/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany // // written by Christian Daniel // // Copyright (C) 2014 John Greb // // Copyright (C) 2015-2020, 2022-2023 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #ifndef INCLUDE_UDPSINKSINK_H #define INCLUDE_UDPSINKSINK_H #include #include "dsp/channelsamplesink.h" #include "dsp/nco.h" #include "dsp/fftfilt.h" #include "dsp/interpolator.h" #include "dsp/phasediscri.h" #include "dsp/movingaverage.h" #include "dsp/agc.h" #include "dsp/firfilter.h" #include "util/udpsinkutil.h" #include "audio/audiofifo.h" #include "udpsinksettings.h" class QUdpSocket; class BasebandSampleSink; class UDPSinkSink : public QObject, public ChannelSampleSink { Q_OBJECT public: UDPSinkSink(); ~UDPSinkSink(); virtual void feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end); void applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force = true); void applySettings(const UDPSinkSettings& settings, bool force = false); AudioFifo *getAudioFifo() { return &m_audioFifo; } void setAudioFifoLabel(const QString& label) { m_audioFifo.setLabel(label); } void setSpectrum(BasebandSampleSink* spectrum) { m_spectrum = spectrum; } void enableSpectrum(bool enable) { m_spectrumEnabled = enable; } void setSpectrumPositiveOnly(bool positiveOnly) { m_spectrumPositiveOnly = positiveOnly; } double getMagSq() const { return m_magsq; } double getInMagSq() const { return m_inMagsq; } bool getSquelchOpen() const { return m_squelchOpen; } static const int udpBlockSize = 512; // UDP block size in number of bytes private slots: void audioReadyRead(); private: struct Sample16 { Sample16() : m_r(0), m_i(0) {} Sample16(int16_t r, int16_t i) : m_r(r), m_i(i) {} int16_t m_r; int16_t m_i; }; struct Sample24 { Sample24() : m_r(0), m_i(0) {} Sample24(int32_t r, int32_t i) : m_r(r), m_i(i) {} int32_t m_r; int32_t m_i; }; int m_channelSampleRate; int m_channelFrequencyOffset; UDPSinkSettings m_settings; QUdpSocket *m_audioSocket; double m_magsq; double m_inMagsq; MovingAverage m_outMovingAverage; MovingAverage m_inMovingAverage; MovingAverage m_amMovingAverage; Real m_scale; Complex m_last, m_this; NCO m_nco; Interpolator m_interpolator; Real m_sampleDistanceRemain; fftfilt* UDPFilter; SampleVector m_sampleBuffer; UDPSinkUtil *m_udpBuffer16; UDPSinkUtil *m_udpBufferMono16; UDPSinkUtil *m_udpBuffer24; AudioVector m_audioBuffer; std::size_t m_audioBufferFill; AudioFifo m_audioFifo; BasebandSampleSink* m_spectrum; bool m_spectrumEnabled; bool m_spectrumPositiveOnly; quint32 m_nextSSBId; quint32 m_nextS16leId; char *m_udpAudioBuf; static const int m_udpAudioPayloadSize = 8192; //!< UDP audio samples buffer. No UDP block on Earth is larger than this static const Real m_agcTarget; PhaseDiscriminators m_phaseDiscri; double m_squelch; bool m_squelchOpen; int m_squelchOpenCount; int m_squelchCloseCount; int m_squelchGate; //!< number of samples computed from given gate int m_squelchRelease; MagAGC m_agc; Bandpass m_bandpass; inline void calculateSquelch(double value) { if ((!m_settings.m_squelchEnabled) || (value > m_squelch)) { if (m_squelchGate == 0) { m_squelchOpen = true; } else { if (m_squelchOpenCount < m_squelchGate) { m_squelchOpenCount++; } else { m_squelchCloseCount = m_squelchRelease; m_squelchOpen = true; } } } else { if (m_squelchGate == 0) { m_squelchOpen = false; } else { if (m_squelchCloseCount > 0) { m_squelchCloseCount--; } else { m_squelchOpenCount = 0; m_squelchOpen = false; } } } } inline void initSquelch(bool open) { if (open) { m_squelchOpen = true; m_squelchOpenCount = m_squelchGate; m_squelchCloseCount = m_squelchRelease; } else { m_squelchOpen = false; m_squelchOpenCount = 0; m_squelchCloseCount = 0; } } void udpWrite(FixReal real, FixReal imag) { if (SDR_RX_SAMP_SZ == 16) { if (m_settings.m_sampleFormat == UDPSinkSettings::FormatIQ16) { m_udpBuffer16->write(Sample16(real, imag)); } else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatIQ24) { m_udpBuffer24->write(Sample24(real<<8, imag<<8)); } else { m_udpBuffer16->write(Sample16(real, imag)); } } else if (SDR_RX_SAMP_SZ == 24) { if (m_settings.m_sampleFormat == UDPSinkSettings::FormatIQ16) { m_udpBuffer16->write(Sample16(real>>8, imag>>8)); } else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatIQ24) { m_udpBuffer24->write(Sample24(real, imag)); } else { m_udpBuffer16->write(Sample16(real>>8, imag>>8)); } } } void udpWriteMono(FixReal sample) { if (SDR_RX_SAMP_SZ == 16) { m_udpBufferMono16->write(sample); } else if (SDR_RX_SAMP_SZ == 24) { m_udpBufferMono16->write(sample>>8); } } void udpWriteNorm(Real real, Real imag) { m_udpBuffer16->write(Sample16(real*32768.0, imag*32768.0)); } void udpWriteNormMono(Real sample) { m_udpBufferMono16->write(sample*32768.0); } }; #endif // INCLUDE_UDPSINKSINK_H