/////////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017 Edouard Griffiths, F4EXB // // Copyright (C) 2020 Kacper Michajłow // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////////// /* July 15, 2015 Iowa Hills Software LLC http://www.iowahills.com */ #include #include #include #include "wfir.h" #define M_2PI (2*M_PI) // This first calculates the impulse response for a rectangular window. // It then applies the windowing function of choice to the impulse response. void WFIR::BasicFIR(double *FirCoeff, int NumTaps, TPassTypeName PassType, double OmegaC, double BW, TWindowType WindowType, double WinBeta) { int j; double Arg, OmegaLow, OmegaHigh; switch (PassType) { case LPF: for (j = 0; j < NumTaps; j++) { Arg = (double) j - (double) (NumTaps - 1) / 2.0; FirCoeff[j] = OmegaC * Sinc(OmegaC * Arg * M_PI); } break; case HPF: if (NumTaps % 2 == 1) // Odd tap counts { for (j = 0; j < NumTaps; j++) { Arg = (double) j - (double) (NumTaps - 1) / 2.0; FirCoeff[j] = Sinc(Arg * M_PI) - OmegaC * Sinc(OmegaC * Arg * M_PI); } } else // Even tap counts { for (j = 0; j < NumTaps; j++) { Arg = (double) j - (double) (NumTaps - 1) / 2.0; if (Arg == 0.0) FirCoeff[j] = 0.0; else FirCoeff[j] = cos(OmegaC * Arg * M_PI) / M_PI / Arg + cos(Arg * M_PI); } } break; case BPF: OmegaLow = OmegaC - BW / 2.0; OmegaHigh = OmegaC + BW / 2.0; for (j = 0; j < NumTaps; j++) { Arg = (double) j - (double) (NumTaps - 1) / 2.0; if (Arg == 0.0) FirCoeff[j] = 0.0; else FirCoeff[j] = (cos(OmegaLow * Arg * M_PI) - cos(OmegaHigh * Arg * M_PI)) / M_PI / Arg; } break; case NOTCH: // If NumTaps is even for Notch filters, the response at Pi is attenuated. OmegaLow = OmegaC - BW / 2.0; OmegaHigh = OmegaC + BW / 2.0; for (j = 0; j < NumTaps; j++) { Arg = (double) j - (double) (NumTaps - 1) / 2.0; FirCoeff[j] = Sinc(Arg * M_PI) - OmegaHigh * Sinc(OmegaHigh * Arg * M_PI) - OmegaLow * Sinc(OmegaLow * Arg * M_PI); } break; } // WindowData can be used to window data before an FFT. When used for FIR filters we set // Alpha = 0.0 to prevent a flat top on the window and // set UnityGain = false to prevent the window gain from getting set to unity. WindowData(FirCoeff, NumTaps, WindowType, 0.0, WinBeta, false); } //--------------------------------------------------------------------------- // This gets used with the Kaiser window. double WFIR::Bessel(double x) { double Sum = 0.0, XtoIpower; int i, j, Factorial; for (i = 1; i < 10; i++) { XtoIpower = pow(x / 2.0, (double) i); Factorial = 1; for (j = 1; j <= i; j++) Factorial *= j; Sum += pow(XtoIpower / (double) Factorial, 2.0); } return (1.0 + Sum); } //----------------------------------------------------------------------------- // This gets used with the Sinc window and various places in the BasicFIR function. double WFIR::Sinc(double x) { if (x > -1.0E-5 && x < 1.0E-5) return (1.0); return (sin(x) / x); } //--------------------------------------------------------------------------- // These are the various windows definitions. These windows can be used for either // FIR filter design or with an FFT for spectral analysis. // Sourced verbatim from: ~MyDocs\Code\Common\FFTFunctions.cpp // For definitions, see this article: http://en.wikipedia.org/wiki/Window_function // This function has 6 inputs // Data is the array, of length N, containing the data to to be windowed. // This data is either a FIR filter sinc pulse, or the data to be analyzed by an fft. // WindowType is an enum defined in the header file, which is at the bottom of this file. // e.g. wtKAISER, wtSINC, wtHANNING, wtHAMMING, wtBLACKMAN, ... // Alpha sets the width of the flat top. // Windows such as the Tukey and Trapezoid are defined to have a variably wide flat top. // As can be seen by its definition, the Tukey is just a Hanning window with a flat top. // Alpha can be used to give any of these windows a partial flat top, except the Flattop and Kaiser. // Alpha = 0 gives the original window. (i.e. no flat top) // To generate a Tukey window, use a Hanning with 0 < Alpha < 1 // To generate a Bartlett window (triangular), use a Trapezoid window with Alpha = 0. // Alpha = 1 generates a rectangular window in all cases. (except the Flattop and Kaiser) // Beta is used with the Kaiser, Sinc, and Sine windows only. // These three windows are primarily used for FIR filter design, not spectral analysis. // In FIR filter design, Beta controls the filter's transition bandwidth and the sidelobe levels. // The code ignores Beta except in the Kaiser, Sinc, and Sine window cases. // UnityGain controls whether the gain of these windows is set to unity. // Only the Flattop window has unity gain by design. The Hanning window, for example, has a gain // of 1/2. UnityGain = true will set the gain of all these windows to 1. // Then, when the window is applied to a signal, the signal's energy content is preserved. // Don't use this with FIR filter design however. Since most of the enegy in an FIR sinc pulse // is in the middle of the window, the window needs a peak amplitude of one, not unity gain. // Setting UnityGain = true will simply cause the resulting FIR filter to have excess gain. // If using these windows for FIR filters, start with the Kaiser, Sinc, or Sine windows and // adjust Beta for the desired transition BW and sidelobe levels (set Alpha = 0). // While the FlatTop is an excellent window for spectral analysis, don't use it for FIR filter design. // It has a peak amplitude of ~ 4.7 which causes the resulting FIR filter to have about this much gain. // It works poorly for FIR filters even if you adjust its peak amplitude. // The Trapezoid also works poorly for FIR filter design. // If using these windows with an fft for spectral analysis, start with the Hanning, Gauss, or Flattop. // When choosing a window for spectral analysis, you must trade off between resolution and amplitude accuracy. // The Hanning has the best resolution while the Flatop has the best amplitude accuracy. // The Gauss is midway between these two for both accuracy and resolution. // These three were the only windows available in the HP 89410A Vector Signal Analyzer. Which is to say, // unless you have specific windowing requirements, use one of these 3 for general purpose signal analysis. // Set UnityGain = true when using any of these windows for spectral analysis to preserve the signal's enegy level. void WFIR::WindowData(double *Data, int N, TWindowType WindowType, double Alpha, double Beta, bool UnityGain) { if (WindowType == wtNONE) return; int j, M, TopWidth; double dM, *WinCoeff; if (WindowType == wtKAISER || WindowType == wtFLATTOP) Alpha = 0.0; if (Alpha < 0.0) Alpha = 0.0; if (Alpha > 1.0) Alpha = 1.0; if (Beta < 0.0) Beta = 0.0; if (Beta > 10.0) Beta = 10.0; WinCoeff = new (std::nothrow) double[N + 2]; if (WinCoeff == 0) { std::cerr << "Failed to allocate memory in FFTFunctions::WindowFFTData() " << std::endl; return; } TopWidth = (int) (Alpha * (double) N); if (TopWidth % 2 != 0) TopWidth++; if (TopWidth > N) TopWidth = N; M = N - TopWidth; dM = M + 1; // Calculate the window for N/2 points, then fold the window over (at the bottom). // TopWidth points will be set to 1. if (WindowType == wtKAISER) { double Arg; for (j = 0; j < M; j++) { Arg = Beta * sqrt(1.0 - pow(((double) (2 * j + 2) - dM) / dM, 2.0)); WinCoeff[j] = Bessel(Arg) / Bessel(Beta); } } else if (WindowType == wtSINC) // Lanczos { for (j = 0; j < M; j++) WinCoeff[j] = Sinc((double) (2 * j + 1 - M) / dM * M_PI); for (j = 0; j < M; j++) WinCoeff[j] = pow(WinCoeff[j], Beta); } else if (WindowType == wtSINE) // Hanning if Beta = 2 { for (j = 0; j < M / 2; j++) WinCoeff[j] = sin((double) (j + 1) * M_PI / dM); for (j = 0; j < M / 2; j++) WinCoeff[j] = pow(WinCoeff[j], Beta); } else if (WindowType == wtHANNING) { for (j = 0; j < M / 2; j++) WinCoeff[j] = 0.5 - 0.5 * cos((double) (j + 1) * M_2PI / dM); } else if (WindowType == wtHAMMING) { for (j = 0; j < M / 2; j++) WinCoeff[j] = 0.54 - 0.46 * cos((double) (j + 1) * M_2PI / dM); } else if (WindowType == wtBLACKMAN) { for (j = 0; j < M / 2; j++) { WinCoeff[j] = 0.42 - 0.50 * cos((double) (j + 1) * M_2PI / dM) + 0.08 * cos((double) (j + 1) * M_2PI * 2.0 / dM); } } // See: http://www.bth.se/fou/forskinfo.nsf/0/130c0940c5e7ffcdc1256f7f0065ac60/$file/ICOTA_2004_ttr_icl_mdh.pdf else if (WindowType == wtFLATTOP) { for (j = 0; j <= M / 2; j++) { WinCoeff[j] = 1.0 - 1.93293488969227 * cos((double) (j + 1) * M_2PI / dM) + 1.28349769674027 * cos((double) (j + 1) * M_2PI * 2.0 / dM) - 0.38130801681619 * cos((double) (j + 1) * M_2PI * 3.0 / dM) + 0.02929730258511 * cos((double) (j + 1) * M_2PI * 4.0 / dM); } } else if (WindowType == wtBLACKMAN_HARRIS) { for (j = 0; j < M / 2; j++) { WinCoeff[j] = 0.35875 - 0.48829 * cos((double) (j + 1) * M_2PI / dM) + 0.14128 * cos((double) (j + 1) * M_2PI * 2.0 / dM) - 0.01168 * cos((double) (j + 1) * M_2PI * 3.0 / dM); } } else if (WindowType == wtBLACKMAN_NUTTALL) { for (j = 0; j < M / 2; j++) { WinCoeff[j] = 0.3535819 - 0.4891775 * cos((double) (j + 1) * M_2PI / dM) + 0.1365995 * cos((double) (j + 1) * M_2PI * 2.0 / dM) - 0.0106411 * cos((double) (j + 1) * M_2PI * 3.0 / dM); } } else if (WindowType == wtNUTTALL) { for (j = 0; j < M / 2; j++) { WinCoeff[j] = 0.355768 - 0.487396 * cos((double) (j + 1) * M_2PI / dM) + 0.144232 * cos((double) (j + 1) * M_2PI * 2.0 / dM) - 0.012604 * cos((double) (j + 1) * M_2PI * 3.0 / dM); } } else if (WindowType == wtKAISER_BESSEL) { for (j = 0; j <= M / 2; j++) { WinCoeff[j] = 0.402 - 0.498 * cos(M_2PI * (double) (j + 1) / dM) + 0.098 * cos(2.0 * M_2PI * (double) (j + 1) / dM) + 0.001 * cos(3.0 * M_2PI * (double) (j + 1) / dM); } } else if (WindowType == wtTRAPEZOID) // Rectangle for Alpha = 1 Triangle for Alpha = 0 { int K = M / 2; if (M % 2) K++; for (j = 0; j < K; j++) WinCoeff[j] = (double) (j + 1) / (double) K; } // This definition is from http://en.wikipedia.org/wiki/Window_function (Gauss Generalized normal window) // We set their p = 2, and use Alpha in the numerator, instead of Sigma in the denominator, as most others do. // Alpha = 2.718 puts the Gauss window response midway between the Hanning and the Flattop (basically what we want). // It also gives the same BW as the Gauss window used in the HP 89410A Vector Signal Analyzer. // Alpha = 1.8 puts it quite close to the Hanning. else if (WindowType == wtGAUSS) { for (j = 0; j < M / 2; j++) { WinCoeff[j] = ((double) (j + 1) - dM / 2.0) / (dM / 2.0) * 2.7183; WinCoeff[j] *= WinCoeff[j]; WinCoeff[j] = exp(-WinCoeff[j]); } } else // Error. { std::cerr << "Incorrect window type in WindowFFTData" << std::endl; delete[] WinCoeff; return; } // Fold the coefficients over. for (j = 0; j < M / 2; j++) WinCoeff[N - j - 1] = WinCoeff[j]; // This is the flat top if Alpha > 0. Cannot be applied to a Kaiser or Flat Top. if (WindowType != wtKAISER && WindowType != wtFLATTOP) { for (j = M / 2; j < N - M / 2; j++) WinCoeff[j] = 1.0; } // This will set the gain of the window to 1. Only the Flattop window has unity gain by design. if (UnityGain) { double Sum = 0.0; for (j = 0; j < N; j++) Sum += WinCoeff[j]; Sum /= (double) N; if (Sum != 0.0) for (j = 0; j < N; j++) WinCoeff[j] /= Sum; } // Apply the window to the data. for (j = 0; j < N; j++) Data[j] *= WinCoeff[j]; delete[] WinCoeff; }