/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2020 Edouard Griffiths, F4EXB // // // // Inspired by: https://github.com/myriadrf/LoRa-SDR // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include "chirpchatmodencoderlora.h" void ChirpChatModEncoderLoRa::addChecksum(QByteArray& bytes) { uint16_t crc = sx1272DataChecksum(reinterpret_cast(bytes.data()), bytes.size()); bytes.append(crc & 0xff); bytes.append((crc >> 8) & 0xff); } void ChirpChatModEncoderLoRa::encodeBytes( const QByteArray& bytes, std::vector& symbols, unsigned int nbSymbolBits, bool hasHeader, bool hasCRC, unsigned int nbParityBits ) { if (nbSymbolBits < 5) { return; } const unsigned int numCodewords = roundUp(bytes.size()*2 + (hasHeader ? headerCodewords : 0), nbSymbolBits); // uses payload + CRC for encoding size unsigned int cOfs = 0; unsigned int dOfs = 0; std::vector codewords(numCodewords); if (hasHeader) { std::vector hdr(3); unsigned int payloadSize = bytes.size() - (hasCRC ? 2 : 0); // actual payload size is without CRC hdr[0] = payloadSize % 256; hdr[1] = (hasCRC ? 1 : 0) | (nbParityBits << 1); hdr[2] = headerChecksum(hdr.data()); // Nibble decomposition and parity bit(s) addition. LSNibble first. codewords[cOfs++] = encodeHamming84sx(hdr[0] >> 4); codewords[cOfs++] = encodeHamming84sx(hdr[0] & 0xf); // length codewords[cOfs++] = encodeHamming84sx(hdr[1] & 0xf); // crc / fec info codewords[cOfs++] = encodeHamming84sx(hdr[2] >> 4); // checksum codewords[cOfs++] = encodeHamming84sx(hdr[2] & 0xf); } unsigned int headerSize = cOfs; // fill nbSymbolBits codewords with 8 bit codewords using payload data (ecode and whiten) encodeFec(codewords, 4, cOfs, dOfs, reinterpret_cast(bytes.data()), nbSymbolBits - headerSize); Sx1272ComputeWhitening(codewords.data() + headerSize, nbSymbolBits - headerSize, 0, headerParityBits); // encode and whiten the rest of the payload with 4 + nbParityBits bits codewords if (numCodewords > nbSymbolBits) { unsigned int cOfs2 = cOfs; encodeFec(codewords, nbParityBits, cOfs, dOfs, reinterpret_cast(bytes.data()), numCodewords - nbSymbolBits); Sx1272ComputeWhitening(codewords.data() + cOfs2, numCodewords - nbSymbolBits, nbSymbolBits - headerSize, nbParityBits); } // header is always coded with 8 bits and yields exactly 8 symbols (headerSymbols) const unsigned int numSymbols = headerSymbols + (numCodewords / nbSymbolBits - 1) * (4 + nbParityBits); // interleave the codewords into symbols symbols.clear(); symbols.resize(numSymbols); diagonalInterleaveSx(codewords.data(), nbSymbolBits, symbols.data(), nbSymbolBits, headerParityBits); if (numCodewords > nbSymbolBits) { diagonalInterleaveSx(codewords.data() + nbSymbolBits, numCodewords - nbSymbolBits, symbols.data() + headerSymbols, nbSymbolBits, nbParityBits); } // gray decode for (auto &sym : symbols) { sym = grayToBinary16(sym); } } void ChirpChatModEncoderLoRa::encodeFec( std::vector &codewords, unsigned int nbParityBits, unsigned int& cOfs, unsigned int& dOfs, const uint8_t *bytes, const unsigned int codewordCount ) { for (unsigned int i = 0; i < codewordCount; i++, dOfs++) { if (nbParityBits == 1) { if (dOfs % 2 == 1) { codewords[cOfs++] = encodeParity54(bytes[dOfs/2] >> 4); } else { codewords[cOfs++] = encodeParity54(bytes[dOfs/2] & 0xf); } } else if (nbParityBits == 2) { if (dOfs % 2 == 1) { codewords[cOfs++] = encodeParity64(bytes[dOfs/2] >> 4); } else { codewords[cOfs++] = encodeParity64(bytes[dOfs/2] & 0xf); } } else if (nbParityBits == 3) { if (dOfs % 2 == 1) { codewords[cOfs++] = encodeHamming74sx(bytes[dOfs/2] >> 4); } else { codewords[cOfs++] = encodeHamming74sx(bytes[dOfs/2] & 0xf); } } else if (nbParityBits == 4) { if (dOfs % 2 == 1) { codewords[cOfs++] = encodeHamming84sx(bytes[dOfs/2] >> 4); } else { codewords[cOfs++] = encodeHamming84sx(bytes[dOfs/2] & 0xf); } } else { if (dOfs % 2 == 1) { codewords[cOfs++] = bytes[dOfs/2] >> 4; } else { codewords[cOfs++] = bytes[dOfs/2] & 0xf; } } } }