),
m_clip(0),
m_moving_average()
{}
AGC();
AGC(int historySize, Real R);
virtual ~AGC();
SimpleAGC(int historySize, Real initial, Real cutoff=0, Real clip=0) :
m_squelchOpen(false),
m_fill(initial),
m_cutoff(cutoff),
m_clip(clip),
m_moving_average(historySize, initial)
{}
void resize(int historySize, Real R);
Real getValue();
Real getDelayedValue();
virtual void feed(Complex& ci) = 0;
void openedSquelch();
void closedSquelch();
void resize(int historySize, Real initial, Real cutoff=0, Real clip=0)
{
m_fill = initial;
m_cutoff = cutoff;
m_clip = clip;
m_moving_average.resize(historySize, initial);
}
Real getValue()
{
if (m_moving_average.average() > m_clip)
{
return m_moving_average.average();
} else
{
return m_clip;
}
}
void feed(Real value)
{
if (value > m_cutoff)
{
m_moving_average.feed(value);
}
}
void openedSquelch()
{
m_squelchOpen = true;
}
void closedSquelch()
{
if (m_squelchOpen)
{
//m_moving_average.fill(m_fill); // Valgrind optim
m_squelchOpen = false;
}
}
private:
bool m_squelchOpen; // open for processing
Real m_fill; // refill average at this level
Real m_cutoff; // consider samples only above this level
Real m_clip; // never go below this level
MovingAverage<Real> m_moving_average; // Averaging engine. The stack length conditions the smoothness of AGC.
};
class MagSquaredAGC
{
public:
MagSquaredAGC() :
m_u0(1.0),
m_R(1.0),
m_moving_average(),
m_historySize(0),
m_count(0)
{}
MagSquaredAGC(int historySize, Real R) :
m_u0(1.0),
m_R(R),
m_moving_average(historySize, m_R),
m_historySize(historySize),
m_count(0)
{}
void resize(int historySize, Real R)
{
m_R = R;
m_moving_average.resize(historySize, R);
m_historySize = historySize;
m_count = 0;
}
Real getValue()
{
return m_u0;
}
Real getDelayedValue()
{
if (m_count < m_historySize*m_mult)
{
return 0;
}
else
{
return 1;
}
}
void feed(Complex& ci)
{
ci *= m_u0;
Real magsq = ci.real()*ci.real() + ci.imag()*ci.imag();
m_moving_average.feed(magsq);
}
void openedSquelch()
{
if (m_count < m_historySize*m_mult)
{
m_count++;
}
m_u0 = m_R / m_moving_average.average();
}
void closedSquelch()
{
//m_moving_average.fill(m_R); // Valgrind optim
m_count = 0;
m_u0 = m_R / m_moving_average.average();
}
private:
protected:
Real m_u0;
Real m_R; // objective mag
MovingAverage<Real> m_moving_average; // Averaging engine. The stack length conditions the smoothness of AGC.
@ -158,182 +34,106 @@ private:
static const int m_mult = 4; // squelch delay multiplicator
};
class MagAGC
class MagSquaredAGC : public AGC
{
public:
MagAGC() :
m_u0(1.0),
m_R(1.0),
m_moving_average(),
m_historySize(0),
m_count(0)
{}
MagAGC(int historySize, Real R) :
m_u0(1.0),
m_R(R),
m_moving_average(historySize, m_R),
m_historySize(historySize),
m_count(0)
{}
void resize(int historySize, Real R)
{
m_R = R;
m_moving_average.resize(historySize, R);
m_historySize = historySize;
m_count = 0;
}
Real getValue()
{
return m_u0;
}
Real getDelayedValue()
{
if (m_count < m_historySize*m_mult)
{
return 0;
}
else
{
return m_u0;
}
}
void feed(Complex& ci)
{
ci *= m_u0;
Real mag = sqrt(ci.real()*ci.real() + ci.imag()*ci.imag());
m_moving_average.feed(mag);
}
void openedSquelch()
{
if (m_count < m_historySize*m_mult)
{
m_count++;
}
m_u0 = m_R / m_moving_average.average();
}
void closedSquelch()
{
//m_moving_average.fill(m_R); // Valgrind optim
m_count = 0;
m_u0 = m_R / m_moving_average.average();
}
private:
Real m_u0;
Real m_R; // objective mag
MovingAverage<Real> m_moving_average; // Averaging engine. The stack length conditions the smoothness of AGC.
int m_historySize;
int m_count;
static const int m_mult = 4;
MagSquaredAGC();
MagSquaredAGC(int historySize, Real R);
virtual ~MagSquaredAGC();
virtual void feed(Complex& ci);
};
class AlphaAGC
class MagAGC : public AGC
{
public:
MagAGC();
MagAGC(int historySize, Real R);
virtual ~MagAGC();
virtual void feed(Complex& ci);
};
AlphaAGC() :
m_u0(1.0),
m_R(1.0),
m_alpha(0.1),
m_squelchOpen(true),
m_moving_average(),
m_historySize(0),
m_count(0)
{}
AlphaAGC(int historySize, Real R, Real alpha) :
m_u0(1.0),
m_R(R),
m_alpha(alpha),
m_squelchOpen(true),
m_moving_average(historySize, m_R),
m_historySize(historySize),
m_count(0)
{}
void resize(int historySize, Real R, Real alpha)
{
m_R = R;
m_alpha = alpha;
m_squelchOpen = true;
m_moving_average.resize(historySize, R);
m_historySize = historySize;
m_count = 0;
}
Real getValue()
{
return m_u0;
}
Real getDelayedValue()
{
if (m_count < m_historySize)
{
return 0;
}
else
{
return m_u0;
}
}
void feed(Complex& ci)
{
ci *= m_u0;
Real mag = sqrt(ci.real()*ci.real() + ci.imag()*ci.imag());
if (m_squelchOpen && (mag < m_moving_average.average()))
{
m_moving_average.feed(m_moving_average.average() - m_alpha*(m_moving_average.average() - mag));
}
else
{
//m_squelchOpen = true;
m_moving_average.feed(mag);
}
}
void openedSquelch()
{
if (m_count < m_historySize)
{
m_count++;
}
m_u0 = m_R / m_moving_average.average();
m_squelchOpen = true;
}
void closedSquelch()
{
//m_moving_average.fill(m_R); // Valgrind optim
m_count = 0;
//m_u0 = 1.0;
m_u0 = m_R / m_moving_average.average();
m_squelchOpen = false;
}
class AlphaAGC : public AGC
{
public:
AlphaAGC();
AlphaAGC(int historySize, Real R);
AlphaAGC(int historySize, Real R, Real alpha);
virtual ~AlphaAGC();
void resize(int historySize, Real R, Real alpha);
virtual void feed(Complex& ci);
void openedSquelch();
void closedSquelch();
private:
Real m_u0;
Real m_R; // objective magsq
Real m_alpha;
bool m_squelchOpen;
MovingAverage<Real> m_moving_average; // Averaging engine. The stack length conditions the smoothness of AGC.
int m_historySize;
int m_count;
};
class SimpleAGC
{
public:
SimpleAGC() :
m_squelchOpen(false),
m_fill(0),
m_cutoff(0),
m_clip(0),
m_moving_average()
{}
SimpleAGC(int historySize, Real initial, Real cutoff=0, Real clip=0) :
m_squelchOpen(false),
m_fill(initial),
m_cutoff(cutoff),
m_clip(clip),
m_moving_average(historySize, initial)
{}
void resize(int historySize, Real initial, Real cutoff=0, Real clip=0)
{
m_fill = initial;
m_cutoff = cutoff;
m_clip = clip;
m_moving_average.resize(historySize, initial);
}
Real getValue()
{
if (m_moving_average.average() > m_clip)
{
return m_moving_average.average();
} else
{
return m_clip;
}
}
void feed(Real value)
{
if (value > m_cutoff)
{
m_moving_average.feed(value);
}
}
void openedSquelch()
{
m_squelchOpen = true;
}
void closedSquelch()
{
if (m_squelchOpen)
{
//m_moving_average.fill(m_fill); // Valgrind optim
m_squelchOpen = false;
}
}
private:
bool m_squelchOpen; // open for processing
Real m_fill; // refill average at this level
Real m_cutoff; // consider samples only above this level
Real m_clip; // never go below this level
MovingAverage<Real> m_moving_average; // Averaging engine. The stack length conditions the smoothness of AGC.
};
#endif /* INCLUDE_GPL_DSP_AGC_H_ */

167
sdrbase/dsp/agc.cpp Normal file
View File

@ -0,0 +1,167 @@
/*
* agc.cpp
*
* Created on: Sep 7, 2015
* Author: f4exb
*/
#include "dsp/agc.h"
AGC::AGC() :
m_u0(1.0),
m_R(1.0),
m_moving_average(),
m_historySize(0),
m_count(0)
{}
AGC::AGC(int historySize, Real R) :
m_u0(1.0),
m_R(R),
m_moving_average(historySize, m_R),
m_historySize(historySize),
m_count(0)
{}
AGC::~AGC()
{}
void AGC::resize(int historySize, Real R)
{
m_R = R;
m_moving_average.resize(historySize, R);
m_historySize = historySize;
m_count = 0;
}
Real AGC::getValue()
{
return m_u0;
}
Real AGC::getDelayedValue()
{
if (m_count < m_historySize*m_mult)
{
return 0;
}
else
{
return 1;
}
}
void AGC::openedSquelch()
{
if (m_count < m_historySize*m_mult)
{
m_count++;
}
m_u0 = m_R / m_moving_average.average();
}
void AGC::closedSquelch()
{
//m_moving_average.fill(m_R); // Valgrind optim
m_count = 0;
m_u0 = m_R / m_moving_average.average();
}
MagSquaredAGC::MagSquaredAGC() :
AGC()
{}
MagSquaredAGC::MagSquaredAGC(int historySize, Real R) :
AGC(historySize, R)
{}
MagSquaredAGC::~MagSquaredAGC()
{}
void MagSquaredAGC::feed(Complex& ci)
{
ci *= m_u0;
Real magsq = ci.real()*ci.real() + ci.imag()*ci.imag();
m_moving_average.feed(magsq);
}
MagAGC::MagAGC() :
AGC()
{}
MagAGC::MagAGC(int historySize, Real R) :
AGC(historySize, R)
{}
MagAGC::~MagAGC()
{}
void MagAGC::feed(Complex& ci)
{
ci *= m_u0;
Real mag = sqrt(ci.real()*ci.real() + ci.imag()*ci.imag());
m_moving_average.feed(mag);
}
AlphaAGC::AlphaAGC() :
AGC(),
m_alpha(0.5),
m_squelchOpen(true)
{}
AlphaAGC::AlphaAGC(int historySize, Real R) :
AGC(historySize, R),
m_alpha(0.5),
m_squelchOpen(true)
{}
AlphaAGC::AlphaAGC(int historySize, Real R, Real alpha) :
AGC(historySize, R),
m_alpha(alpha),
m_squelchOpen(true)
{}
AlphaAGC::~AlphaAGC()
{}
void AlphaAGC::resize(int historySize, Real R, Real alpha)
{
m_R = R;
m_alpha = alpha;
m_squelchOpen = true;
m_moving_average.resize(historySize, R);
}
void AlphaAGC::feed(Complex& ci)
{
ci *= m_u0;
Real magsq = ci.real()*ci.real() + ci.imag()*ci.imag();
if (m_squelchOpen && (magsq))
{
m_moving_average.feed(m_moving_average.average() - m_alpha*(m_moving_average.average() - magsq));
}
else
{
//m_squelchOpen = true;
m_moving_average.feed(magsq);
}
}
void AlphaAGC::openedSquelch()
{
AGC::openedSquelch();
m_squelchOpen = true;
}
void AlphaAGC::closedSquelch()
{
AGC::closedSquelch();
m_squelchOpen = false;
}