/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2018-2019 Edouard Griffiths, F4EXB // // Copyright (C) 2020 Kacper Michajłow // // // // See: http://liquidsdr.org/blog/pll-howto/ // // Fixed filter registers saturation // // Added order for PSK locking. This brilliant idea actually comes from this // // post: https://www.dsprelated.com/showthread/comp.dsp/36356-1.php // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include "phaselockcomplex.h" PhaseLockComplex::PhaseLockComplex() : m_a1(1.0), m_a2(1.0), m_b0(1.0), m_b1(1.0), m_b2(1.0), m_v0(0.0), m_v1(0.0), m_v2(0.0), m_deltaPhi(0.0), m_phiHat(0.0), m_phiHatPrev(0.0), m_y(1.0, 0.0), m_p(1.0, 0.0), m_yRe(1.0), m_yIm(0.0), m_freq(0.0), m_freqPrev(0.0), m_freqTest(0.0), m_lockCount(0), m_lockFreq(0.026f), m_pskOrder(1), m_lockTime(480), m_lockTimeCount(0) { } void PhaseLockComplex::computeCoefficients(Real wn, Real zeta, Real K) { double t1 = K/(wn*wn); // double t2 = 2*zeta/wn - 1/K; // double b0 = 2*K*(1.+t2/2.0f); double b1 = 2*K*2.; double b2 = 2*K*(1.-t2/2.0f); double a0 = 1 + t1/2.0f; double a1 = -t1; double a2 = -1 + t1/2.0f; qDebug("PhaseLockComplex::computeCoefficients: b_raw: %f %f %f", b0, b1, b2); qDebug("PhaseLockComplex::computeCoefficients: a_raw: %f %f %f", a0, a1, a2); m_b0 = b0 / a0; m_b1 = b1 / a0; m_b2 = b2 / a0; // a0 = 1.0 is implied m_a1 = a1 / a0; m_a2 = a2 / a0; qDebug("PhaseLockComplex::computeCoefficients: b: %f %f %f", m_b0, m_b1, m_b2); qDebug("PhaseLockComplex::computeCoefficients: a: 1.0 %f %f", m_a1, m_a2); reset(); } void PhaseLockComplex::setPskOrder(unsigned int order) { m_pskOrder = order > 0 ? order : 1; reset(); } void PhaseLockComplex::setSampleRate(unsigned int sampleRate) { m_lockTime = sampleRate / 100; // 10ms for order 1 m_lockFreq = (2.0*M_PI*(m_pskOrder > 1 ? 6.0 : 1.0)) / sampleRate; // +/- 6 Hz frequency swing reset(); } void PhaseLockComplex::reset() { // reset filter accumulators and phase m_v0 = 0.0f; m_v1 = 0.0f; m_v2 = 0.0f; m_deltaPhi = 0.0f; m_phiHat = 0.0f; m_phiHatPrev = 0.0f; m_y.real(1.0); m_y.imag(0.0); m_p.real(1.0); m_p.imag(0.0); m_yRe = 1.0f; m_yIm = 0.0f; m_freq = 0.0f; m_freqPrev = 0.0f; m_freqTest = 0.0f; m_lockCount = 0; m_lockTimeCount = 0; } void PhaseLockComplex::feed(float re, float im) { m_yRe = cos(m_phiHat); m_yIm = sin(m_phiHat); m_y.real(m_yRe); m_y.imag(m_yIm); std::complex x(re, im); m_deltaPhi = std::arg(x * std::conj(m_y)); // bring phase 0 on any of the PSK symbols if (m_pskOrder > 1) { m_deltaPhi = normalizeAngle(m_pskOrder*m_deltaPhi); } // advance buffer m_v2 = m_v1; // shift center register to upper register m_v1 = m_v0; // shift lower register to center register // compute new lower register m_v0 = m_deltaPhi - m_v1*m_a1 - m_v2*m_a2; // compute new output m_phiHat = m_v0*m_b0 + m_v1*m_b1 + m_v2*m_b2; // prevent saturation if (m_phiHat > 2.0*M_PI) { m_v0 *= (m_phiHat - 2.0*M_PI) / m_phiHat; m_v1 *= (m_phiHat - 2.0*M_PI) / m_phiHat; m_v2 *= (m_phiHat - 2.0*M_PI) / m_phiHat; m_phiHat -= 2.0*M_PI; } if (m_phiHat < -2.0*M_PI) { m_v0 *= (m_phiHat + 2.0*M_PI) / m_phiHat; m_v1 *= (m_phiHat + 2.0*M_PI) / m_phiHat; m_v2 *= (m_phiHat + 2.0*M_PI) / m_phiHat; m_phiHat += 2.0*M_PI; } // lock and frequency estimation if (m_pskOrder > 1) { float dPhi = normalizeAngle(m_phiHat - m_phiHatPrev); m_freq = m_expAvg.feed(dPhi); if (m_lockTimeCount < m_lockTime-1) { m_lockTimeCount++; } else { float dF = m_freq - m_freqTest; if ((dF > -m_lockFreq) && (dF < m_lockFreq)) { if (m_lockCount < 20) { m_lockCount++; } } else { if (m_lockCount > 0) { m_lockCount--; } } m_freqTest = m_freq; m_lockTimeCount = 0; } m_phiHatPrev = m_phiHat; } else { m_freqTest = normalizeAngle(m_phiHat - m_phiHatPrev); m_freq = m_expAvg.feed(m_freqTest); float dFreq = m_freqTest - m_freqPrev; if ((dFreq > -0.01) && (dFreq < 0.01)) { if (m_lockCount < (m_lockTime-1)) { // [0..479] m_lockCount++; } } else { m_lockCount = 0; } m_phiHatPrev = m_phiHat; m_freqPrev = m_freqTest; } } float PhaseLockComplex::normalizeAngle(float angle) { while (angle <= -M_PI) { angle += 2.0*M_PI; } while (angle > M_PI) { angle -= 2.0*M_PI; } return angle; }