/* iir.c This file is part of a program that implements a Software-Defined Radio. Copyright (C) 2014, 2022, 2023 Warren Pratt, NR0V Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. The author can be reached by email at warren@wpratt.com */ #include "comm.hpp" #include "iir.hpp" #include "RXA.hpp" #include "TXA.hpp" namespace WDSP { /******************************************************************************************************** * * * Bi-Quad Notch * * * ********************************************************************************************************/ void SNOTCH::calc_snotch (SNOTCH *a) { float fn, qk, qr, csn; fn = a->f / (float)a->rate; csn = cos (TWOPI * fn); qr = 1.0 - 3.0 * a->bw; qk = (1.0 - 2.0 * qr * csn + qr * qr) / (2.0 * (1.0 - csn)); a->a0 = + qk; a->a1 = - 2.0 * qk * csn; a->a2 = + qk; a->b1 = + 2.0 * qr * csn; a->b2 = - qr * qr; flush_snotch (a); } SNOTCH* SNOTCH::create_snotch (int run, int size, float* in, float* out, int rate, float f, float bw) { SNOTCH *a = new SNOTCH; a->run = run; a->size = size; a->in = in; a->out = out; a->rate = rate; a->f = f; a->bw = bw; calc_snotch (a); return a; } void SNOTCH::destroy_snotch (SNOTCH *a) { delete (a); } void SNOTCH::flush_snotch (SNOTCH *a) { a->x1 = a->x2 = a->y1 = a->y2 = 0.0; } void SNOTCH::xsnotch (SNOTCH *a) { a->cs_update.lock(); if (a->run) { int i; for (i = 0; i < a->size; i++) { a->x0 = a->in[2 * i + 0]; a->out[2 * i + 0] = a->a0 * a->x0 + a->a1 * a->x1 + a->a2 * a->x2 + a->b1 * a->y1 + a->b2 * a->y2; a->y2 = a->y1; a->y1 = a->out[2 * i + 0]; a->x2 = a->x1; a->x1 = a->x0; } } else if (a->out != a->in) memcpy (a->out, a->in, a->size * sizeof (wcomplex)); a->cs_update.unlock(); } void SNOTCH::setBuffers_snotch (SNOTCH *a, float* in, float* out) { a->in = in; a->out = out; } void SNOTCH::setSamplerate_snotch (SNOTCH *a, int rate) { a->rate = rate; calc_snotch (a); } void SNOTCH::setSize_snotch (SNOTCH *a, int size) { a->size = size; flush_snotch (a); } /******************************************************************************************************** * * * RXA Properties * * * ********************************************************************************************************/ void SNOTCH::SetSNCTCSSFreq (SNOTCH *a, float freq) { a->cs_update.lock(); a->f = freq; calc_snotch (a); a->cs_update.unlock(); } void SNOTCH::SetSNCTCSSRun (SNOTCH *a, int run) { a->cs_update.lock(); a->run = run; a->cs_update.unlock(); } /******************************************************************************************************** * * * Complex Bi-Quad Peaking * * * ********************************************************************************************************/ void SPEAK::calc_speak (SPEAK *a) { float ratio; float f_corr, g_corr, bw_corr, bw_parm, A, f_min; switch (a->design) { case 0: ratio = a->bw / a->f; switch (a->nstages) { case 4: bw_parm = 2.4; f_corr = 1.0 - 0.160 * ratio + 1.440 * ratio * ratio; g_corr = 1.0 - 1.003 * ratio + 3.990 * ratio * ratio; break; default: bw_parm = 1.0; f_corr = 1.0; g_corr = 1.0; break; } { float fn, qk, qr, csn; a->fgain = a->gain / g_corr; fn = a->f / (float)a->rate / f_corr; csn = cos (TWOPI * fn); qr = 1.0 - 3.0 * a->bw / (float)a->rate * bw_parm; qk = (1.0 - 2.0 * qr * csn + qr * qr) / (2.0 * (1.0 - csn)); a->a0 = 1.0 - qk; a->a1 = 2.0 * (qk - qr) * csn; a->a2 = qr * qr - qk; a->b1 = 2.0 * qr * csn; a->b2 = - qr * qr; } break; case 1: if (a->f < 200.0) a->f = 200.0; ratio = a->bw / a->f; switch (a->nstages) { case 4: bw_parm = 5.0; bw_corr = 1.13 * ratio - 0.956 * ratio * ratio; A = 2.5; f_min = 50.0; break; default: bw_parm = 1.0; bw_corr = 1.0; g_corr = 1.0; A = 2.5; f_min = 50.0; break; } { float w0, sn, c, den; if (a->f < f_min) a->f = f_min; w0 = TWOPI * a->f / (float)a->rate; sn = sin (w0); a->cbw = bw_corr * a->f; c = sn * sinh(0.5 * log((a->f + 0.5 * a->cbw * bw_parm) / (a->f - 0.5 * a->cbw * bw_parm)) * w0 / sn); den = 1.0 + c / A; a->a0 = (1.0 + c * A) / den; a->a1 = - 2.0 * cos (w0) / den; a->a2 = (1 - c * A) / den; a->b1 = - a->a1; a->b2 = - (1 - c / A ) / den; a->fgain = a->gain / pow (A * A, (float)a->nstages); } break; } flush_speak (a); } SPEAK* SPEAK::create_speak (int run, int size, float* in, float* out, int rate, float f, float bw, float gain, int nstages, int design) { SPEAK *a = new SPEAK; a->run = run; a->size = size; a->in = in; a->out = out; a->rate = rate; a->f = f; a->bw = bw; a->gain = gain; a->nstages = nstages; a->design = design; a->x0 = new float[a->nstages * 2]; // (float *) malloc0 (a->nstages * sizeof (complex)); a->x1 = new float[a->nstages * 2]; // (float *) malloc0 (a->nstages * sizeof (complex)); a->x2 = new float[a->nstages * 2]; //(float *) malloc0 (a->nstages * sizeof (complex)); a->y0 = new float[a->nstages * 2]; // (float *) malloc0 (a->nstages * sizeof (complex)); a->y1 = new float[a->nstages * 2]; // (float *) malloc0 (a->nstages * sizeof (complex)); a->y2 = new float[a->nstages * 2]; // (float *) malloc0 (a->nstages * sizeof (complex)); calc_speak (a); return a; } void SPEAK::destroy_speak (SPEAK *a) { delete[] (a->y2); delete[] (a->y1); delete[] (a->y0); delete[] (a->x2); delete[] (a->x1); delete[] (a->x0); delete (a); } void SPEAK::flush_speak (SPEAK *a) { int i; for (i = 0; i < a->nstages; i++) { a->x1[2 * i + 0] = a->x2[2 * i + 0] = a->y1[2 * i + 0] = a->y2[2 * i + 0] = 0.0; a->x1[2 * i + 1] = a->x2[2 * i + 1] = a->y1[2 * i + 1] = a->y2[2 * i + 1] = 0.0; } } void SPEAK::xspeak (SPEAK *a) { a->cs_update.lock(); if (a->run) { int i, j, n; for (i = 0; i < a->size; i++) { for (j = 0; j < 2; j++) { a->x0[j] = a->fgain * a->in[2 * i + j]; for (n = 0; n < a->nstages; n++) { if (n > 0) a->x0[2 * n + j] = a->y0[2 * (n - 1) + j]; a->y0[2 * n + j] = a->a0 * a->x0[2 * n + j] + a->a1 * a->x1[2 * n + j] + a->a2 * a->x2[2 * n + j] + a->b1 * a->y1[2 * n + j] + a->b2 * a->y2[2 * n + j]; a->y2[2 * n + j] = a->y1[2 * n + j]; a->y1[2 * n + j] = a->y0[2 * n + j]; a->x2[2 * n + j] = a->x1[2 * n + j]; a->x1[2 * n + j] = a->x0[2 * n + j]; } a->out[2 * i + j] = a->y0[2 * (a->nstages - 1) + j]; } } } else if (a->out != a->in) memcpy (a->out, a->in, a->size * sizeof (wcomplex)); a->cs_update.unlock(); } void SPEAK::setBuffers_speak (SPEAK *a, float* in, float* out) { a->in = in; a->out = out; } void SPEAK::setSamplerate_speak (SPEAK *a, int rate) { a->rate = rate; calc_speak (a); } void SPEAK::setSize_speak (SPEAK *a, int size) { a->size = size; flush_speak (a); } /******************************************************************************************************** * * * RXA Properties * * * ********************************************************************************************************/ void SPEAK::SetSPCWRun (RXA& rxa, int run) { SPEAK *a = rxa.speak.p; a->cs_update.lock(); a->run = run; a->cs_update.unlock(); } void SPEAK::SetSPCWFreq (RXA& rxa, float freq) { SPEAK *a = rxa.speak.p; a->cs_update.lock(); a->f = freq; calc_speak (a); a->cs_update.unlock(); } void SPEAK::SetSPCWBandwidth (RXA& rxa, float bw) { SPEAK *a = rxa.speak.p; a->cs_update.lock(); a->bw = bw; calc_speak (a); a->cs_update.unlock(); } void SPEAK::SetSPCWGain (RXA& rxa, float gain) { SPEAK *a = rxa.speak.p; a->cs_update.lock(); a->gain = gain; calc_speak (a); a->cs_update.unlock(); } /******************************************************************************************************** * * * Complex Multiple Peaking * * * ********************************************************************************************************/ void MPEAK::calc_mpeak (MPEAK *a) { int i; a->tmp = new float[a->size * 2]; // (float *) malloc0 (a->size * sizeof (complex)); a->mix = new float[a->size * 2]; // (float *) malloc0 (a->size * sizeof (complex)); for (i = 0; i < a->npeaks; i++) { a->pfil[i] = SPEAK::create_speak ( 1, a->size, a->in, a->tmp, a->rate, a->f[i], a->bw[i], a->gain[i], a->nstages, 1 ); } } void MPEAK::decalc_mpeak (MPEAK *a) { int i; for (i = 0; i < a->npeaks; i++) SPEAK::destroy_speak (a->pfil[i]); delete[] (a->mix); delete[] (a->tmp); } MPEAK* MPEAK::create_mpeak (int run, int size, float* in, float* out, int rate, int npeaks, int* enable, float* f, float* bw, float* gain, int nstages) { MPEAK *a = new MPEAK; a->run = run; a->size = size; a->in = in; a->out = out; a->rate = rate; a->npeaks = npeaks; a->nstages = nstages; a->enable = new int[a->npeaks]; // (int *) malloc0 (a->npeaks * sizeof (int)); a->f = new float[a->npeaks]; // (float *) malloc0 (a->npeaks * sizeof (float)); a->bw = new float[a->npeaks]; // (float *) malloc0 (a->npeaks * sizeof (float)); a->gain = new float[a->npeaks]; // (float *) malloc0 (a->npeaks * sizeof (float)); memcpy (a->enable, enable, a->npeaks * sizeof (int)); memcpy (a->f, f, a->npeaks * sizeof (float)); memcpy (a->bw, bw, a->npeaks * sizeof (float)); memcpy (a->gain, gain, a->npeaks * sizeof (float)); a->pfil = new SPEAK*[a->npeaks]; // (SPEAK *) malloc0 (a->npeaks * sizeof (SPEAK)); calc_mpeak (a); return a; } void MPEAK::destroy_mpeak (MPEAK *a) { decalc_mpeak (a); delete[] (a->pfil); delete[] (a->gain); delete[] (a->bw); delete[] (a->f); delete[] (a->enable); delete (a); } void MPEAK::flush_mpeak (MPEAK *a) { int i; for (i = 0; i < a->npeaks; i++) SPEAK::flush_speak (a->pfil[i]); } void MPEAK::xmpeak (MPEAK *a) { a->cs_update.lock(); if (a->run) { int i, j; memset (a->mix, 0, a->size * sizeof (wcomplex)); for (i = 0; i < a->npeaks; i++) { if (a->enable[i]) { SPEAK::xspeak (a->pfil[i]); for (j = 0; j < 2 * a->size; j++) a->mix[j] += a->tmp[j]; } } memcpy (a->out, a->mix, a->size * sizeof (wcomplex)); } else if (a->in != a->out) memcpy (a->out, a->in, a->size * sizeof (wcomplex)); a->cs_update.unlock(); } void MPEAK::setBuffers_mpeak (MPEAK *a, float* in, float* out) { decalc_mpeak (a); a->in = in; a->out = out; calc_mpeak (a); } void MPEAK::setSamplerate_mpeak (MPEAK *a, int rate) { decalc_mpeak (a); a->rate = rate; calc_mpeak (a); } void MPEAK::setSize_mpeak (MPEAK *a, int size) { decalc_mpeak (a); a->size = size; calc_mpeak (a); } /******************************************************************************************************** * * * RXA Properties * * * ********************************************************************************************************/ void MPEAK::SetmpeakRun (RXA& rxa, int run) { MPEAK *a = rxa.mpeak.p; a->cs_update.lock(); a->run = run; a->cs_update.unlock(); } void MPEAK::SetmpeakNpeaks (RXA& rxa, int npeaks) { MPEAK *a = rxa.mpeak.p; a->cs_update.lock(); a->npeaks = npeaks; a->cs_update.unlock(); } void MPEAK::SetmpeakFilEnable (RXA& rxa, int fil, int enable) { MPEAK *a = rxa.mpeak.p; a->cs_update.lock(); a->enable[fil] = enable; a->cs_update.unlock(); } void MPEAK::SetmpeakFilFreq (RXA& rxa, int fil, float freq) { MPEAK *a = rxa.mpeak.p; a->cs_update.lock(); a->f[fil] = freq; a->pfil[fil]->f = freq; SPEAK::calc_speak(a->pfil[fil]); a->cs_update.unlock(); } void MPEAK::SetmpeakFilBw (RXA& rxa, int fil, float bw) { MPEAK *a = rxa.mpeak.p; a->cs_update.lock(); a->bw[fil] = bw; a->pfil[fil]->bw = bw; SPEAK::calc_speak(a->pfil[fil]); a->cs_update.unlock(); } void MPEAK::SetmpeakFilGain (RXA& rxa, int fil, float gain) { MPEAK *a = rxa.mpeak.p; a->cs_update.lock(); a->gain[fil] = gain; a->pfil[fil]->gain = gain; SPEAK::calc_speak(a->pfil[fil]); a->cs_update.unlock(); } /******************************************************************************************************** * * * Phase Rotator * * * ********************************************************************************************************/ void PHROT::calc_phrot (PHROT *a) { float g; a->x0 = new float[a->nstages]; // (float *) malloc0 (a->nstages * sizeof (float)); a->x1 = new float[a->nstages]; // (float *) malloc0 (a->nstages * sizeof (float)); a->y0 = new float[a->nstages]; // (float *) malloc0 (a->nstages * sizeof (float)); a->y1 = new float[a->nstages]; // (float *) malloc0 (a->nstages * sizeof (float)); g = tan (PI * a->fc / (float)a->rate); a->b0 = (g - 1.0) / (g + 1.0); a->b1 = 1.0; a->a1 = a->b0; } void PHROT::decalc_phrot (PHROT *a) { delete[] (a->y1); delete[] (a->y0); delete[] (a->x1); delete[] (a->x0); } PHROT* PHROT::create_phrot (int run, int size, float* in, float* out, int rate, float fc, int nstages) { PHROT *a = new PHROT; a->reverse = 0; a->run = run; a->size = size; a->in = in; a->out = out; a->rate = rate; a->fc = fc; a->nstages = nstages; calc_phrot (a); return a; } void PHROT::destroy_phrot (PHROT *a) { decalc_phrot (a); delete (a); } void PHROT::flush_phrot (PHROT *a) { memset (a->x0, 0, a->nstages * sizeof (float)); memset (a->x1, 0, a->nstages * sizeof (float)); memset (a->y0, 0, a->nstages * sizeof (float)); memset (a->y1, 0, a->nstages * sizeof (float)); } void PHROT::xphrot (PHROT *a) { a->cs_update.lock(); if (a->reverse) { for (int i = 0; i < a->size; i++) a->in[2 * i + 0] = -a->in[2 * i + 0]; } if (a->run) { int i, n; for (i = 0; i < a->size; i++) { a->x0[0] = a->in[2 * i + 0]; for (n = 0; n < a->nstages; n++) { if (n > 0) a->x0[n] = a->y0[n - 1]; a->y0[n] = a->b0 * a->x0[n] + a->b1 * a->x1[n] - a->a1 * a->y1[n]; a->y1[n] = a->y0[n]; a->x1[n] = a->x0[n]; } a->out[2 * i + 0] = a->y0[a->nstages - 1]; } } else if (a->out != a->in) memcpy (a->out, a->in, a->size * sizeof (wcomplex)); a->cs_update.unlock(); } void PHROT::setBuffers_phrot (PHROT *a, float* in, float* out) { a->in = in; a->out = out; } void PHROT::setSamplerate_phrot (PHROT *a, int rate) { decalc_phrot (a); a->rate = rate; calc_phrot (a); } void PHROT::setSize_phrot (PHROT *a, int size) { a->size = size; flush_phrot (a); } /******************************************************************************************************** * * * TXA Properties * * * ********************************************************************************************************/ void PHROT::SetPHROTRun (TXA& txa, int run) { PHROT *a = txa.phrot.p; a->cs_update.lock(); a->run = run; if (a->run) flush_phrot (a); a->cs_update.unlock(); } void PHROT::SetPHROTCorner (TXA& txa, float corner) { PHROT *a = txa.phrot.p; a->cs_update.lock(); decalc_phrot (a); a->fc = corner; calc_phrot (a); a->cs_update.unlock(); } void PHROT::SetPHROTNstages (TXA& txa, int nstages) { PHROT *a = txa.phrot.p; a->cs_update.lock(); decalc_phrot (a); a->nstages = nstages; calc_phrot (a); a->cs_update.unlock(); } void PHROT::SetPHROTReverse (TXA& txa, int reverse) { PHROT *a = txa.phrot.p; a->cs_update.lock(); a->reverse = reverse; a->cs_update.unlock(); } /******************************************************************************************************** * * * Complex Bi-Quad Low-Pass * * * ********************************************************************************************************/ void BQLP::calc_bqlp(BQLP *a) { float w0, cs, c, den; w0 = TWOPI * a->fc / (float)a->rate; cs = cos(w0); c = sin(w0) / (2.0 * a->Q); den = 1.0 + c; a->a0 = 0.5 * (1.0 - cs) / den; a->a1 = (1.0 - cs) / den; a->a2 = 0.5 * (1.0 - cs) / den; a->b1 = 2.0 * cs / den; a->b2 = (c - 1.0) / den; flush_bqlp(a); } BQLP* BQLP::create_bqlp(int run, int size, float* in, float* out, float rate, float fc, float Q, float gain, int nstages) { BQLP *a = new BQLP; a->run = run; a->size = size; a->in = in; a->out = out; a->rate = rate; a->fc = fc; a->Q = Q; a->gain = gain; a->nstages = nstages; a->x0 = new float[a->nstages * 2]; // (float*)malloc0(a->nstages * sizeof(complex)); a->x1 = new float[a->nstages * 2]; // (float*)malloc0(a->nstages * sizeof(complex)); a->x2 = new float[a->nstages * 2]; // (float*)malloc0(a->nstages * sizeof(complex)); a->y0 = new float[a->nstages * 2]; // (float*)malloc0(a->nstages * sizeof(complex)); a->y1 = new float[a->nstages * 2]; // (float*)malloc0(a->nstages * sizeof(complex)); a->y2 = new float[a->nstages * 2]; // (float*)malloc0(a->nstages * sizeof(complex)); calc_bqlp(a); return a; } void BQLP::destroy_bqlp(BQLP *a) { delete[](a->y2); delete[](a->y1); delete[](a->y0); delete[](a->x2); delete[](a->x1); delete[](a->x0); delete(a); } void BQLP::flush_bqlp(BQLP *a) { int i; for (i = 0; i < a->nstages; i++) { a->x1[2 * i + 0] = a->x2[2 * i + 0] = a->y1[2 * i + 0] = a->y2[2 * i + 0] = 0.0; a->x1[2 * i + 1] = a->x2[2 * i + 1] = a->y1[2 * i + 1] = a->y2[2 * i + 1] = 0.0; } } void BQLP::xbqlp(BQLP *a) { a->cs_update.lock(); if (a->run) { int i, j, n; for (i = 0; i < a->size; i++) { for (j = 0; j < 2; j++) { a->x0[j] = a->gain * a->in[2 * i + j]; for (n = 0; n < a->nstages; n++) { if (n > 0) a->x0[2 * n + j] = a->y0[2 * (n - 1) + j]; a->y0[2 * n + j] = a->a0 * a->x0[2 * n + j] + a->a1 * a->x1[2 * n + j] + a->a2 * a->x2[2 * n + j] + a->b1 * a->y1[2 * n + j] + a->b2 * a->y2[2 * n + j]; a->y2[2 * n + j] = a->y1[2 * n + j]; a->y1[2 * n + j] = a->y0[2 * n + j]; a->x2[2 * n + j] = a->x1[2 * n + j]; a->x1[2 * n + j] = a->x0[2 * n + j]; } a->out[2 * i + j] = a->y0[2 * (a->nstages - 1) + j]; } } } else if (a->out != a->in) memcpy(a->out, a->in, a->size * sizeof(wcomplex)); a->cs_update.unlock(); } void BQLP::setBuffers_bqlp(BQLP *a, float* in, float* out) { a->in = in; a->out = out; } void BQLP::setSamplerate_bqlp(BQLP *a, int rate) { a->rate = rate; calc_bqlp(a); } void BQLP::setSize_bqlp(BQLP *a, int size) { a->size = size; flush_bqlp(a); } /******************************************************************************************************** * * * Double Bi-Quad Low-Pass * * * ********************************************************************************************************/ void DBQLP::calc_dbqlp(BQLP *a) { float w0, cs, c, den; w0 = TWOPI * a->fc / (float)a->rate; cs = cos(w0); c = sin(w0) / (2.0 * a->Q); den = 1.0 + c; a->a0 = 0.5 * (1.0 - cs) / den; a->a1 = (1.0 - cs) / den; a->a2 = 0.5 * (1.0 - cs) / den; a->b1 = 2.0 * cs / den; a->b2 = (c - 1.0) / den; flush_dbqlp(a); } BQLP* DBQLP::create_dbqlp(int run, int size, float* in, float* out, float rate, float fc, float Q, float gain, int nstages) { BQLP *a = new BQLP; a->run = run; a->size = size; a->in = in; a->out = out; a->rate = rate; a->fc = fc; a->Q = Q; a->gain = gain; a->nstages = nstages; a->x0 = new float[a->nstages]; // (float*)malloc0(a->nstages * sizeof(float)); a->x1 = new float[a->nstages]; // (float*)malloc0(a->nstages * sizeof(float)); a->x2 = new float[a->nstages]; // (float*)malloc0(a->nstages * sizeof(float)); a->y0 = new float[a->nstages]; // (float*)malloc0(a->nstages * sizeof(float)); a->y1 = new float[a->nstages]; // (float*)malloc0(a->nstages * sizeof(float)); a->y2 = new float[a->nstages]; // (float*)malloc0(a->nstages * sizeof(float)); calc_dbqlp(a); return a; } void DBQLP::destroy_dbqlp(BQLP *a) { delete[](a->y2); delete[](a->y1); delete[](a->y0); delete[](a->x2); delete[](a->x1); delete[](a->x0); delete(a); } void DBQLP::flush_dbqlp(BQLP *a) { int i; for (i = 0; i < a->nstages; i++) { a->x1[i] = a->x2[i] = a->y1[i] = a->y2[i] = 0.0; } } void DBQLP::xdbqlp(BQLP *a) { a->cs_update.lock(); if (a->run) { int i, n; for (i = 0; i < a->size; i++) { a->x0[0] = a->gain * a->in[i]; for (n = 0; n < a->nstages; n++) { if (n > 0) a->x0[n] = a->y0[n - 1]; a->y0[n] = a->a0 * a->x0[n] + a->a1 * a->x1[n] + a->a2 * a->x2[n] + a->b1 * a->y1[n] + a->b2 * a->y2[n]; a->y2[n] = a->y1[n]; a->y1[n] = a->y0[n]; a->x2[n] = a->x1[n]; a->x1[n] = a->x0[n]; } a->out[i] = a->y0[a->nstages - 1]; } } else if (a->out != a->in) memcpy(a->out, a->in, a->size * sizeof(float)); a->cs_update.unlock(); } void DBQLP::setBuffers_dbqlp(BQLP *a, float* in, float* out) { a->in = in; a->out = out; } void DBQLP::setSamplerate_dbqlp(BQLP *a, int rate) { a->rate = rate; calc_dbqlp(a); } void DBQLP::setSize_dbqlp(BQLP *a, int size) { a->size = size; flush_dbqlp(a); } /******************************************************************************************************** * * * Complex Bi-Quad Band-Pass * * * ********************************************************************************************************/ void BQBP::calc_bqbp(BQBP *a) { float f0, w0, bw, q, sn, cs, c, den; bw = a->f_high - a->f_low; f0 = (a->f_high + a->f_low) / 2.0; q = f0 / bw; w0 = TWOPI * f0 / a->rate; sn = sin(w0); cs = cos(w0); c = sn / (2.0 * q); den = 1.0 + c; a->a0 = +c / den; a->a1 = 0.0; a->a2 = -c / den; a->b1 = 2.0 * cs / den; a->b2 = (c - 1.0) / den; flush_bqbp(a); } BQBP* BQBP::create_bqbp(int run, int size, float* in, float* out, float rate, float f_low, float f_high, float gain, int nstages) { BQBP *a = new BQBP; a->run = run; a->size = size; a->in = in; a->out = out; a->rate = rate; a->f_low = f_low; a->f_high = f_high; a->gain = gain; a->nstages = nstages; a->x0 = new float[a->nstages * 2]; // (float*)malloc0(a->nstages * sizeof(complex)); a->x1 = new float[a->nstages * 2]; // (float*)malloc0(a->nstages * sizeof(complex)); a->x2 = new float[a->nstages * 2]; // (float*)malloc0(a->nstages * sizeof(complex)); a->y0 = new float[a->nstages * 2]; // (float*)malloc0(a->nstages * sizeof(complex)); a->y1 = new float[a->nstages * 2]; // (float*)malloc0(a->nstages * sizeof(complex)); a->y2 = new float[a->nstages * 2]; // (float*)malloc0(a->nstages * sizeof(complex)); calc_bqbp(a); return a; } void BQBP::destroy_bqbp(BQBP *a) { delete[](a->y2); delete[](a->y1); delete[](a->y0); delete[](a->x2); delete[](a->x1); delete[](a->x0); delete(a); } void BQBP::flush_bqbp(BQBP *a) { int i; for (i = 0; i < a->nstages; i++) { a->x1[2 * i + 0] = a->x2[2 * i + 0] = a->y1[2 * i + 0] = a->y2[2 * i + 0] = 0.0; a->x1[2 * i + 1] = a->x2[2 * i + 1] = a->y1[2 * i + 1] = a->y2[2 * i + 1] = 0.0; } } void BQBP::xbqbp(BQBP *a) { a->cs_update.lock(); if (a->run) { int i, j, n; for (i = 0; i < a->size; i++) { for (j = 0; j < 2; j++) { a->x0[j] = a->gain * a->in[2 * i + j]; for (n = 0; n < a->nstages; n++) { if (n > 0) a->x0[2 * n + j] = a->y0[2 * (n - 1) + j]; a->y0[2 * n + j] = a->a0 * a->x0[2 * n + j] + a->a1 * a->x1[2 * n + j] + a->a2 * a->x2[2 * n + j] + a->b1 * a->y1[2 * n + j] + a->b2 * a->y2[2 * n + j]; a->y2[2 * n + j] = a->y1[2 * n + j]; a->y1[2 * n + j] = a->y0[2 * n + j]; a->x2[2 * n + j] = a->x1[2 * n + j]; a->x1[2 * n + j] = a->x0[2 * n + j]; } a->out[2 * i + j] = a->y0[2 * (a->nstages - 1) + j]; } } } else if (a->out != a->in) memcpy(a->out, a->in, a->size * sizeof(wcomplex)); a->cs_update.unlock(); } void BQBP::setBuffers_bqbp(BQBP *a, float* in, float* out) { a->in = in; a->out = out; } void BQBP::setSamplerate_bqbp(BQBP *a, int rate) { a->rate = rate; calc_bqbp(a); } void BQBP::setSize_bqbp(BQBP *a, int size) { a->size = size; flush_bqbp(a); } /******************************************************************************************************** * * * Double Bi-Quad Band-Pass * * * ********************************************************************************************************/ void BQBP::calc_dbqbp(BQBP *a) { float f0, w0, bw, q, sn, cs, c, den; bw = a->f_high - a->f_low; f0 = (a->f_high + a->f_low) / 2.0; q = f0 / bw; w0 = TWOPI * f0 / a->rate; sn = sin(w0); cs = cos(w0); c = sn / (2.0 * q); den = 1.0 + c; a->a0 = +c / den; a->a1 = 0.0; a->a2 = -c / den; a->b1 = 2.0 * cs / den; a->b2 = (c - 1.0) / den; flush_dbqbp(a); } BQBP* BQBP::create_dbqbp(int run, int size, float* in, float* out, float rate, float f_low, float f_high, float gain, int nstages) { BQBP *a = new BQBP; a->run = run; a->size = size; a->in = in; a->out = out; a->rate = rate; a->f_low = f_low; a->f_high = f_high; a->gain = gain; a->nstages = nstages; a->x0 = new float[a->nstages]; // (float*)malloc0(a->nstages * sizeof(float)); a->x1 = new float[a->nstages]; // (float*)malloc0(a->nstages * sizeof(float)); a->x2 = new float[a->nstages]; // (float*)malloc0(a->nstages * sizeof(float)); a->y0 = new float[a->nstages]; // (float*)malloc0(a->nstages * sizeof(float)); a->y1 = new float[a->nstages]; // (float*)malloc0(a->nstages * sizeof(float)); a->y2 = new float[a->nstages]; // (float*)malloc0(a->nstages * sizeof(float)); calc_dbqbp(a); return a; } void BQBP::destroy_dbqbp(BQBP *a) { delete[](a->y2); delete[](a->y1); delete[](a->y0); delete[](a->x2); delete[](a->x1); delete[](a->x0); delete(a); } void BQBP::flush_dbqbp(BQBP *a) { int i; for (i = 0; i < a->nstages; i++) { a->x1[i] = a->x2[i] = a->y1[i] = a->y2[i] = 0.0; } } void BQBP::xdbqbp(BQBP *a) { a->cs_update.lock(); if (a->run) { int i, n; for (i = 0; i < a->size; i++) { a->x0[0] = a->gain * a->in[i]; for (n = 0; n < a->nstages; n++) { if (n > 0) a->x0[n] = a->y0[n - 1]; a->y0[n] = a->a0 * a->x0[n] + a->a1 * a->x1[n] + a->a2 * a->x2[n] + a->b1 * a->y1[n] + a->b2 * a->y2[n]; a->y2[n] = a->y1[n]; a->y1[n] = a->y0[n]; a->x2[n] = a->x1[n]; a->x1[n] = a->x0[n]; } a->out[i] = a->y0[a->nstages - 1]; } } else if (a->out != a->in) memcpy(a->out, a->in, a->size * sizeof(float)); a->cs_update.unlock(); } void BQBP::setBuffers_dbqbp(BQBP *a, float* in, float* out) { a->in = in; a->out = out; } void BQBP::setSamplerate_dbqbp(BQBP *a, int rate) { a->rate = rate; calc_dbqbp(a); } void BQBP::setSize_dbqbp(BQBP *a, int size) { a->size = size; flush_dbqbp(a); } /******************************************************************************************************** * * * Complex Single-Pole High-Pass * * * ********************************************************************************************************/ void SPHP::calc_sphp(SPHP *a) { float g; a->x0 = new float[a->nstages * 2]; // (float*)malloc0(a->nstages * sizeof(complex)); a->x1 = new float[a->nstages * 2]; // (float*)malloc0(a->nstages * sizeof(complex)); a->y0 = new float[a->nstages * 2]; // (float*)malloc0(a->nstages * sizeof(complex)); a->y1 = new float[a->nstages * 2]; // (float*)malloc0(a->nstages * sizeof(complex)); g = exp(-TWOPI * a->fc / a->rate); a->b0 = +0.5 * (1.0 + g); a->b1 = -0.5 * (1.0 + g); a->a1 = -g; } SPHP* SPHP::create_sphp(int run, int size, float* in, float* out, float rate, float fc, int nstages) { SPHP *a = new SPHP; a->run = run; a->size = size; a->in = in; a->out = out; a->rate = rate; a->fc = fc; a->nstages = nstages; calc_sphp(a); return a; } void SPHP::decalc_sphp(SPHP *a) { delete[](a->y1); delete[](a->y0); delete[](a->x1); delete[](a->x0); } void SPHP::destroy_sphp(SPHP *a) { decalc_sphp(a); delete(a); } void SPHP::flush_sphp(SPHP *a) { memset(a->x0, 0, a->nstages * sizeof(wcomplex)); memset(a->x1, 0, a->nstages * sizeof(wcomplex)); memset(a->y0, 0, a->nstages * sizeof(wcomplex)); memset(a->y1, 0, a->nstages * sizeof(wcomplex)); } void SPHP::xsphp(SPHP *a) { a->cs_update.lock(); if (a->run) { int i, j, n; for (i = 0; i < a->size; i++) { for (j = 0; j < 2; j++) { a->x0[j] = a->in[2 * i + j]; for (n = 0; n < a->nstages; n++) { if (n > 0) a->x0[2 * n + j] = a->y0[2 * (n - 1) + j]; a->y0[2 * n + j] = a->b0 * a->x0[2 * n + j] + a->b1 * a->x1[2 * n + j] - a->a1 * a->y1[2 * n + j]; a->y1[2 * n + j] = a->y0[2 * n + j]; a->x1[2 * n + j] = a->x0[2 * n + j]; } a->out[2 * i + j] = a->y0[2 * (a->nstages - 1) + j]; } } } else if (a->out != a->in) memcpy(a->out, a->in, a->size * sizeof(wcomplex)); a->cs_update.unlock(); } void SPHP::setBuffers_sphp(SPHP *a, float* in, float* out) { a->in = in; a->out = out; } void SPHP::setSamplerate_sphp(SPHP *a, int rate) { decalc_sphp(a); a->rate = rate; calc_sphp(a); } void SPHP::setSize_sphp(SPHP *a, int size) { a->size = size; flush_sphp(a); } /******************************************************************************************************** * * * Double Single-Pole High-Pass * * * ********************************************************************************************************/ void SPHP::calc_dsphp(SPHP *a) { float g; a->x0 = new float[a->nstages]; // (float*)malloc0(a->nstages * sizeof(float)); a->x1 = new float[a->nstages]; // (float*)malloc0(a->nstages * sizeof(float)); a->y0 = new float[a->nstages]; // (float*)malloc0(a->nstages * sizeof(float)); a->y1 = new float[a->nstages]; // (float*)malloc0(a->nstages * sizeof(float)); g = exp(-TWOPI * a->fc / a->rate); a->b0 = +0.5 * (1.0 + g); a->b1 = -0.5 * (1.0 + g); a->a1 = -g; } SPHP* SPHP::create_dsphp(int run, int size, float* in, float* out, float rate, float fc, int nstages) { SPHP *a = new SPHP; a->run = run; a->size = size; a->in = in; a->out = out; a->rate = rate; a->fc = fc; a->nstages = nstages; calc_dsphp(a); return a; } void SPHP::decalc_dsphp(SPHP *a) { delete[](a->y1); delete[](a->y0); delete[](a->x1); delete[](a->x0); } void SPHP::destroy_dsphp(SPHP *a) { decalc_dsphp(a); delete(a); } void SPHP::flush_dsphp(SPHP *a) { memset(a->x0, 0, a->nstages * sizeof(float)); memset(a->x1, 0, a->nstages * sizeof(float)); memset(a->y0, 0, a->nstages * sizeof(float)); memset(a->y1, 0, a->nstages * sizeof(float)); } void SPHP::xdsphp(SPHP *a) { a->cs_update.lock(); if (a->run) { int i, n; for (i = 0; i < a->size; i++) { a->x0[0] = a->in[i]; for (n = 0; n < a->nstages; n++) { if (n > 0) a->x0[n] = a->y0[n - 1]; a->y0[n] = a->b0 * a->x0[n] + a->b1 * a->x1[n] - a->a1 * a->y1[n]; a->y1[n] = a->y0[n]; a->x1[n] = a->x0[n]; } a->out[i] = a->y0[a->nstages - 1]; } } else if (a->out != a->in) memcpy(a->out, a->in, a->size * sizeof(float)); a->cs_update.unlock(); } void SPHP::setBuffers_dsphp(SPHP *a, float* in, float* out) { a->in = in; a->out = out; } void SPHP::setSamplerate_dsphp(SPHP *a, int rate) { decalc_dsphp(a); a->rate = rate; calc_dsphp(a); } void SPHP::setSize_dsphp(SPHP *a, int size) { a->size = size; flush_dsphp(a); } } // namespace WDSP