/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019-2020 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include "dsp/dspcommands.h" #include "dsp/basebandsamplesink.h" #include "util/db.h" #include "udpsourcesource.h" #include "udpsourcemsg.h" UDPSourceSource::UDPSourceSource() : m_channelSampleRate(48000), m_channelFrequencyOffset(0), m_squelch(1e-6), m_spectrumSink(nullptr), m_spectrumChunkSize(2160), m_spectrumChunkCounter(0), m_magsq(1e-10), m_movingAverage(16, 1e-10), m_inMovingAverage(480, 1e-10), m_sampleRateSum(0), m_sampleRateAvgCounter(0), m_levelCalcCount(0), m_peakLevel(0.0f), m_levelSum(0.0f), m_levelNbSamples(480), m_squelchOpen(false), m_squelchOpenCount(0), m_squelchCloseCount(0), m_squelchThreshold(4800), m_modPhasor(0.0f), m_SSBFilterBufferIndex(0) { m_SSBFilter = new fftfilt(m_settings.m_lowCutoff / m_settings.m_inputSampleRate, m_settings.m_rfBandwidth / m_settings.m_inputSampleRate, m_ssbFftLen); m_SSBFilterBuffer = new Complex[m_ssbFftLen>>1]; // filter returns data exactly half of its size m_magsq = 0.0; m_udpHandler.start(); applySettings(m_settings, true); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); } UDPSourceSource::~UDPSourceSource() { m_udpHandler.stop(); delete m_SSBFilter; delete[] m_SSBFilterBuffer; } void UDPSourceSource::setUDPFeedbackMessageQueue(MessageQueue *messageQueue) { m_udpHandler.setFeedbackMessageQueue(messageQueue); } void UDPSourceSource::pull(SampleVector::iterator begin, unsigned int nbSamples) { std::for_each( begin, begin + nbSamples, [this](Sample& s) { pullOne(s); } ); } void UDPSourceSource::pullOne(Sample& sample) { if (m_settings.m_channelMute) { sample.m_real = 0.0f; sample.m_imag = 0.0f; initSquelch(false); return; } Complex ci; if (m_interpolatorDistance > 1.0f) // decimate { modulateSample(); while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci)) { modulateSample(); } } else { if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci)) { modulateSample(); } } m_interpolatorDistanceRemain += m_interpolatorDistance; ci *= m_carrierNco.nextIQ(); // shift to carrier frequency double magsq = ci.real() * ci.real() + ci.imag() * ci.imag(); magsq /= (SDR_TX_SCALED*SDR_TX_SCALED); m_movingAverage.feed(magsq); m_magsq = m_movingAverage.average(); sample.m_real = (FixReal) ci.real(); sample.m_imag = (FixReal) ci.imag(); } void UDPSourceSource::modulateSample() { if (m_settings.m_sampleFormat == UDPSourceSettings::FormatSnLE) // Linear I/Q transponding { Sample s; m_udpHandler.readSample(s); uint64_t magsq = s.m_real * s.m_real + s.m_imag * s.m_imag; m_inMovingAverage.feed(magsq/(SDR_TX_SCALED*SDR_TX_SCALED)); m_inMagsq = m_inMovingAverage.average(); calculateSquelch(m_inMagsq); if (m_squelchOpen) { m_modSample.real(s.m_real * m_settings.m_gainOut); m_modSample.imag(s.m_imag * m_settings.m_gainOut); calculateLevel(m_modSample); } else { m_modSample.real(0.0f); m_modSample.imag(0.0f); } } else if (m_settings.m_sampleFormat == UDPSourceSettings::FormatNFM) { qint16 t; readMonoSample(t); m_inMovingAverage.feed((t*t)/1073741824.0); m_inMagsq = m_inMovingAverage.average(); calculateSquelch(m_inMagsq); if (m_squelchOpen) { m_modPhasor += (m_settings.m_fmDeviation / m_settings.m_inputSampleRate) * (t / SDR_TX_SCALEF) * M_PI * 2.0f; m_modSample.real(cos(m_modPhasor) * 0.3162292f * SDR_TX_SCALEF * m_settings.m_gainOut); m_modSample.imag(sin(m_modPhasor) * 0.3162292f * SDR_TX_SCALEF * m_settings.m_gainOut); calculateLevel(m_modSample); } else { m_modSample.real(0.0f); m_modSample.imag(0.0f); } } else if (m_settings.m_sampleFormat == UDPSourceSettings::FormatAM) { qint16 t; readMonoSample(t); m_inMovingAverage.feed((t*t)/(SDR_TX_SCALED*SDR_TX_SCALED)); m_inMagsq = m_inMovingAverage.average(); calculateSquelch(m_inMagsq); if (m_squelchOpen) { m_modSample.real(((t / SDR_TX_SCALEF)*m_settings.m_amModFactor*m_settings.m_gainOut + 1.0f) * (SDR_TX_SCALEF/2)); // modulate and scale zero frequency carrier m_modSample.imag(0.0f); calculateLevel(m_modSample); } else { m_modSample.real(0.0f); m_modSample.imag(0.0f); } } else if ((m_settings.m_sampleFormat == UDPSourceSettings::FormatLSB) || (m_settings.m_sampleFormat == UDPSourceSettings::FormatUSB)) { qint16 t; Complex c, ci; fftfilt::cmplx *filtered; int n_out = 0; readMonoSample(t); m_inMovingAverage.feed((t*t)/(SDR_TX_SCALED*SDR_TX_SCALED)); m_inMagsq = m_inMovingAverage.average(); calculateSquelch(m_inMagsq); if (m_squelchOpen) { ci.real((t / SDR_TX_SCALEF) * m_settings.m_gainOut); ci.imag(0.0f); n_out = m_SSBFilter->runSSB(ci, &filtered, (m_settings.m_sampleFormat == UDPSourceSettings::FormatUSB)); if (n_out > 0) { memcpy((void *) m_SSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex)); m_SSBFilterBufferIndex = 0; } c = m_SSBFilterBuffer[m_SSBFilterBufferIndex]; m_modSample.real(m_SSBFilterBuffer[m_SSBFilterBufferIndex].real() * SDR_TX_SCALEF); m_modSample.imag(m_SSBFilterBuffer[m_SSBFilterBufferIndex].imag() * SDR_TX_SCALEF); m_SSBFilterBufferIndex++; calculateLevel(m_modSample); } else { m_modSample.real(0.0f); m_modSample.imag(0.0f); } } else { m_modSample.real(0.0f); m_modSample.imag(0.0f); initSquelch(false); } if (m_spectrumSink) { Sample s; s.m_real = (FixReal) m_modSample.real(); s.m_imag = (FixReal) m_modSample.imag(); m_sampleBuffer.push_back(s); m_spectrumChunkCounter++; if (m_spectrumChunkCounter == m_spectrumChunkSize) { m_spectrumSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), false); m_sampleBuffer.clear(); m_spectrumChunkCounter = 0; } } } void UDPSourceSource::calculateLevel(Real sample) { if (m_levelCalcCount < m_levelNbSamples) { m_peakLevel = std::max(std::fabs(m_peakLevel), sample); m_levelSum += sample * sample; m_levelCalcCount++; } else { m_rmsLevel = m_levelSum > 0.0 ? sqrt(m_levelSum / m_levelNbSamples) : 0.0; m_peakLevelOut = m_peakLevel; m_peakLevel = 0.0f; m_levelSum = 0.0f; m_levelCalcCount = 0; } } void UDPSourceSource::calculateLevel(Complex sample) { Real t = std::abs(sample); if (m_levelCalcCount < m_levelNbSamples) { m_peakLevel = std::max(std::fabs(m_peakLevel), t); m_levelSum += (t * t); m_levelCalcCount++; } else { m_rmsLevel = m_levelSum > 0.0 ? sqrt((m_levelSum/(SDR_TX_SCALED*SDR_TX_SCALED)) / m_levelNbSamples) : 0.0; m_peakLevelOut = m_peakLevel; m_peakLevel = 0.0f; m_levelSum = 0.0f; m_levelCalcCount = 0; } } void UDPSourceSource::resetReadIndex() { m_udpHandler.resetReadIndex(); } void UDPSourceSource::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force) { qDebug() << "UDPSourceSource::applyChannelSettings:" << " channelSampleRate: " << channelSampleRate << " channelFrequencyOffset: " << channelFrequencyOffset; if ((channelFrequencyOffset != m_channelFrequencyOffset) || (channelSampleRate != m_channelSampleRate) || force) { m_carrierNco.setFreq(channelFrequencyOffset, channelSampleRate); } if (((channelSampleRate != m_channelSampleRate) && (!m_settings.m_autoRWBalance)) || force) { m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) m_settings.m_inputSampleRate / (Real) channelSampleRate; m_interpolator.create(48, m_settings.m_inputSampleRate, m_settings.m_rfBandwidth / 2.2, 3.0); } m_channelSampleRate = channelSampleRate; m_channelFrequencyOffset = channelFrequencyOffset; } void UDPSourceSource::applySettings(const UDPSourceSettings& settings, bool force) { qDebug() << "UDPSourceSource::applySettings:" << " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset << " m_sampleFormat: " << settings.m_sampleFormat << " m_inputSampleRate: " << settings.m_inputSampleRate << " m_rfBandwidth: " << settings.m_rfBandwidth << " m_lowCutoff: " << settings.m_lowCutoff << " m_fmDeviation: " << settings.m_fmDeviation << " m_amModFactor: " << settings.m_amModFactor << " m_udpAddressStr: " << settings.m_udpAddress << " m_udpPort: " << settings.m_udpPort << " m_multicastAddress: " << settings.m_multicastAddress << " m_multicastJoin: " << settings.m_multicastJoin << " m_channelMute: " << settings.m_channelMute << " m_gainIn: " << settings.m_gainIn << " m_gainOut: " << settings.m_gainOut << " m_squelchGate: " << settings.m_squelchGate << " m_squelch: " << settings.m_squelch << "dB" << " m_squelchEnabled: " << settings.m_squelchEnabled << " m_autoRWBalance: " << settings.m_autoRWBalance << " m_stereoInput: " << settings.m_stereoInput << " force: " << force; if((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || (settings.m_lowCutoff != m_settings.m_lowCutoff) || (settings.m_inputSampleRate != m_settings.m_inputSampleRate) || force) { m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) settings.m_inputSampleRate / (Real) m_channelSampleRate; m_interpolator.create(48, settings.m_inputSampleRate, settings.m_rfBandwidth / 2.2, 3.0); m_actualInputSampleRate = settings.m_inputSampleRate; m_udpHandler.resetReadIndex(); m_sampleRateSum = 0.0; m_sampleRateAvgCounter = 0; m_spectrumChunkSize = settings.m_inputSampleRate * 0.05; // 50 ms chunk m_spectrumChunkCounter = 0; m_levelNbSamples = settings.m_inputSampleRate * 0.01; // every 10 ms m_levelCalcCount = 0; m_peakLevel = 0.0f; m_levelSum = 0.0f; m_udpHandler.resizeBuffer(settings.m_inputSampleRate); m_inMovingAverage.resize(settings.m_inputSampleRate * 0.01, 1e-10); // 10 ms m_squelchThreshold = settings.m_inputSampleRate * settings.m_squelchGate; initSquelch(m_squelchOpen); m_SSBFilter->create_filter(settings.m_lowCutoff / settings.m_inputSampleRate, settings.m_rfBandwidth / settings.m_inputSampleRate); } if ((settings.m_squelch != m_settings.m_squelch) || force) { m_squelch = CalcDb::powerFromdB(settings.m_squelch); } if ((settings.m_squelchGate != m_settings.m_squelchGate) || force) { m_squelchThreshold = m_channelSampleRate * settings.m_squelchGate; initSquelch(m_squelchOpen); } if ((settings.m_udpAddress != m_settings.m_udpAddress) || (settings.m_udpPort != m_settings.m_udpPort) || (settings.m_multicastAddress != m_settings.m_multicastAddress) || (settings.m_multicastJoin != m_settings.m_multicastJoin) || force) { m_udpHandler.configureUDPLink(settings.m_udpAddress, settings.m_udpPort, settings.m_multicastAddress, settings.m_multicastJoin); } if ((settings.m_channelMute != m_settings.m_channelMute) || force) { if (!settings.m_channelMute) { m_udpHandler.resetReadIndex(); } } if ((settings.m_autoRWBalance != m_settings.m_autoRWBalance) || force) { m_udpHandler.setAutoRWBalance(settings.m_autoRWBalance); if (!settings.m_autoRWBalance) { m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) settings.m_inputSampleRate / (Real) m_channelSampleRate; m_interpolator.create(48, settings.m_inputSampleRate, settings.m_rfBandwidth / 2.2, 3.0); m_actualInputSampleRate = settings.m_inputSampleRate; m_udpHandler.resetReadIndex(); } } m_settings = settings; } void UDPSourceSource::sampleRateCorrection(float rawDeltaRatio, float correctionFactor) { float newSampleRate = m_actualInputSampleRate + correctionFactor * m_actualInputSampleRate; // exclude values too way out nominal sample rate (20%) if ((newSampleRate < m_settings.m_inputSampleRate * 1.2) && (newSampleRate > m_settings.m_inputSampleRate * 0.8)) { m_actualInputSampleRate = newSampleRate; if ((rawDeltaRatio > -0.05) && (rawDeltaRatio < 0.05)) { if (m_sampleRateAvgCounter < m_sampleRateAverageItems) { m_sampleRateSum += m_actualInputSampleRate; m_sampleRateAvgCounter++; } } else { m_sampleRateSum = 0.0; m_sampleRateAvgCounter = 0; } if (m_sampleRateAvgCounter == m_sampleRateAverageItems) { float avgRate = m_sampleRateSum / m_sampleRateAverageItems; qDebug("UDPSourceSource::sampleRateCorrection: corr: %+.6f new rate: %.0f: avg rate: %.0f", correctionFactor, m_actualInputSampleRate, avgRate); m_actualInputSampleRate = avgRate; m_sampleRateSum = 0.0; m_sampleRateAvgCounter = 0; } m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) m_actualInputSampleRate / (Real) m_channelSampleRate; } }