/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2020 Kacper Michajłow // // Copyright (C) 2020 Jon Beniston, M7RCE // // Copyright (C) 2005,2007,2012 Free Software Foundation, Inc. // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include "dsp/fmpreemphasis.h" FMPreemphasis::FMPreemphasis(int sampleRate, Real tau, Real highFreq) { configure(sampleRate, tau, highFreq); } void FMPreemphasis::configure(int sampleRate, Real tau, Real highFreq) { // Based on: https://github.com/gnuradio/gnuradio/blob/master/gr-analog/python/analog/fm_emph.py // Compare to freq response in https://www.mathworks.com/help/comm/ref/comm.fmbroadcastmodulator-system-object.html // High frequency corner at which to flatten the gain double fh = std::min((double)highFreq, 0.925 * sampleRate/2.0); // Digital corner frequencies double w_cl = 1.0 / tau; double w_ch = 2.0 * M_PI * fh; // Prewarped analog corner frequencies double w_cla = 2.0 * sampleRate * std::tan(w_cl / (2.0 * sampleRate)); double w_cha = 2.0 * sampleRate * std::tan(w_ch / (2.0 * sampleRate)); // Resulting digital pole, zero, and gain term from the bilinear // transformation of H(s) = (s + w_cla) / (s + w_cha) to // H(z) = b0 (1 - z1 z^-1)/(1 - p1 z^-1) double kl = -w_cla / (2.0 * sampleRate); double kh = -w_cha / (2.0 * sampleRate); double z1 = (1.0 + kl) / (1.0 - kl); double p1 = (1.0 + kh) / (1.0 - kh); double b0 = (1.0 - kl) / (1.0 - kh); // Adjust with a gain, g, so 0 dB gain at DC double g = std::abs(1.0 - p1) / (b0 * std::abs(1.0 - z1)); // Caclulate IIR taps m_b0 = (Real)(g * b0 * 1.0); m_b1 = (Real)(g * b0 * -z1); m_a1 = (Real)-p1; // Zero delay line so we get reproducible results m_z = 0; qDebug() << "FMPreemphasis::configure: tau: " << tau << " sampleRate: " << sampleRate << " b0: " << m_b0 << " b1: " << m_b1 << " a1: " << m_a1; } Real FMPreemphasis::filter(const Real sampleIn) { Real sampleOut; // See Transposed Direct form 2 - https://en.wikipedia.org/wiki/Digital_biquad_filter sampleOut = sampleIn * m_b0 + m_z; m_z = sampleIn * m_b1 + sampleOut * -m_a1; return sampleOut; }