/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany // // written by Christian Daniel // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include "dsp/threadedbasebandsamplesink.h" #include #include "audio/audiooutput.h" #include "dsp/dspengine.h" #include "dsp/pidcontroller.h" #include "wfmdemod.h" MESSAGE_CLASS_DEFINITION(WFMDemod::MsgConfigureWFMDemod, Message) MESSAGE_CLASS_DEFINITION(WFMDemod::MsgConfigureChannelizer, Message) const QString WFMDemod::m_channelIdURI = "de.maintech.sdrangelove.channel.wfm"; const QString WFMDemod::m_channelId = "WFMDemod"; const int WFMDemod::m_udpBlockSize = 512; WFMDemod::WFMDemod(DeviceSourceAPI* deviceAPI) : ChannelSinkAPI(m_channelIdURI), m_deviceAPI(deviceAPI), m_inputSampleRate(384000), m_inputFrequencyOffset(0), m_squelchOpen(false), m_magsq(0.0f), m_magsqSum(0.0f), m_magsqPeak(0.0f), m_magsqCount(0), m_movingAverage(40, 0), m_sampleSink(0), m_audioFifo(250000), m_settingsMutex(QMutex::Recursive) { setObjectName(m_channelId); m_rfFilter = new fftfilt(-50000.0 / 384000.0, 50000.0 / 384000.0, rfFilterFftLength); m_phaseDiscri.setFMScaling(384000/75000); m_audioBuffer.resize(16384); m_audioBufferFill = 0; m_movingAverage.resize(16, 0); DSPEngine::instance()->addAudioSink(&m_audioFifo); m_udpBufferAudio = new UDPSink(this, m_udpBlockSize, m_settings.m_udpPort); m_channelizer = new DownChannelizer(this); m_threadedChannelizer = new ThreadedBasebandSampleSink(m_channelizer, this); m_deviceAPI->addThreadedSink(m_threadedChannelizer); m_deviceAPI->addChannelAPI(this); applySettings(m_settings, true); } WFMDemod::~WFMDemod() { if (m_rfFilter) { delete m_rfFilter; } DSPEngine::instance()->removeAudioSink(&m_audioFifo); m_deviceAPI->removeChannelAPI(this); m_deviceAPI->removeThreadedSink(m_threadedChannelizer); delete m_threadedChannelizer; delete m_channelizer; delete m_udpBufferAudio; } void WFMDemod::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool firstOfBurst __attribute__((unused))) { Complex ci; fftfilt::cmplx *rf; int rf_out; Real demod; double msq; float fmDev; m_settingsMutex.lock(); for (SampleVector::const_iterator it = begin; it != end; ++it) { //Complex c(it->real() / 32768.0f, it->imag() / 32768.0f); Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); rf_out = m_rfFilter->runFilt(c, &rf); // filter RF before demod for (int i = 0 ; i < rf_out; i++) { demod = m_phaseDiscri.phaseDiscriminatorDelta(rf[i], msq, fmDev); Real magsq = msq / (1<<30); m_movingAverage.feed(magsq); m_magsqSum += magsq; if (magsq > m_magsqPeak) { m_magsqPeak = magsq; } m_magsqCount++; if(m_movingAverage.average() >= m_squelchLevel) m_squelchState = m_settings.m_rfBandwidth / 20; // decay rate if (m_squelchState > 0) { m_squelchState--; m_squelchOpen = true; } else { demod = 0; m_squelchOpen = false; } if (m_settings.m_audioMute) { demod = 0; } Complex e(demod, 0); if(m_interpolator.decimate(&m_interpolatorDistanceRemain, e, &ci)) { qint16 sample = (qint16)(ci.real() * 3276.8f * m_settings.m_volume); m_sampleBuffer.push_back(Sample(sample, sample)); m_audioBuffer[m_audioBufferFill].l = sample; m_audioBuffer[m_audioBufferFill].r = sample; if (m_settings.m_copyAudioToUDP) { m_udpBufferAudio->write(sample); } ++m_audioBufferFill; if(m_audioBufferFill >= m_audioBuffer.size()) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 1); if(res != m_audioBufferFill) { qDebug("WFMDemod::feed: %u/%u audio samples written", res, m_audioBufferFill); } m_audioBufferFill = 0; } m_interpolatorDistanceRemain += m_interpolatorDistance; } } } if(m_audioBufferFill > 0) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 1); if(res != m_audioBufferFill) { qDebug("WFMDemod::feed: %u/%u tail samples written", res, m_audioBufferFill); } m_audioBufferFill = 0; } if(m_sampleSink != 0) { m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), false); } m_sampleBuffer.clear(); m_settingsMutex.unlock(); } void WFMDemod::start() { m_squelchState = 0; m_audioFifo.clear(); m_phaseDiscri.reset(); } void WFMDemod::stop() { } bool WFMDemod::handleMessage(const Message& cmd) { if (DownChannelizer::MsgChannelizerNotification::match(cmd)) { DownChannelizer::MsgChannelizerNotification& notif = (DownChannelizer::MsgChannelizerNotification&) cmd; qDebug() << "WFMDemod::handleMessage: MsgChannelizerNotification: m_inputSampleRate: " << notif.getSampleRate() << " m_inputFrequencyOffset: " << notif.getFrequencyOffset(); applyChannelSettings(notif.getSampleRate(), notif.getFrequencyOffset()); return true; } else if (MsgConfigureChannelizer::match(cmd)) { MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd; qDebug() << "WFMDemod::handleMessage: MsgConfigureChannelizer:" << " sampleRate: " << cfg.getSampleRate() << " inputFrequencyOffset: " << cfg.getCenterFrequency(); m_channelizer->configure(m_channelizer->getInputMessageQueue(), cfg.getSampleRate(), cfg.getCenterFrequency()); return true; } else if (MsgConfigureWFMDemod::match(cmd)) { MsgConfigureWFMDemod& cfg = (MsgConfigureWFMDemod&) cmd; qDebug("WFMDemod::handleMessage: MsgConfigureWFMDemod"); applySettings(cfg.getSettings(), cfg.getForce()); return true; } else { if (m_sampleSink != 0) { return m_sampleSink->handleMessage(cmd); } else { return false; } } } void WFMDemod::applyChannelSettings(int inputSampleRate, int inputFrequencyOffset) { qDebug() << "WFMDemod::applyChannelSettings:" << " inputSampleRate: " << inputSampleRate << " inputFrequencyOffset: " << inputFrequencyOffset; if((inputFrequencyOffset != m_inputFrequencyOffset) || (inputSampleRate != m_inputSampleRate)) { m_nco.setFreq(-inputFrequencyOffset, inputSampleRate); } if (inputSampleRate != m_inputSampleRate) { qDebug() << "WFMDemod::applyChannelSettings: m_interpolator.create"; m_interpolator.create(16, inputSampleRate, m_settings.m_afBandwidth); m_interpolatorDistanceRemain = (Real) inputSampleRate / (Real) m_settings.m_audioSampleRate; m_interpolatorDistance = (Real) inputSampleRate / (Real) m_settings.m_audioSampleRate; qDebug() << "WFMDemod::applySettings: m_rfFilter->create_filter"; Real lowCut = -(m_settings.m_rfBandwidth / 2.0) / inputSampleRate; Real hiCut = (m_settings.m_rfBandwidth / 2.0) / inputSampleRate; m_rfFilter->create_filter(lowCut, hiCut); m_fmExcursion = m_settings.m_rfBandwidth / (Real) inputSampleRate; m_phaseDiscri.setFMScaling(1.0f/m_fmExcursion); qDebug("WFMDemod::applySettings: m_fmExcursion: %f", m_fmExcursion); } m_inputSampleRate = inputSampleRate; m_inputFrequencyOffset = inputFrequencyOffset; } void WFMDemod::applySettings(const WFMDemodSettings& settings, bool force) { qDebug() << "WFMDemod::applySettings:" << " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset << " m_rfBandwidth: " << settings.m_rfBandwidth << " m_afBandwidth: " << settings.m_afBandwidth << " m_volume: " << settings.m_volume << " m_squelch: " << settings.m_squelch << " m_copyAudioToUDP: " << settings.m_copyAudioToUDP << " m_udpAddress: " << settings.m_udpAddress << " m_udpPort: " << settings.m_udpPort << " force: " << force; if((settings.m_audioSampleRate != m_settings.m_audioSampleRate) || (settings.m_afBandwidth != m_settings.m_afBandwidth) || (settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force) { m_settingsMutex.lock(); qDebug() << "WFMDemod::applySettings: m_interpolator.create"; m_interpolator.create(16, m_inputSampleRate, settings.m_afBandwidth); m_interpolatorDistanceRemain = (Real) m_inputSampleRate / (Real) settings.m_audioSampleRate; m_interpolatorDistance = (Real) m_inputSampleRate / (Real) settings.m_audioSampleRate; qDebug() << "WFMDemod::applySettings: m_rfFilter->create_filter"; Real lowCut = -(settings.m_rfBandwidth / 2.0) / m_inputSampleRate; Real hiCut = (settings.m_rfBandwidth / 2.0) / m_inputSampleRate; m_rfFilter->create_filter(lowCut, hiCut); m_fmExcursion = settings.m_rfBandwidth / (Real) m_inputSampleRate; m_phaseDiscri.setFMScaling(1.0f/m_fmExcursion); qDebug("WFMDemod::applySettings: m_fmExcursion: %f", m_fmExcursion); m_settingsMutex.unlock(); } if ((settings.m_squelch != m_settings.m_squelch) || force) { qDebug() << "WFMDemod::applySettings: set m_squelchLevel"; m_squelchLevel = pow(10.0, settings.m_squelch / 20.0); m_squelchLevel *= m_squelchLevel; } if ((m_settings.m_udpAddress != settings.m_udpAddress) || (m_settings.m_udpPort != settings.m_udpPort) || force) { m_udpBufferAudio->setAddress(const_cast(settings.m_udpAddress)); m_udpBufferAudio->setPort(settings.m_udpPort); } m_settings = settings; } QByteArray WFMDemod::serialize() const { return m_settings.serialize(); } bool WFMDemod::deserialize(const QByteArray& data) { if (m_settings.deserialize(data)) { MsgConfigureWFMDemod *msg = MsgConfigureWFMDemod::create(m_settings, true); m_inputMessageQueue.push(msg); return true; } else { m_settings.resetToDefaults(); MsgConfigureWFMDemod *msg = MsgConfigureWFMDemod::create(m_settings, true); m_inputMessageQueue.push(msg); return false; } }