/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2018-2020, 2022 Edouard Griffiths, F4EXB // // Copyright (C) 2023 Daniele Forsi // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include "libbladeRF.h" #include "SWGDeviceSettings.h" #include "SWGBladeRF2InputSettings.h" #include "SWGDeviceState.h" #include "SWGDeviceReport.h" #include "SWGBladeRF2InputReport.h" #include "device/deviceapi.h" #include "dsp/dspcommands.h" #include "bladerf2/devicebladerf2shared.h" #include "bladerf2/devicebladerf2.h" #include "bladerf2inputthread.h" #include "bladerf2input.h" MESSAGE_CLASS_DEFINITION(BladeRF2Input::MsgConfigureBladeRF2, Message) MESSAGE_CLASS_DEFINITION(BladeRF2Input::MsgStartStop, Message) MESSAGE_CLASS_DEFINITION(BladeRF2Input::MsgReportGainRange, Message) BladeRF2Input::BladeRF2Input(DeviceAPI *deviceAPI) : m_deviceAPI(deviceAPI), m_settings(), m_deviceDescription("BladeRF2Input"), m_running(false), m_thread(nullptr) { m_sampleFifo.setLabel(m_deviceDescription); openDevice(); if (m_deviceShared.m_dev) { const bladerf_gain_modes *modes = 0; int nbModes = m_deviceShared.m_dev->getGainModesRx(&modes); if (modes) { for (int i = 0; i < nbModes; i++) { m_gainModes.push_back(GainMode{QString(modes[i].name), modes[i].mode}); } } } m_deviceAPI->setNbSourceStreams(1); m_networkManager = new QNetworkAccessManager(); QObject::connect( m_networkManager, &QNetworkAccessManager::finished, this, &BladeRF2Input::networkManagerFinished ); } BladeRF2Input::~BladeRF2Input() { QObject::disconnect( m_networkManager, &QNetworkAccessManager::finished, this, &BladeRF2Input::networkManagerFinished ); delete m_networkManager; if (m_running) { stop(); } closeDevice(); } void BladeRF2Input::destroy() { delete this; } bool BladeRF2Input::openDevice() { if (!m_sampleFifo.setSize(96000 * 4)) { qCritical("BladeRF2Input::openDevice: could not allocate SampleFifo"); return false; } else { qDebug("BladeRF2Input::openDevice: allocated SampleFifo"); } // look for Rx buddies and get reference to the device object if (m_deviceAPI->getSourceBuddies().size() > 0) // look source sibling first { qDebug("BladeRF2Input::openDevice: look in Rx buddies"); DeviceAPI *sourceBuddy = m_deviceAPI->getSourceBuddies()[0]; DeviceBladeRF2Shared *deviceBladeRF2Shared = (DeviceBladeRF2Shared*) sourceBuddy->getBuddySharedPtr(); if (deviceBladeRF2Shared == 0) { qCritical("BladeRF2Input::openDevice: the source buddy shared pointer is null"); return false; } DeviceBladeRF2 *device = deviceBladeRF2Shared->m_dev; if (device == 0) { qCritical("BladeRF2Input::openDevice: cannot get device pointer from Rx buddy"); return false; } m_deviceShared.m_dev = device; } // look for Tx buddies and get reference to the device object else if (m_deviceAPI->getSinkBuddies().size() > 0) // then sink { qDebug("BladeRF2Input::openDevice: look in Tx buddies"); DeviceAPI *sinkBuddy = m_deviceAPI->getSinkBuddies()[0]; DeviceBladeRF2Shared *deviceBladeRF2Shared = (DeviceBladeRF2Shared*) sinkBuddy->getBuddySharedPtr(); if (deviceBladeRF2Shared == 0) { qCritical("BladeRF2Input::openDevice: the sink buddy shared pointer is null"); return false; } DeviceBladeRF2 *device = deviceBladeRF2Shared->m_dev; if (device == 0) { qCritical("BladeRF2Input::openDevice: cannot get device pointer from Tx buddy"); return false; } m_deviceShared.m_dev = device; } // There are no buddies then create the first BladeRF2 device else { qDebug("BladeRF2Input::openDevice: open device here"); m_deviceShared.m_dev = new DeviceBladeRF2(); char serial[256]; strcpy(serial, qPrintable(m_deviceAPI->getSamplingDeviceSerial())); if (!m_deviceShared.m_dev->open(serial)) { qCritical("BladeRF2Input::openDevice: cannot open BladeRF2 device"); return false; } } m_deviceShared.m_channel = m_deviceAPI->getDeviceItemIndex(); // publicly allocate channel m_deviceShared.m_source = this; m_deviceAPI->setBuddySharedPtr(&m_deviceShared); // propagate common parameters to API return true; } void BladeRF2Input::closeDevice() { if (m_deviceShared.m_dev == 0) { // was never open return; } if (m_running) { stop(); } if (m_thread) { // stills own the thread => transfer to a buddy moveThreadToBuddy(); } m_deviceShared.m_channel = -1; // publicly release channel m_deviceShared.m_source = 0; // No buddies so effectively close the device if ((m_deviceAPI->getSinkBuddies().size() == 0) && (m_deviceAPI->getSourceBuddies().size() == 0)) { m_deviceShared.m_dev->close(); delete m_deviceShared.m_dev; m_deviceShared.m_dev = 0; } } void BladeRF2Input::init() { applySettings(m_settings, QList(), true); } BladeRF2InputThread *BladeRF2Input::findThread() { if (!m_thread) // this does not own the thread { BladeRF2InputThread *bladerf2InputThread = 0; // find a buddy that has allocated the thread const std::vector& sourceBuddies = m_deviceAPI->getSourceBuddies(); std::vector::const_iterator it = sourceBuddies.begin(); for (; it != sourceBuddies.end(); ++it) { BladeRF2Input *buddySource = ((DeviceBladeRF2Shared*) (*it)->getBuddySharedPtr())->m_source; if (buddySource) { bladerf2InputThread = buddySource->getThread(); if (bladerf2InputThread) { break; } } } return bladerf2InputThread; } else { return m_thread; // own thread } } void BladeRF2Input::moveThreadToBuddy() { const std::vector& sourceBuddies = m_deviceAPI->getSourceBuddies(); std::vector::const_iterator it = sourceBuddies.begin(); for (; it != sourceBuddies.end(); ++it) { BladeRF2Input *buddySource = ((DeviceBladeRF2Shared*) (*it)->getBuddySharedPtr())->m_source; if (buddySource) { buddySource->setThread(m_thread); m_thread = nullptr; // zero for others } } } bool BladeRF2Input::start() { // There is a single thread per physical device (Rx side). This thread is unique and referenced by a unique // buddy in the group of source buddies associated with this physical device. // // This start method is responsible for managing the thread and channel enabling when the streaming of a Rx channel is started // // It checks the following conditions // - the thread is allocated or not (by itself or one of its buddies). If it is it grabs the thread pointer. // - the requested channel is the first (0) or the following (just 1 in BladeRF 2 case) // // The BladeRF support library lets you work in two possible modes: // - Single Input (SI) with only one channel streaming. This HAS to be channel 0. // - Multiple Input (MI) with two channels streaming using interleaved samples. It MUST be in this configuration if channel 1 // is used irrespective of what you actually do with samples coming from channel 0. When we will run with only channel 1 // streaming from the client perspective the channel 0 will actually be enabled and streaming but its samples will // just be disregarded. // // It manages the transition form SI where only one channel (the first or channel 0) should be running to the // Multiple Input (MI) if the requested channel is 1. More generally it checks if the requested channel is within the current // channel range allocated in the thread or past it. To perform the transition it stops the thread, deletes it and creates a new one. // It marks the thread as needing start. // // If the requested channel is within the thread channel range (this thread being already allocated) it simply adds its FIFO reference // so that the samples are fed to the FIFO and leaves the thread unchanged (no stop, no delete/new) // // If there is no thread allocated it creates a new one with a number of channels that fits the requested channel. That is // 1 if channel 0 is requested (SI mode) and 2 if channel 1 is requested (MI mode). It marks the thread as needing start. // // Eventually it registers the FIFO in the thread. If the thread has to be started it enables the channels up to the number of channels // allocated in the thread and starts the thread. QMutexLocker mutexLocker(&m_mutex); if (m_running) { return true; } if (!m_deviceShared.m_dev) { qDebug("BladeRF2Input::start: no device object"); return false; } int requestedChannel = m_deviceAPI->getDeviceItemIndex(); BladeRF2InputThread *bladerf2InputThread = findThread(); bool needsStart = false; if (bladerf2InputThread) // if thread is already allocated { qDebug("BladeRF2Input::start: thread is already allocated"); int nbOriginalChannels = bladerf2InputThread->getNbChannels(); if (requestedChannel+1 > nbOriginalChannels) // expansion by deleting and re-creating the thread { qDebug("BladeRF2Input::start: expand channels. Re-allocate thread and take ownership"); SampleSinkFifo **fifos = new SampleSinkFifo*[nbOriginalChannels]; unsigned int *log2Decims = new unsigned int[nbOriginalChannels]; int *fcPoss = new int[nbOriginalChannels]; for (int i = 0; i < nbOriginalChannels; i++) // save original FIFO references and data { fifos[i] = bladerf2InputThread->getFifo(i); log2Decims[i] = bladerf2InputThread->getLog2Decimation(i); fcPoss[i] = bladerf2InputThread->getFcPos(i); } bladerf2InputThread->stopWork(); delete bladerf2InputThread; bladerf2InputThread = new BladeRF2InputThread(m_deviceShared.m_dev->getDev(), requestedChannel+1); m_thread = bladerf2InputThread; // take ownership bladerf2InputThread->setIQOrder(m_settings.m_iqOrder); for (int i = 0; i < nbOriginalChannels; i++) // restore original FIFO references { bladerf2InputThread->setFifo(i, fifos[i]); bladerf2InputThread->setLog2Decimation(i, log2Decims[i]); bladerf2InputThread->setFcPos(i, fcPoss[i]); } // remove old thread address from buddies (reset in all buddies). The address being held only in the owning source. const std::vector& sourceBuddies = m_deviceAPI->getSourceBuddies(); std::vector::const_iterator it = sourceBuddies.begin(); for (; it != sourceBuddies.end(); ++it) { ((DeviceBladeRF2Shared*) (*it)->getBuddySharedPtr())->m_source->setThread(0); } // was used as temporary storage: delete[] fifos; delete[] log2Decims; delete[] fcPoss; needsStart = true; } else { qDebug("BladeRF2Input::start: keep buddy thread"); } } else // first allocation { qDebug("BladeRF2Input::start: allocate thread and take ownership"); bladerf2InputThread = new BladeRF2InputThread(m_deviceShared.m_dev->getDev(), requestedChannel+1); m_thread = bladerf2InputThread; // take ownership needsStart = true; } bladerf2InputThread->setFifo(requestedChannel, &m_sampleFifo); bladerf2InputThread->setLog2Decimation(requestedChannel, m_settings.m_log2Decim); bladerf2InputThread->setFcPos(requestedChannel, (int) m_settings.m_fcPos); if (needsStart) { qDebug("BladeRF2Input::start: enabling channel(s) and (re)start buddy thread"); int nbChannels = bladerf2InputThread->getNbChannels(); for (int i = 0; i < nbChannels; i++) { if (!m_deviceShared.m_dev->openRx(i)) { qCritical("BladeRF2Input::start: channel %u cannot be enabled", i); } } bladerf2InputThread->startWork(); } m_running = true; mutexLocker.unlock(); applySettings(m_settings, QList(), true); qDebug("BladeRF2Input::start: started"); return true; } void BladeRF2Input::stop() { // This stop method is responsible for managing the thread and channel disabling when the streaming of // a Rx channel is stopped // // If the thread is currently managing only one channel (SI mode). The thread can be just stopped and deleted. // Then the channel is closed (disabled). // // If the thread is currently managing many channels (MI mode) and we are removing the last channel. The transition // from MI to SI or reduction of MI size is handled by stopping the thread, deleting it and creating a new one // with one channel less if (and only if) there is still a channel active. // // If the thread is currently managing many channels (MI mode) but the channel being stopped is not the last // channel then the FIFO reference is simply removed from the thread so that it will not stream into this FIFO // anymore. In this case the channel is not closed (disabled) so that other channels can continue with the // same configuration. The device continues streaming on this channel but the samples are simply dropped (by // removing FIFO reference). QMutexLocker mutexLocker(&m_mutex); if (!m_running) { return; } int requestedChannel = m_deviceAPI->getDeviceItemIndex(); BladeRF2InputThread *bladerf2InputThread = findThread(); if (bladerf2InputThread == 0) { // no thread allocated return; } m_running = false; int nbOriginalChannels = bladerf2InputThread->getNbChannels(); if (nbOriginalChannels == 1) // SI mode => just stop and delete the thread { qDebug("BladeRF2Input::stop: SI mode. Just stop and delete the thread"); bladerf2InputThread->stopWork(); delete bladerf2InputThread; m_thread = nullptr; // remove old thread address from buddies (reset in all buddies) const std::vector& sourceBuddies = m_deviceAPI->getSourceBuddies(); std::vector::const_iterator it = sourceBuddies.begin(); for (; it != sourceBuddies.end(); ++it) { ((DeviceBladeRF2Shared*) (*it)->getBuddySharedPtr())->m_source->setThread(0); } m_deviceShared.m_dev->closeRx(0); // close the unique channel } else if (requestedChannel == nbOriginalChannels - 1) // remove last MI channel => reduce by deleting and re-creating the thread { qDebug("BladeRF2Input::stop: MI mode. Reduce by deleting and re-creating the thread"); bladerf2InputThread->stopWork(); SampleSinkFifo **fifos = new SampleSinkFifo*[nbOriginalChannels-1]; unsigned int *log2Decims = new unsigned int[nbOriginalChannels-1]; int *fcPoss = new int[nbOriginalChannels-1]; bool stillActiveFIFO = false; for (int i = 0; i < nbOriginalChannels-1; i++) // save original FIFO references { fifos[i] = bladerf2InputThread->getFifo(i); stillActiveFIFO = stillActiveFIFO || (bladerf2InputThread->getFifo(i) != 0); log2Decims[i] = bladerf2InputThread->getLog2Decimation(i); fcPoss[i] = bladerf2InputThread->getFcPos(i); } delete bladerf2InputThread; m_thread = nullptr; if (stillActiveFIFO) { bladerf2InputThread = new BladeRF2InputThread(m_deviceShared.m_dev->getDev(), nbOriginalChannels-1); m_thread = bladerf2InputThread; // take ownership for (int i = 0; i < nbOriginalChannels-1; i++) // restore original FIFO references { bladerf2InputThread->setFifo(i, fifos[i]); bladerf2InputThread->setLog2Decimation(i, log2Decims[i]); bladerf2InputThread->setFcPos(i, fcPoss[i]); } } else { qDebug("BladeRF2Input::stop: do not re-create thread as there are no more FIFOs active"); } // remove old thread address from buddies (reset in all buddies). The address being held only in the owning source. const std::vector& sourceBuddies = m_deviceAPI->getSourceBuddies(); std::vector::const_iterator it = sourceBuddies.begin(); for (; it != sourceBuddies.end(); ++it) { ((DeviceBladeRF2Shared*) (*it)->getBuddySharedPtr())->m_source->setThread(0); } m_deviceShared.m_dev->closeRx(requestedChannel); // close the last channel if (stillActiveFIFO) { bladerf2InputThread->startWork(); } // was used as temporary storage: delete[] fifos; delete[] log2Decims; delete[] fcPoss; } else // remove channel from existing thread { qDebug("BladeRF2Input::stop: MI mode. Not changing MI configuration. Just remove FIFO reference"); bladerf2InputThread->setFifo(requestedChannel, 0); // remove FIFO } } QByteArray BladeRF2Input::serialize() const { return m_settings.serialize(); } bool BladeRF2Input::deserialize(const QByteArray& data) { bool success = true; if (!m_settings.deserialize(data)) { m_settings.resetToDefaults(); success = false; } MsgConfigureBladeRF2* message = MsgConfigureBladeRF2::create(m_settings, QList(), true); m_inputMessageQueue.push(message); if (m_guiMessageQueue) { MsgConfigureBladeRF2* messageToGUI = MsgConfigureBladeRF2::create(m_settings, QList(), true); m_guiMessageQueue->push(messageToGUI); } return success; } const QString& BladeRF2Input::getDeviceDescription() const { return m_deviceDescription; } int BladeRF2Input::getSampleRate() const { int rate = m_settings.m_devSampleRate; return (rate / (1<{"centerFrequency"}, false); m_inputMessageQueue.push(message); if (m_guiMessageQueue) { MsgConfigureBladeRF2* messageToGUI = MsgConfigureBladeRF2::create(settings, QList{"centerFrequency"}, false); m_guiMessageQueue->push(messageToGUI); } } bool BladeRF2Input::setDeviceCenterFrequency(struct bladerf *dev, int requestedChannel, quint64 freq_hz, int loPpmTenths) { qint64 df = ((qint64)freq_hz * loPpmTenths) / 10000000LL; freq_hz += df; int status = bladerf_set_frequency(dev, BLADERF_CHANNEL_RX(requestedChannel), freq_hz); if (status < 0) { qWarning("BladeRF2Input::setDeviceCenterFrequency: bladerf_set_frequency(%lld) failed: %s", freq_hz, bladerf_strerror(status)); return false; } else { qDebug("BladeRF2Input::setDeviceCenterFrequency: bladerf_set_frequency(%lld)", freq_hz); return true; } } void BladeRF2Input::getFrequencyRange(uint64_t& min, uint64_t& max, int& step, float& scale) { if (m_deviceShared.m_dev) { m_deviceShared.m_dev->getFrequencyRangeRx(min, max, step, scale); } } void BladeRF2Input::getSampleRateRange(int& min, int& max, int& step, float& scale) { if (m_deviceShared.m_dev) { m_deviceShared.m_dev->getSampleRateRangeRx(min, max, step, scale); } } void BladeRF2Input::getBandwidthRange(int& min, int& max, int& step, float& scale) { if (m_deviceShared.m_dev) { m_deviceShared.m_dev->getBandwidthRangeRx(min, max, step, scale); } } void BladeRF2Input::getGlobalGainRange(int& min, int& max, int& step, float& scale) { if (m_deviceShared.m_dev) { m_deviceShared.m_dev->getGlobalGainRangeRx(min, max, step, scale); } } bool BladeRF2Input::handleMessage(const Message& message) { if (MsgConfigureBladeRF2::match(message)) { MsgConfigureBladeRF2& conf = (MsgConfigureBladeRF2&) message; qDebug() << "BladeRF2Input::handleMessage: MsgConfigureBladeRF2"; if (!applySettings(conf.getSettings(), conf.getSettingsKeys(), conf.getForce())) { qDebug("BladeRF2Input::handleMessage: MsgConfigureBladeRF2 config error"); } return true; } else if (DeviceBladeRF2Shared::MsgReportBuddyChange::match(message)) { DeviceBladeRF2Shared::MsgReportBuddyChange& report = (DeviceBladeRF2Shared::MsgReportBuddyChange&) message; struct bladerf *dev = m_deviceShared.m_dev->getDev(); BladeRF2InputSettings settings = m_settings; int status; unsigned int tmp_uint; bool tmp_bool; QList settingsKeys; // evaluate changes that may have been introduced by changes in a buddy if (dev) // The BladeRF device must have been open to do so { int requestedChannel = m_deviceAPI->getDeviceItemIndex(); if (report.getRxElseTx()) // Rx buddy change: check for: frequency, LO correction, gain mode and value, bias tee, sample rate, bandwidth { settings.m_devSampleRate = report.getDevSampleRate(); settings.m_LOppmTenths = report.getLOppmTenths(); settings.m_centerFrequency = report.getCenterFrequency(); settings.m_fcPos = (BladeRF2InputSettings::fcPos_t) report.getFcPos(); settingsKeys.append("devSampleRate"); settingsKeys.append("LOppmTenths"); settingsKeys.append("centerFrequency"); settingsKeys.append("fcPos"); BladeRF2InputThread *inputThread = findThread(); if (inputThread) { inputThread->setFcPos(requestedChannel, (int) settings.m_fcPos); } status = bladerf_get_bandwidth(dev, BLADERF_CHANNEL_RX(requestedChannel), &tmp_uint); if (status < 0) { qCritical("BladeRF2Input::handleMessage: MsgReportBuddyChange: bladerf_get_bandwidth error: %s", bladerf_strerror(status)); } else { settings.m_bandwidth = tmp_uint; settingsKeys.append("bandwidth"); } status = bladerf_get_bias_tee(dev, BLADERF_CHANNEL_RX(requestedChannel), &tmp_bool); if (status < 0) { qCritical("BladeRF2Input::handleMessage: MsgReportBuddyChange: bladerf_get_bias_tee error: %s", bladerf_strerror(status)); } else { settings.m_biasTee = tmp_bool; settingsKeys.append("biasTee"); } } else // Tx buddy change: check for sample rate change only { settings.m_devSampleRate = report.getDevSampleRate(); settingsKeys.append("devSampleRate"); // status = bladerf_get_sample_rate(dev, BLADERF_CHANNEL_RX(requestedChannel), &tmp_uint); // // if (status < 0) { // qCritical("BladeRF2Input::handleMessage: MsgReportBuddyChange: bladerf_get_sample_rate error: %s", bladerf_strerror(status)); // } else { // settings.m_devSampleRate = tmp_uint; // } qint64 deviceCenterFrequency = DeviceSampleSource::calculateDeviceCenterFrequency( settings.m_centerFrequency, 0, settings.m_log2Decim, (DeviceSampleSource::fcPos_t) settings.m_fcPos, settings.m_devSampleRate, DeviceSampleSource::FrequencyShiftScheme::FSHIFT_STD, false); if (setDeviceCenterFrequency(dev, requestedChannel, deviceCenterFrequency, settings.m_LOppmTenths)) { if (getMessageQueueToGUI()) { int min, max, step; float scale; getGlobalGainRange(min, max, step, scale); MsgReportGainRange *msg = MsgReportGainRange::create(min, max, step, scale); getMessageQueueToGUI()->push(msg); } } } // change DSP settings if buddy change introduced a change in center frequency or base rate if ((settings.m_centerFrequency != m_settings.m_centerFrequency) || (settings.m_devSampleRate != m_settings.m_devSampleRate)) { int sampleRate = settings.m_devSampleRate/(1<getDeviceEngineInputMessageQueue()->push(notif); } m_settings.applySettings(settingsKeys, settings); // acknowledge the new settings // propagate settings to GUI if any if (getMessageQueueToGUI()) { MsgConfigureBladeRF2 *reportToGUI = MsgConfigureBladeRF2::create(m_settings, settingsKeys, false); getMessageQueueToGUI()->push(reportToGUI); } } return true; } else if (MsgStartStop::match(message)) { MsgStartStop& cmd = (MsgStartStop&) message; qDebug() << "BladeRF2Input::handleMessage: MsgStartStop: " << (cmd.getStartStop() ? "start" : "stop"); if (cmd.getStartStop()) { if (m_deviceAPI->initDeviceEngine()) { m_deviceAPI->startDeviceEngine(); } } else { m_deviceAPI->stopDeviceEngine(); } if (m_settings.m_useReverseAPI) { webapiReverseSendStartStop(cmd.getStartStop()); } return true; } else { return false; } } bool BladeRF2Input::applySettings(const BladeRF2InputSettings& settings, const QList& settingsKeys, bool force) { qDebug() << "BladeRF2Input::applySettings: force:" << force << settings.getDebugString(settingsKeys, force); bool forwardChangeOwnDSP = false; bool forwardChangeRxBuddies = false; bool forwardChangeTxBuddies = false; struct bladerf *dev = m_deviceShared.m_dev->getDev(); int requestedChannel = m_deviceAPI->getDeviceItemIndex(); qint64 xlatedDeviceCenterFrequency = settings.m_centerFrequency; xlatedDeviceCenterFrequency -= settings.m_transverterMode ? settings.m_transverterDeltaFrequency : 0; xlatedDeviceCenterFrequency = xlatedDeviceCenterFrequency < 0 ? 0 : xlatedDeviceCenterFrequency; if (settingsKeys.contains("dcBlock") || settingsKeys.contains("iqCorrection") || force) { m_deviceAPI->configureCorrections(settings.m_dcBlock, settings.m_iqCorrection); } if (settingsKeys.contains("devSampleRate") || force) { forwardChangeOwnDSP = true; forwardChangeRxBuddies = true; forwardChangeTxBuddies = true; if (dev != 0) { unsigned int actualSamplerate; int status = bladerf_set_sample_rate(dev, BLADERF_CHANNEL_RX(requestedChannel), settings.m_devSampleRate, &actualSamplerate); if (status < 0) { qCritical("BladeRF2Input::applySettings: could not set sample rate: %d: %s", settings.m_devSampleRate, bladerf_strerror(status)); } else { qDebug() << "BladeRF2Input::applySettings: bladerf_set_sample_rate: actual sample rate is " << actualSamplerate; } } } if (settingsKeys.contains("bandwidth") || force) { forwardChangeRxBuddies = true; if (dev != 0) { unsigned int actualBandwidth; int status = bladerf_set_bandwidth(dev, BLADERF_CHANNEL_RX(requestedChannel), settings.m_bandwidth, &actualBandwidth); if(status < 0) { qCritical("BladeRF2Input::applySettings: could not set bandwidth: %d: %s", settings.m_bandwidth, bladerf_strerror(status)); } else { qDebug() << "BladeRF2Input::applySettings: bladerf_set_bandwidth: actual bandwidth is " << actualBandwidth; } } } if (settingsKeys.contains("fcPos") || force) { BladeRF2InputThread *inputThread = findThread(); if (inputThread) { inputThread->setFcPos(requestedChannel, (int) settings.m_fcPos); qDebug() << "BladeRF2Input::applySettings: set fc pos (enum) to " << (int) settings.m_fcPos; } } if (settingsKeys.contains("log2Decim") || force) { forwardChangeOwnDSP = true; BladeRF2InputThread *inputThread = findThread(); if (inputThread) { inputThread->setLog2Decimation(requestedChannel, settings.m_log2Decim); qDebug() << "BladeRF2Input::applySettings: set decimation to " << (1<setIQOrder(settings.m_iqOrder); } } if (settingsKeys.contains("log2Decim") || settingsKeys.contains("fcPos") || settingsKeys.contains("devSampleRate") || settingsKeys.contains("LOppmTenths") || settingsKeys.contains("centerFrequency") || settingsKeys.contains("transverterMode") || settingsKeys.contains("transverterDeltaFrequency") || force) { qint64 deviceCenterFrequency = DeviceSampleSource::calculateDeviceCenterFrequency( xlatedDeviceCenterFrequency, 0, settings.m_log2Decim, (DeviceSampleSource::fcPos_t) settings.m_fcPos, settings.m_devSampleRate, DeviceSampleSource::FrequencyShiftScheme::FSHIFT_STD, false); forwardChangeOwnDSP = true; forwardChangeRxBuddies = true; if (dev != 0) { if (setDeviceCenterFrequency(dev, requestedChannel, deviceCenterFrequency, settings.m_LOppmTenths)) { if (getMessageQueueToGUI()) { int min, max, step; float scale; getGlobalGainRange(min, max, step, scale); MsgReportGainRange *msg = MsgReportGainRange::create(min, max, step, scale); getMessageQueueToGUI()->push(msg); } } } } if (settingsKeys.contains("biasTee") || force) { forwardChangeRxBuddies = true; m_deviceShared.m_dev->setBiasTeeRx(settings.m_biasTee); } if (settingsKeys.contains("gainMode") || force) { forwardChangeRxBuddies = true; if (dev) { int status = bladerf_set_gain_mode(dev, BLADERF_CHANNEL_RX(requestedChannel), (bladerf_gain_mode) settings.m_gainMode); if (status < 0) { qWarning("BladeRF2Input::applySettings: bladerf_set_gain_mode(%d) failed: %s", settings.m_gainMode, bladerf_strerror(status)); } else { qDebug("BladeRF2Input::applySettings: bladerf_set_gain_mode(%d)", settings.m_gainMode); } } } if (settingsKeys.contains("globalGain") || (settingsKeys.contains("gainMode") && (settings.m_gainMode == BLADERF_GAIN_MANUAL)) || force) { forwardChangeRxBuddies = true; if (dev) { // qDebug("BladeRF2Input::applySettings: channel: %d gain: %d", requestedChannel, settings.m_globalGain); int status = bladerf_set_gain(dev, BLADERF_CHANNEL_RX(requestedChannel), settings.m_globalGain); if (status < 0) { qWarning("BladeRF2Input::applySettings: bladerf_set_gain(%d) failed: %s", settings.m_globalGain, bladerf_strerror(status)); } else { qDebug("BladeRF2Input::applySettings: bladerf_set_gain(%d)", settings.m_globalGain); } } } if (forwardChangeOwnDSP) { int sampleRate = settings.m_devSampleRate/(1<getDeviceEngineInputMessageQueue()->push(notif); } if (forwardChangeRxBuddies) { // send to source buddies const std::vector& sourceBuddies = m_deviceAPI->getSourceBuddies(); std::vector::const_iterator itSource = sourceBuddies.begin(); for (; itSource != sourceBuddies.end(); ++itSource) { DeviceBladeRF2Shared::MsgReportBuddyChange *report = DeviceBladeRF2Shared::MsgReportBuddyChange::create( settings.m_centerFrequency, settings.m_LOppmTenths, (int) settings.m_fcPos, settings.m_devSampleRate, true); (*itSource)->getSamplingDeviceInputMessageQueue()->push(report); } } if (forwardChangeTxBuddies) { // send to sink buddies const std::vector& sinkBuddies = m_deviceAPI->getSinkBuddies(); std::vector::const_iterator itSink = sinkBuddies.begin(); for (; itSink != sinkBuddies.end(); ++itSink) { DeviceBladeRF2Shared::MsgReportBuddyChange *report = DeviceBladeRF2Shared::MsgReportBuddyChange::create( settings.m_centerFrequency, settings.m_LOppmTenths, (int) settings.m_fcPos, settings.m_devSampleRate, true); (*itSink)->getSamplingDeviceInputMessageQueue()->push(report); } } if (settings.m_useReverseAPI) { bool fullUpdate = (settingsKeys.contains("useReverseAPI") && settings.m_useReverseAPI) || settingsKeys.contains("reverseAPIAddress") || settingsKeys.contains("reverseAPIPort") || settingsKeys.contains("reverseAPIDeviceIndex"); webapiReverseSendSettings(settingsKeys, settings, fullUpdate || force); } if (force) { m_settings = settings; } else { m_settings.applySettings(settingsKeys, settings); } return true; } int BladeRF2Input::webapiSettingsGet( SWGSDRangel::SWGDeviceSettings& response, QString& errorMessage) { (void) errorMessage; response.setBladeRf2InputSettings(new SWGSDRangel::SWGBladeRF2InputSettings()); response.getBladeRf2InputSettings()->init(); webapiFormatDeviceSettings(response, m_settings); return 200; } int BladeRF2Input::webapiSettingsPutPatch( bool force, const QStringList& deviceSettingsKeys, SWGSDRangel::SWGDeviceSettings& response, // query + response QString& errorMessage) { (void) errorMessage; BladeRF2InputSettings settings = m_settings; webapiUpdateDeviceSettings(settings, deviceSettingsKeys, response); MsgConfigureBladeRF2 *msg = MsgConfigureBladeRF2::create(settings, deviceSettingsKeys, force); m_inputMessageQueue.push(msg); if (m_guiMessageQueue) // forward to GUI if any { MsgConfigureBladeRF2 *msgToGUI = MsgConfigureBladeRF2::create(settings, deviceSettingsKeys, force); m_guiMessageQueue->push(msgToGUI); } webapiFormatDeviceSettings(response, settings); return 200; } void BladeRF2Input::webapiUpdateDeviceSettings( BladeRF2InputSettings& settings, const QStringList& deviceSettingsKeys, SWGSDRangel::SWGDeviceSettings& response) { if (deviceSettingsKeys.contains("centerFrequency")) { settings.m_centerFrequency = response.getBladeRf2InputSettings()->getCenterFrequency(); } if (deviceSettingsKeys.contains("LOppmTenths")) { settings.m_LOppmTenths = response.getBladeRf2InputSettings()->getLOppmTenths(); } if (deviceSettingsKeys.contains("devSampleRate")) { settings.m_devSampleRate = response.getBladeRf2InputSettings()->getDevSampleRate(); } if (deviceSettingsKeys.contains("bandwidth")) { settings.m_bandwidth = response.getBladeRf2InputSettings()->getBandwidth(); } if (deviceSettingsKeys.contains("log2Decim")) { settings.m_log2Decim = response.getBladeRf2InputSettings()->getLog2Decim(); } if (deviceSettingsKeys.contains("iqOrder")) { settings.m_iqOrder = response.getBladeRf2InputSettings()->getIqOrder() != 0; } if (deviceSettingsKeys.contains("fcPos")) { settings.m_fcPos = static_cast(response.getBladeRf2InputSettings()->getFcPos()); } if (deviceSettingsKeys.contains("dcBlock")) { settings.m_dcBlock = response.getBladeRf2InputSettings()->getDcBlock() != 0; } if (deviceSettingsKeys.contains("iqCorrection")) { settings.m_iqCorrection = response.getBladeRf2InputSettings()->getIqCorrection() != 0; } if (deviceSettingsKeys.contains("biasTee")) { settings.m_biasTee = response.getBladeRf2InputSettings()->getBiasTee() != 0; } if (deviceSettingsKeys.contains("gainMode")) { settings.m_gainMode = response.getBladeRf2InputSettings()->getGainMode(); } if (deviceSettingsKeys.contains("globalGain")) { settings.m_globalGain = response.getBladeRf2InputSettings()->getGlobalGain(); } if (deviceSettingsKeys.contains("transverterDeltaFrequency")) { settings.m_transverterDeltaFrequency = response.getBladeRf2InputSettings()->getTransverterDeltaFrequency(); } if (deviceSettingsKeys.contains("transverterMode")) { settings.m_transverterMode = response.getBladeRf2InputSettings()->getTransverterMode() != 0; } if (deviceSettingsKeys.contains("useReverseAPI")) { settings.m_useReverseAPI = response.getBladeRf2InputSettings()->getUseReverseApi() != 0; } if (deviceSettingsKeys.contains("reverseAPIAddress")) { settings.m_reverseAPIAddress = *response.getBladeRf2InputSettings()->getReverseApiAddress(); } if (deviceSettingsKeys.contains("reverseAPIPort")) { settings.m_reverseAPIPort = response.getBladeRf2InputSettings()->getReverseApiPort(); } if (deviceSettingsKeys.contains("reverseAPIDeviceIndex")) { settings.m_reverseAPIDeviceIndex = response.getBladeRf2InputSettings()->getReverseApiDeviceIndex(); } } int BladeRF2Input::webapiReportGet(SWGSDRangel::SWGDeviceReport& response, QString& errorMessage) { (void) errorMessage; response.setBladeRf2InputReport(new SWGSDRangel::SWGBladeRF2InputReport()); response.getBladeRf2InputReport()->init(); webapiFormatDeviceReport(response); return 200; } void BladeRF2Input::webapiFormatDeviceSettings(SWGSDRangel::SWGDeviceSettings& response, const BladeRF2InputSettings& settings) { response.getBladeRf2InputSettings()->setCenterFrequency(settings.m_centerFrequency); response.getBladeRf2InputSettings()->setLOppmTenths(settings.m_LOppmTenths); response.getBladeRf2InputSettings()->setDevSampleRate(settings.m_devSampleRate); response.getBladeRf2InputSettings()->setBandwidth(settings.m_bandwidth); response.getBladeRf2InputSettings()->setLog2Decim(settings.m_log2Decim); response.getBladeRf2InputSettings()->setIqOrder(settings.m_iqOrder ? 1 : 0); response.getBladeRf2InputSettings()->setFcPos((int) settings.m_fcPos); response.getBladeRf2InputSettings()->setDcBlock(settings.m_dcBlock ? 1 : 0); response.getBladeRf2InputSettings()->setIqCorrection(settings.m_iqCorrection ? 1 : 0); response.getBladeRf2InputSettings()->setBiasTee(settings.m_biasTee ? 1 : 0); response.getBladeRf2InputSettings()->setGainMode(settings.m_gainMode); response.getBladeRf2InputSettings()->setGlobalGain(settings.m_globalGain); response.getBladeRf2InputSettings()->setTransverterDeltaFrequency(settings.m_transverterDeltaFrequency); response.getBladeRf2InputSettings()->setTransverterMode(settings.m_transverterMode ? 1 : 0); response.getBladeRf2InputSettings()->setUseReverseApi(settings.m_useReverseAPI ? 1 : 0); if (response.getBladeRf2InputSettings()->getReverseApiAddress()) { *response.getBladeRf2InputSettings()->getReverseApiAddress() = settings.m_reverseAPIAddress; } else { response.getBladeRf2InputSettings()->setReverseApiAddress(new QString(settings.m_reverseAPIAddress)); } response.getBladeRf2InputSettings()->setReverseApiPort(settings.m_reverseAPIPort); response.getBladeRf2InputSettings()->setReverseApiDeviceIndex(settings.m_reverseAPIDeviceIndex); } void BladeRF2Input::webapiFormatDeviceReport(SWGSDRangel::SWGDeviceReport& response) { DeviceBladeRF2 *device = m_deviceShared.m_dev; if (device) { int min, max, step; float scale; uint64_t f_min, f_max; device->getBandwidthRangeRx(min, max, step, scale); response.getBladeRf2InputReport()->setBandwidthRange(new SWGSDRangel::SWGRange); response.getBladeRf2InputReport()->getBandwidthRange()->setMin(min); response.getBladeRf2InputReport()->getBandwidthRange()->setMax(max); response.getBladeRf2InputReport()->getBandwidthRange()->setStep(step); response.getBladeRf2InputReport()->getBandwidthRange()->setScale(scale); device->getFrequencyRangeRx(f_min, f_max, step, scale); response.getBladeRf2InputReport()->setFrequencyRange(new SWGSDRangel::SWGFrequencyRange); response.getBladeRf2InputReport()->getFrequencyRange()->setMin(f_min); response.getBladeRf2InputReport()->getFrequencyRange()->setMax(f_max); response.getBladeRf2InputReport()->getFrequencyRange()->setStep(step); response.getBladeRf2InputReport()->getBandwidthRange()->setScale(scale); device->getGlobalGainRangeRx(min, max, step, scale); response.getBladeRf2InputReport()->setGlobalGainRange(new SWGSDRangel::SWGRange); response.getBladeRf2InputReport()->getGlobalGainRange()->setMin(min); response.getBladeRf2InputReport()->getGlobalGainRange()->setMax(max); response.getBladeRf2InputReport()->getGlobalGainRange()->setStep(step); response.getBladeRf2InputReport()->getBandwidthRange()->setScale(scale); device->getSampleRateRangeRx(min, max, step, scale); response.getBladeRf2InputReport()->setSampleRateRange(new SWGSDRangel::SWGRange); response.getBladeRf2InputReport()->getSampleRateRange()->setMin(min); response.getBladeRf2InputReport()->getSampleRateRange()->setMax(max); response.getBladeRf2InputReport()->getSampleRateRange()->setStep(step); response.getBladeRf2InputReport()->getBandwidthRange()->setScale(scale); response.getBladeRf2InputReport()->setGainModes(new QList); const std::vector& modes = getGainModes(); std::vector::const_iterator it = modes.begin(); for (; it != modes.end(); ++it) { response.getBladeRf2InputReport()->getGainModes()->append(new SWGSDRangel::SWGNamedEnum); response.getBladeRf2InputReport()->getGainModes()->back()->setName(new QString(it->m_name)); response.getBladeRf2InputReport()->getGainModes()->back()->setValue(it->m_value); } } } int BladeRF2Input::webapiRunGet( SWGSDRangel::SWGDeviceState& response, QString& errorMessage) { (void) errorMessage; m_deviceAPI->getDeviceEngineStateStr(*response.getState()); return 200; } int BladeRF2Input::webapiRun( bool run, SWGSDRangel::SWGDeviceState& response, QString& errorMessage) { (void) errorMessage; m_deviceAPI->getDeviceEngineStateStr(*response.getState()); MsgStartStop *message = MsgStartStop::create(run); m_inputMessageQueue.push(message); if (m_guiMessageQueue) // forward to GUI if any { MsgStartStop *msgToGUI = MsgStartStop::create(run); m_guiMessageQueue->push(msgToGUI); } return 200; } void BladeRF2Input::webapiReverseSendSettings(const QList& deviceSettingsKeys, const BladeRF2InputSettings& settings, bool force) { SWGSDRangel::SWGDeviceSettings *swgDeviceSettings = new SWGSDRangel::SWGDeviceSettings(); swgDeviceSettings->setDirection(0); // single Rx swgDeviceSettings->setOriginatorIndex(m_deviceAPI->getDeviceSetIndex()); swgDeviceSettings->setDeviceHwType(new QString("BladeRF2")); swgDeviceSettings->setBladeRf2InputSettings(new SWGSDRangel::SWGBladeRF2InputSettings()); SWGSDRangel::SWGBladeRF2InputSettings *swgBladeRF2Settings = swgDeviceSettings->getBladeRf2InputSettings(); // transfer data that has been modified. When force is on transfer all data except reverse API data if (deviceSettingsKeys.contains("centerFrequency") || force) { swgBladeRF2Settings->setCenterFrequency(settings.m_centerFrequency); } if (deviceSettingsKeys.contains("LOppmTenths") || force) { swgBladeRF2Settings->setLOppmTenths(settings.m_LOppmTenths); } if (deviceSettingsKeys.contains("log2Decim") || force) { swgBladeRF2Settings->setLog2Decim(settings.m_log2Decim); } if (deviceSettingsKeys.contains("log2Decim") || force) { swgBladeRF2Settings->setIqOrder(settings.m_iqOrder ? 1 : 0); } if (deviceSettingsKeys.contains("fcPos") || force) { swgBladeRF2Settings->setFcPos((int) settings.m_fcPos); } if (deviceSettingsKeys.contains("dcBlock") || force) { swgBladeRF2Settings->setDcBlock(settings.m_dcBlock ? 1 : 0); } if (deviceSettingsKeys.contains("iqCorrection") || force) { swgBladeRF2Settings->setIqCorrection(settings.m_iqCorrection ? 1 : 0); } if (deviceSettingsKeys.contains("transverterDeltaFrequency") || force) { swgBladeRF2Settings->setTransverterDeltaFrequency(settings.m_transverterDeltaFrequency); } if (deviceSettingsKeys.contains("transverterMode") || force) { swgBladeRF2Settings->setTransverterMode(settings.m_transverterMode ? 1 : 0); } if (deviceSettingsKeys.contains("devSampleRate")) { swgBladeRF2Settings->setDevSampleRate(settings.m_devSampleRate); } if (deviceSettingsKeys.contains("bandwidth")) { swgBladeRF2Settings->setBandwidth(settings.m_bandwidth); } if (deviceSettingsKeys.contains("biasTee")) { swgBladeRF2Settings->setBiasTee(settings.m_biasTee); } if (deviceSettingsKeys.contains("gainMode")) { swgBladeRF2Settings->setGainMode(settings.m_gainMode); } if (deviceSettingsKeys.contains("globalGain")) { swgBladeRF2Settings->setGlobalGain(settings.m_globalGain); } QString deviceSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/device/settings") .arg(settings.m_reverseAPIAddress) .arg(settings.m_reverseAPIPort) .arg(settings.m_reverseAPIDeviceIndex); m_networkRequest.setUrl(QUrl(deviceSettingsURL)); m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json"); QBuffer *buffer = new QBuffer(); buffer->open((QBuffer::ReadWrite)); buffer->write(swgDeviceSettings->asJson().toUtf8()); buffer->seek(0); // Always use PATCH to avoid passing reverse API settings QNetworkReply *reply = m_networkManager->sendCustomRequest(m_networkRequest, "PATCH", buffer); buffer->setParent(reply); delete swgDeviceSettings; } void BladeRF2Input::webapiReverseSendStartStop(bool start) { SWGSDRangel::SWGDeviceSettings *swgDeviceSettings = new SWGSDRangel::SWGDeviceSettings(); swgDeviceSettings->setDirection(0); // single Rx swgDeviceSettings->setOriginatorIndex(m_deviceAPI->getDeviceSetIndex()); swgDeviceSettings->setDeviceHwType(new QString("BladeRF2")); QString deviceSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/device/run") .arg(m_settings.m_reverseAPIAddress) .arg(m_settings.m_reverseAPIPort) .arg(m_settings.m_reverseAPIDeviceIndex); m_networkRequest.setUrl(QUrl(deviceSettingsURL)); m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json"); QBuffer *buffer = new QBuffer(); buffer->open((QBuffer::ReadWrite)); buffer->write(swgDeviceSettings->asJson().toUtf8()); buffer->seek(0); QNetworkReply *reply; if (start) { reply = m_networkManager->sendCustomRequest(m_networkRequest, "POST", buffer); } else { reply = m_networkManager->sendCustomRequest(m_networkRequest, "DELETE", buffer); } buffer->setParent(reply); delete swgDeviceSettings; } void BladeRF2Input::networkManagerFinished(QNetworkReply *reply) { QNetworkReply::NetworkError replyError = reply->error(); if (replyError) { qWarning() << "BladeRF2Input::networkManagerFinished:" << " error(" << (int) replyError << "): " << replyError << ": " << reply->errorString(); } else { QString answer = reply->readAll(); answer.chop(1); // remove last \n qDebug("BladeRF2Input::networkManagerFinished: reply:\n%s", answer.toStdString().c_str()); } reply->deleteLater(); }