/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2020-2021 Jon Beniston, M7RCE // // Copyright (C) 2020 Kacper Michajłow // // Copyright (C) 2015 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #ifndef INCLUDE_GAUSSIAN_H #define INCLUDE_GAUSSIAN_H #include #include "dsp/dsptypes.h" // Standard values for bt #define GAUSSIAN_BT_BLUETOOTH 0.5 #define GAUSSIAN_BT_GSM 0.3 #define GAUSSIAN_BT_CCSDS 0.25 #define GAUSSIAN_BT_802_15_4 0.5 #define GAUSSIAN_BT_AIS 0.5 // Gaussian low-pass filter for pulse shaping // https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470041956.app2 // Unlike raisedcosine.h, this should be feed NRZ values rather than impulse stream, as described here: // https://www.mathworks.com/matlabcentral/answers/107231-why-does-the-pulse-shape-generated-by-gaussdesign-differ-from-that-used-in-the-comm-gmskmodulator-ob template class Gaussian { public: Gaussian() : m_ptr(0) { } // bt - 3dB bandwidth symbol time product // symbolSpan - number of symbols over which the filter is spread // samplesPerSymbol - number of samples per symbol void create(double bt, int symbolSpan, int samplesPerSymbol) { int nTaps = symbolSpan * samplesPerSymbol + 1; int i; // check constraints if(!(nTaps & 1)) { qDebug("Gaussian filter has to have an odd number of taps"); nTaps++; } // make room m_samples.resize(nTaps); for(int i = 0; i < nTaps; i++) m_samples[i] = 0; m_ptr = 0; m_taps.resize(nTaps / 2 + 1); // See eq B.2 - this is alpha over Ts double alpha_t = std::sqrt(std::log(2.0) / 2.0) / (bt); double sqrt_pi_alpha_t = std::sqrt(M_PI) / alpha_t; // calculate filter taps for(i = 0; i < nTaps / 2 + 1; i++) { double t = (i - (nTaps / 2)) / (double)samplesPerSymbol; // See eq B.5 m_taps[i] = sqrt_pi_alpha_t * std::exp(-std::pow(t * M_PI / alpha_t, 2.0)); } // normalize double sum = 0; for(i = 0; i < (int)m_taps.size() - 1; i++) sum += m_taps[i] * 2; sum += m_taps[i]; for(i = 0; i < (int)m_taps.size(); i++) m_taps[i] /= sum; } Type filter(Type sample) { Type acc = 0; unsigned int n_samples = m_samples.size(); unsigned int n_taps = m_taps.size() - 1; unsigned int a = m_ptr; unsigned int b = a == n_samples - 1 ? 0 : a + 1; m_samples[m_ptr] = sample; for (unsigned int i = 0; i < n_taps; ++i) { acc += (m_samples[a] + m_samples[b]) * m_taps[i]; a = (a == 0) ? n_samples - 1 : a - 1; b = (b == n_samples - 1) ? 0 : b + 1; } acc += m_samples[a] * m_taps[n_taps]; m_ptr = (m_ptr == n_samples - 1) ? 0 : m_ptr + 1; return acc; } /* void printTaps() { for (int i = 0; i < m_taps.size(); i++) printf("%.4f ", m_taps[i]); printf("\n"); } */ private: std::vector m_taps; std::vector m_samples; unsigned int m_ptr; }; #endif // INCLUDE_GAUSSIAN_H