/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see <http://www.gnu.org/licenses/>. // /////////////////////////////////////////////////////////////////////////////////// #include "hackrfoutputthread.h" #include <stdio.h> #include <errno.h> #include "dsp/samplesourcefifo.h" HackRFOutputThread::HackRFOutputThread(hackrf_device* dev, SampleSourceFifo* sampleFifo, QObject* parent) : QThread(parent), m_running(false), m_dev(dev), m_sampleFifo(sampleFifo), m_log2Interp(0), m_fcPos(2) { std::fill(m_buf, m_buf + 2*HACKRF_BLOCKSIZE, 0); } HackRFOutputThread::~HackRFOutputThread() { stopWork(); } void HackRFOutputThread::startWork() { m_startWaitMutex.lock(); start(); while(!m_running) m_startWaiter.wait(&m_startWaitMutex, 100); m_startWaitMutex.unlock(); } void HackRFOutputThread::stopWork() { if (!m_running) return; qDebug("HackRFOutputThread::stopWork"); m_running = false; wait(); } void HackRFOutputThread::setLog2Interpolation(unsigned int log2Interp) { m_log2Interp = log2Interp; } void HackRFOutputThread::setFcPos(int fcPos) { m_fcPos = fcPos; } void HackRFOutputThread::run() { hackrf_error rc; m_running = true; m_startWaiter.wakeAll(); if (hackrf_is_streaming(m_dev) == HACKRF_TRUE) { qDebug("HackRFInputThread::run: HackRF is streaming already"); } else { qDebug("HackRFInputThread::run: HackRF is not streaming"); rc = (hackrf_error) hackrf_start_tx(m_dev, tx_callback, this); if (rc == HACKRF_SUCCESS) { qDebug("HackRFOutputThread::run: started HackRF Tx"); } else { qDebug("HackRFOutputThread::run: failed to start HackRF Tx: %s", hackrf_error_name(rc)); } } while ((m_running) && (hackrf_is_streaming(m_dev) == HACKRF_TRUE)) { usleep(200000); } if (hackrf_is_streaming(m_dev) == HACKRF_TRUE) { rc = (hackrf_error) hackrf_stop_tx(m_dev); if (rc == HACKRF_SUCCESS) { qDebug("HackRFOutputThread::run: stopped HackRF Tx"); } else { qDebug("HackRFOutputThread::run: failed to stop HackRF Tx: %s", hackrf_error_name(rc)); } } m_running = false; } // Interpolate according to specified log2 (ex: log2=4 => interp=16) void HackRFOutputThread::callback(qint8* buf, qint32 len) { SampleVector& data = m_sampleFifo->getData(); unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End; m_sampleFifo->read(len/(2*(1<<m_log2Interp)), iPart1Begin, iPart1End, iPart2Begin, iPart2End); if (iPart1Begin != iPart1End) { callbackPart(buf, data, iPart1Begin, iPart1End); } unsigned int shift = (iPart1End - iPart1Begin)*(1<<m_log2Interp); if (iPart2Begin != iPart2End) { callbackPart(buf + 2*shift, data, iPart2Begin, iPart2End); } } void HackRFOutputThread::callbackPart(qint8* buf, SampleVector& data, unsigned int iBegin, unsigned int iEnd) { SampleVector::iterator beginRead = data.begin() + iBegin; int len = 2*(iEnd - iBegin)*(1<<m_log2Interp); if (m_log2Interp == 0) { m_interpolators.interpolate1(&beginRead, buf, len); } else { if (m_fcPos == 0) // Infra { switch (m_log2Interp) { case 1: m_interpolators.interpolate2_inf(&beginRead, buf, len); break; case 2: m_interpolators.interpolate4_inf(&beginRead, buf, len); break; case 3: m_interpolators.interpolate8_inf(&beginRead, buf, len); break; case 4: m_interpolators.interpolate16_inf(&beginRead, buf, len); break; case 5: m_interpolators.interpolate32_inf(&beginRead, buf, len); break; case 6: m_interpolators.interpolate64_inf(&beginRead, buf, len); break; default: break; } } else if (m_fcPos == 1) // Supra { switch (m_log2Interp) { case 1: m_interpolators.interpolate2_sup(&beginRead, buf, len); break; case 2: m_interpolators.interpolate4_sup(&beginRead, buf, len); break; case 3: m_interpolators.interpolate8_sup(&beginRead, buf, len); break; case 4: m_interpolators.interpolate16_sup(&beginRead, buf, len); break; case 5: m_interpolators.interpolate32_sup(&beginRead, buf, len); break; case 6: m_interpolators.interpolate64_sup(&beginRead, buf, len); break; default: break; } } else if (m_fcPos == 2) // Center { switch (m_log2Interp) { case 1: m_interpolators.interpolate2_cen(&beginRead, buf, len); break; case 2: m_interpolators.interpolate4_cen(&beginRead, buf, len); break; case 3: m_interpolators.interpolate8_cen(&beginRead, buf, len); break; case 4: m_interpolators.interpolate16_cen(&beginRead, buf, len); break; case 5: m_interpolators.interpolate32_cen(&beginRead, buf, len); break; case 6: m_interpolators.interpolate64_cen(&beginRead, buf, len); break; default: break; } } } } int HackRFOutputThread::tx_callback(hackrf_transfer* transfer) { HackRFOutputThread *thread = (HackRFOutputThread *) transfer->tx_ctx; qint32 bytes_to_write = transfer->valid_length; thread->callback((qint8 *) transfer->buffer, bytes_to_write); return 0; }